-`framework::OpKernel`: Base class for Op computation kernel.
-`framework::OperatorWithKernel`: Inherited from OperatorBase, describing an operator with computation kernels.
An operator can be differentiated by whether in has kernel methods. An operator with kernel inherits from `OperatorWithKernel` while the ones without inherit from `OperatorBase`. This tutorial focuses on implementing operators with kernels. In short, an operator includes the following information:
Operators can be categorized into two groups: operator with kernel(s) and operator without kernel(s). An operator with kernel(s) inherits from `OperatorWithKernel` while the one without kernel(s) inherits from `OperatorBase`. This tutorial focuses on implementing operators with kernels. In short, an operator includes the following information:
Information | Where is it defined
Information | Where is it defined
...
@@ -32,7 +34,7 @@ Kernel implementation | The kernel methods shared between CPU and CUDA are
...
@@ -32,7 +34,7 @@ Kernel implementation | The kernel methods shared between CPU and CUDA are
Registering the Op | Ops are registered in `.cc` files; For Kernel registration, `.cc` files contain the CPU implementation, while `.cu` files contain the CUDA implementation.
Registering the Op | Ops are registered in `.cc` files; For Kernel registration, `.cc` files contain the CPU implementation, while `.cu` files contain the CUDA implementation.
New Operator implementations are added to the list [paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators), with file names in the format `*_op.h` (if applicable), `*_op.cc`, `*_op.cu` (if applicable).** The system will use the naming scheme to automatically build operators and their corresponding Python extensions.**
New Operator implementations are added to the list [paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators), with file names in the format `*_op.h` (if applicable), `*_op.cc`, `*_op.cu` (if applicable).** The system will use the naming scheme to automatically build operators and their corresponding Python extensions.**
Let's take matrix multiplication operator, [MulOp](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc), as an example to introduce the writing of an Operator with Kernel.
Let's take matrix multiplication operator, [MulOp](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc), as an example to introduce the writing of an Operator with Kernel.
...
@@ -156,7 +158,8 @@ Usually `OpProtoMaker` and `Op`'s type definitions are written in `.cc` files, w
...
@@ -156,7 +158,8 @@ Usually `OpProtoMaker` and `Op`'s type definitions are written in `.cc` files, w
-`typename T` denotes data type, such as `float` or `double`.
-`typename T` denotes data type, such as `float` or `double`.
`MulKernel` types need to rewrite the interface for `Compute`.
`MulKernel` types need to rewrite the interface for `Compute`.
-`Compute` takes one input variable `const framework::ExecutionContext& context`.
-`Compute` takes one input parameter: `const framework::ExecutionContext& context`.
- Compared with `InferShapeContext`, `ExecutionContext` includes device types, and can similarly extract input, output, and attribute variables.
- Compared with `InferShapeContext`, `ExecutionContext` includes device types, and can similarly extract input, output, and attribute variables.
-`Compute` implements the computation logics of an `OpKernel`.
-`Compute` implements the computation logics of an `OpKernel`.
...
@@ -177,7 +180,7 @@ Usually `OpProtoMaker` and `Op`'s type definitions are written in `.cc` files, w
...
@@ -177,7 +180,7 @@ Usually `OpProtoMaker` and `Op`'s type definitions are written in `.cc` files, w
};
};
```
```
Note that **different devices (CPU, CUDA)share an Op definition; whether or not they share the same `OpKernel` depends on whether `Compute` calls functions that support both devices.**
Note that **different devices (CPU, CUDA)share one Op definition; whether or not they share the same `OpKernel` depends on whether `Compute` calls functions can support both devices.**
`MulOp`'s CPU and CUDA share the same `Kernel`. A non-sharing `OpKernel` example can be seen in [`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43).
`MulOp`'s CPU and CUDA share the same `Kernel`. A non-sharing `OpKernel` example can be seen in [`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43).
...
@@ -188,13 +191,14 @@ This concludes the forward implementation of an operator. Next its operation and
...
@@ -188,13 +191,14 @@ This concludes the forward implementation of an operator. Next its operation and
The definition of its corresponding backward operator, if applicable, is similar to that of an forward operator. **Note that a backward operator does not include a `ProtoMaker`**.
The definition of its corresponding backward operator, if applicable, is similar to that of an forward operator. **Note that a backward operator does not include a `ProtoMaker`**.
### Registering Operator
### Registering Operator and OpKernel
- In `.cc` files, register forward and backward operator classes and the CPU kernel.
- In `.cc` files, register forward and backward operator classes and the CPU kernel.
@@ -204,6 +208,7 @@ The definition of its corresponding backward operator, if applicable, is similar
...
@@ -204,6 +208,7 @@ The definition of its corresponding backward operator, if applicable, is similar
- `REGISTER_OP` registers the `ops::MulOp` class, type named `mul`, its type `ProtoMaker` is `ops::MulOpMaker`, registering `ops::MulOpGrad` as `mul_grad`.
- `REGISTER_OP` registers the `ops::MulOp` class, type named `mul`, its type `ProtoMaker` is `ops::MulOpMaker`, registering `ops::MulOpGrad` as `mul_grad`.
- `REGISTER_OP_WITHOUT_GRADIENT` registers an operator without gradient.
- `REGISTER_OP_WITHOUT_GRADIENT` registers an operator without gradient.
- `REGISTER_OP_CPU_KERNEL` registers `ops::MulKernel` class and specialized template types `paddle::platform::CPUPlace` and `float`, which also registers `ops::MulGradKernel`.
- `REGISTER_OP_CPU_KERNEL` registers `ops::MulKernel` class and specialized template types `paddle::platform::CPUPlace` and `float`, which also registers `ops::MulGradKernel`.
...
@@ -225,6 +230,7 @@ The definition of its corresponding backward operator, if applicable, is similar
...
@@ -225,6 +230,7 @@ The definition of its corresponding backward operator, if applicable, is similar