未验证 提交 781f4028 编写于 作者: L Leo Chen 提交者: GitHub

copy found_inf to cpu in advance to improve performance (#34274)

* copy found_inf to cpu in advance to improve performance

* add npu test

* add npu test

* refine code

* refine memcpy op

* fix adam
上级 c342651e
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class MatMulNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<framework::Tensor>("X");
auto* y = ctx.Input<framework::Tensor>("Y");
auto* out = ctx.Output<framework::Tensor>("Out");
bool transpose_x = ctx.Attr<bool>("transpose_X");
bool transpose_y = ctx.Attr<bool>("transpose_Y");
if (x->dims().size() == 2) {
out->mutable_data<T>(ctx.GetPlace());
const auto& runner = NpuOpRunner(
"MatMul", {*x, *y}, {*out},
{{"transpose_x1", transpose_x}, {"transpose_x2", transpose_y}});
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
runner.Run(stream);
} else if (x->dims().size() > 2) {
out->mutable_data<T>(ctx.GetPlace());
const auto& runner =
NpuOpRunner("BatchMatMul", {*x, *y}, {*out},
{{"adj_x1", transpose_x}, {"adj_x2", transpose_y}});
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
runner.Run(stream);
}
}
};
template <typename DeviceContext, typename T>
class MatMulGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<framework::Tensor>("X");
auto* y = ctx.Input<framework::Tensor>("Y");
auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
bool transpose_y = ctx.Attr<bool>("transpose_Y");
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
if (x->dims().size() == 2) {
if (transpose_y) {
if (dx) {
dx->mutable_data<T>(ctx.GetPlace());
const auto& runner_dx =
NpuOpRunner("MatMul", {*dout, *y}, {*dx},
{{"transpose_x1", false}, {"transpose_x2", false}});
runner_dx.Run(stream);
}
if (dy) {
dy->mutable_data<T>(ctx.GetPlace());
const auto& runner_dy =
NpuOpRunner("MatMul", {*dout, *x}, {*dy},
{{"transpose_x1", true}, {"transpose_x2", false}});
runner_dy.Run(stream);
}
} else {
if (dx) {
dx->mutable_data<T>(ctx.GetPlace());
const auto& runner_dx =
NpuOpRunner("MatMul", {*dout, *y}, {*dx},
{{"transpose_x1", false}, {"transpose_x2", true}});
runner_dx.Run(stream);
}
if (dy) {
dy->mutable_data<T>(ctx.GetPlace());
const auto& runner_dy =
NpuOpRunner("MatMul", {*x, *dout}, {*dy},
{{"transpose_x1", true}, {"transpose_x2", false}});
runner_dy.Run(stream);
}
}
} else if (x->dims().size() > 2) {
if (transpose_y) {
if (dx) {
dx->mutable_data<T>(ctx.GetPlace());
const auto& runner_dx =
NpuOpRunner("BatchMatMul", {*dout, *y}, {*dx},
{{"adj_x1", false}, {"adj_x2", false}});
runner_dx.Run(stream);
}
if (dy) {
dy->mutable_data<T>(ctx.GetPlace());
const auto& runner_dy =
NpuOpRunner("BatchMatMul", {*dout, *x}, {*dy},
{{"adj_x1", true}, {"adj_x2", false}});
runner_dy.Run(stream);
}
} else {
if (dx) {
dx->mutable_data<T>(ctx.GetPlace());
const auto& runner_dx =
NpuOpRunner("BatchMatMul", {*dout, *y}, {*dx},
{{"adj_x1", false}, {"adj_x2", true}});
runner_dx.Run(stream);
}
if (dy) {
dy->mutable_data<T>(ctx.GetPlace());
if ((x->dims().size() == 3) && (dout->dims().size() == 3) &&
(dy->dims().size() == 2)) {
framework::Tensor dout_;
dout_.ShareDataWith(*dout);
std::vector<int> vec_dim = framework::vectorize<int>(dout_.dims());
std::vector<int> vec_dim_v{vec_dim[0] * vec_dim[1], vec_dim[2]};
dout_.Resize(framework::make_ddim(vec_dim_v));
framework::Tensor x_;
x_.ShareDataWith(*x);
std::vector<int> vec_dim_x = framework::vectorize<int>(x_.dims());
std::vector<int> vec_dim_x_v{vec_dim_x[0] * vec_dim_x[1],
vec_dim_x[2]};
x_.Resize(framework::make_ddim(vec_dim_x_v));
const auto& runner_dy =
NpuOpRunner("MatMul", {x_, dout_}, {*dy},
{{"transpose_x1", true}, {"transpose_x2", false}});
runner_dy.Run(stream);
} else {
const auto& runner_dy =
NpuOpRunner("BatchMatMul", {*x, *dout}, {*dy},
{{"adj_x1", true}, {"adj_x2", false}});
runner_dy.Run(stream);
}
}
}
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
matmul, ops::MatMulNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::MatMulNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
matmul_grad,
ops::MatMulGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::MatMulGradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
...@@ -51,17 +51,14 @@ class MemcpyFunctor { ...@@ -51,17 +51,14 @@ class MemcpyFunctor {
} else if (dst_place_type_ == 1) { } else if (dst_place_type_ == 1) {
framework::TensorCopy(lod_tensor, dev_ctx_.GetPlace(), dev_ctx_, framework::TensorCopy(lod_tensor, dev_ctx_.GetPlace(), dev_ctx_,
&out_tensor); &out_tensor);
} } else if (dst_place_type_ == 0) {
framework::TensorCopySync(lod_tensor, platform::CPUPlace(), &out_tensor);
#ifdef PADDLE_WITH_ASCEND_CL #ifdef PADDLE_WITH_ASCEND_CL
else if (dst_place_type_ == 0) { // NOLINT
framework::TensorCopy(lod_tensor, platform::CPUPlace(), dev_ctx_,
&out_tensor);
} else if (dst_place_type_ == 4) { } else if (dst_place_type_ == 4) {
framework::TensorCopy(lod_tensor, dev_ctx_.GetPlace(), dev_ctx_, framework::TensorCopy(lod_tensor, dev_ctx_.GetPlace(), dev_ctx_,
&out_tensor); &out_tensor);
}
#endif #endif
else { // NOLINT } else {
PADDLE_THROW(platform::errors::Unimplemented( PADDLE_THROW(platform::errors::Unimplemented(
"memcpy dst_place_type: %d is not supported yet.", dst_place_type_)); "memcpy dst_place_type: %d is not supported yet.", dst_place_type_));
} }
......
...@@ -122,7 +122,8 @@ framework::OpKernelType AdamOp::GetExpectedKernelType( ...@@ -122,7 +122,8 @@ framework::OpKernelType AdamOp::GetExpectedKernelType(
framework::OpKernelType AdamOp::GetKernelTypeForVar( framework::OpKernelType AdamOp::GetKernelTypeForVar(
const std::string &var_name, const framework::Tensor &tensor, const std::string &var_name, const framework::Tensor &tensor,
const framework::OpKernelType &expected_kernel_type) const { const framework::OpKernelType &expected_kernel_type) const {
if (var_name == "Beta1Pow" || var_name == "Beta2Pow") { if (var_name == "Beta1Pow" || var_name == "Beta2Pow" ||
var_name == "SkipUpdate") {
return expected_kernel_type; return expected_kernel_type;
} else { } else {
return framework::OpKernelType(expected_kernel_type.data_type_, return framework::OpKernelType(expected_kernel_type.data_type_,
......
...@@ -141,7 +141,7 @@ class AdamNPUKernel : public framework::OpKernel<T> { ...@@ -141,7 +141,7 @@ class AdamNPUKernel : public framework::OpKernel<T> {
if (ctx.HasInput("Beta2Tensor")) { if (ctx.HasInput("Beta2Tensor")) {
beta2_tensor = ctx.Input<framework::Tensor>("Beta2Tensor"); beta2_tensor = ctx.Input<framework::Tensor>("Beta2Tensor");
PADDLE_ENFORCE_EQ(beta1_tensor->numel(), 1, PADDLE_ENFORCE_EQ(beta2_tensor->numel(), 1,
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
"Input(Beta2Tensor) size must be 1, but get %d", "Input(Beta2Tensor) size must be 1, but get %d",
beta2_tensor->numel())); beta2_tensor->numel()));
......
...@@ -400,6 +400,10 @@ class OptimizerWithMixedPrecision(object): ...@@ -400,6 +400,10 @@ class OptimizerWithMixedPrecision(object):
name="update_loss_scaling") name="update_loss_scaling")
# Pass found_inf to adam, to skip update for not only param, but also momentum and beta_pow # Pass found_inf to adam, to skip update for not only param, but also momentum and beta_pow
if isinstance(self._optimizer, paddle.fluid.optimizer.Adam): if isinstance(self._optimizer, paddle.fluid.optimizer.Adam):
# NOTE(zhiqiu): Since found_inf needs to be on cpu in adam op, we
# copy it in advance to avoid multiple time copies.
found_inf = paddle.tensor.creation._memcpy(found_inf,
paddle.CPUPlace())
self._optimizer._set_auxiliary_var('found_inf', found_inf) self._optimizer._set_auxiliary_var('found_inf', found_inf)
optimize_ops = self._optimizer.apply_gradients(params_grads) optimize_ops = self._optimizer.apply_gradients(params_grads)
return optimize_ops return optimize_ops
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import sys
import paddle
sys.path.append("..")
import test_mixed_precision
paddle.enable_static()
class AMPTestNpu(test_mixed_precision.AMPTest):
def setUp(self):
self.place = paddle.NPUPlace(0)
if __name__ == '__main__':
unittest.main()
...@@ -144,32 +144,6 @@ class TestMemcpyOPError(unittest.TestCase): ...@@ -144,32 +144,6 @@ class TestMemcpyOPError(unittest.TestCase):
feed={}, feed={},
fetch_list=[selected_row_var.name, pinned_var.name]) fetch_list=[selected_row_var.name, pinned_var.name])
def test_OTHER_PLACE_NotImplementedError(self):
main_program, pinned_var = self.get_prog()
lod_tensor_var = main_program.global_block().create_var( \
name="lod_tensor_0", dtype="float32", persistable=False, stop_gradient=True)
main_program.global_block().append_op(
type="fill_constant",
outputs={"Out": lod_tensor_var},
attrs={
"shape": lod_tensor_var.shape,
"dtype": lod_tensor_var.dtype,
"value": 1.0,
"place_type": 0
})
main_program.global_block().append_op(
type='memcpy',
inputs={'X': pinned_var},
outputs={'Out': lod_tensor_var},
attrs={'dst_place_type': 0, })
with self.assertRaises(NotImplementedError):
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
lod_tensor_var_, pinned_ = exe.run(
main_program,
feed={},
fetch_list=[lod_tensor_var.name, pinned_var.name])
class TestMemcpyApi(unittest.TestCase): class TestMemcpyApi(unittest.TestCase):
def test_api(self): def test_api(self):
......
...@@ -47,6 +47,9 @@ class SimpleNet(nn.Layer): ...@@ -47,6 +47,9 @@ class SimpleNet(nn.Layer):
class AMPTest(unittest.TestCase): class AMPTest(unittest.TestCase):
def setUp(self):
self.place = paddle.CUDAPlace(0)
def net(self): def net(self):
input_size = 4096 input_size = 4096
output_size = 4096 output_size = 4096
...@@ -82,7 +85,8 @@ class AMPTest(unittest.TestCase): ...@@ -82,7 +85,8 @@ class AMPTest(unittest.TestCase):
fetch_list = [ fetch_list = [
loss, weight, moment1, beta_pow1, 'find_infinite_scale.tmp_0' loss, weight, moment1, beta_pow1, 'find_infinite_scale.tmp_0'
] ]
exe = paddle.static.Executor(paddle.CUDAPlace(0))
exe = paddle.static.Executor(self.place)
train_data = [ train_data = [
np.random.rand(batch_size, input_size).astype(np.float32) np.random.rand(batch_size, input_size).astype(np.float32)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册