未验证 提交 6f563ace 编写于 作者: H hutuxian 提交者: GitHub

Ascend Framework Part1: OP & Wrapper (#30281) (#30546)

上级 9b1031f3
......@@ -31,9 +31,13 @@ option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_F
option(WITH_TENSORRT "Compile PaddlePaddle with NVIDIA TensorRT" OFF)
option(WITH_XPU "Compile PaddlePaddle with BAIDU KUNLUN XPU" OFF)
option(WITH_WIN_DUMP_DBG "Compile with windows core dump debug mode" OFF)
option(WITH_ASCEND "Compile PaddlePaddle with ASCEND" OFF)
if (WITH_GPU AND WITH_XPU)
message(FATAL_ERROR "Error when compile GPU and XPU at the same time")
endif()
if (WITH_GPU AND WITH_ASCEND)
message(FATAL_ERROR "Error when compile GPU and ASCEND at the same time")
endif()
# cmake 3.12, 3.13, 3.14 will append gcc link options to nvcc, and nvcc doesn't recognize them.
if(WITH_GPU AND (${CMAKE_VERSION} VERSION_GREATER_EQUAL 3.12) AND (${CMAKE_VERSION} VERSION_LESS 3.15))
message(FATAL_ERROR "cmake ${CMAKE_VERSION} is not supported when WITH_GPU=ON because of bug https://cmake.org/pipermail/cmake/2018-September/068195.html. "
......
......@@ -78,6 +78,10 @@ if(WITH_BOX_PS)
add_definitions(-DPADDLE_WITH_BOX_PS)
endif()
if(WITH_ASCEND)
add_definitions(-DPADDLE_WITH_ASCEND)
endif()
if(WITH_XPU)
message(STATUS "Compile with XPU!")
add_definitions(-DPADDLE_WITH_XPU)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
INCLUDE(ExternalProject)
SET(ASCEND_PROJECT "extern_ascend")
IF((NOT DEFINED ASCEND_VER) OR (NOT DEFINED ASCEND_URL))
MESSAGE(STATUS "use pre defined download url")
SET(ASCEND_VER "0.1.1" CACHE STRING "" FORCE)
SET(ASCEND_NAME "ascend" CACHE STRING "" FORCE)
SET(ASCEND_URL "http://paddle-ascend.bj.bcebos.com/ascend.tar.gz" CACHE STRING "" FORCE)
ENDIF()
MESSAGE(STATUS "ASCEND_NAME: ${ASCEND_NAME}, ASCEND_URL: ${ASCEND_URL}")
SET(ASCEND_SOURCE_DIR "${THIRD_PARTY_PATH}/ascend")
SET(ASCEND_DOWNLOAD_DIR "${ASCEND_SOURCE_DIR}/src/${ASCEND_PROJECT}")
SET(ASCEND_DST_DIR "ascend")
SET(ASCEND_INSTALL_ROOT "${THIRD_PARTY_PATH}/install")
SET(ASCEND_INSTALL_DIR ${ASCEND_INSTALL_ROOT}/${ASCEND_DST_DIR})
SET(ASCEND_ROOT ${ASCEND_INSTALL_DIR})
SET(ASCEND_INC_DIR ${ASCEND_ROOT}/include)
SET(ASCEND_LIB_DIR ${ASCEND_ROOT}/lib)
SET(ASCEND_LIB ${ASCEND_LIB_DIR}/libge_runner.so)
SET(ASCEND_GRAPH_LIB ${ASCEND_LIB_DIR}/libgraph.so)
SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${ASCEND_ROOT}/lib")
INCLUDE_DIRECTORIES(${ASCEND_INC_DIR})
FILE(WRITE ${ASCEND_DOWNLOAD_DIR}/CMakeLists.txt
"PROJECT(ASCEND)\n"
"cmake_minimum_required(VERSION 3.0)\n"
"install(DIRECTORY ${ASCEND_NAME}/include ${ASCEND_NAME}/lib \n"
" DESTINATION ${ASCEND_DST_DIR})\n")
ExternalProject_Add(
${ASCEND_PROJECT}
${EXTERNAL_PROJECT_LOG_ARGS}
PREFIX ${ASCEND_SOURCE_DIR}
DOWNLOAD_DIR ${ASCEND_DOWNLOAD_DIR}
DOWNLOAD_COMMAND wget --no-check-certificate ${ASCEND_URL} -c -q -O ${ASCEND_NAME}.tar.gz
&& tar zxvf ${ASCEND_NAME}.tar.gz
DOWNLOAD_NO_PROGRESS 1
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${ASCEND_INSTALL_ROOT}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${ASCEND_INSTALL_ROOT}
)
ADD_LIBRARY(ascend SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET ascend PROPERTY IMPORTED_LOCATION ${ASCEND_LIB})
ADD_LIBRARY(ascend_graph SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET ascend_graph PROPERTY IMPORTED_LOCATION ${ASCEND_GRAPH_LIB})
ADD_DEPENDENCIES(ascend ascend_graph ${ASCEND_PROJECT})
......@@ -280,6 +280,11 @@ if(WITH_BOX_PS)
list(APPEND third_party_deps extern_box_ps)
endif(WITH_BOX_PS)
if(WITH_ASCEND)
include(external/ascend)
list(APPEND third_party_deps extern_ascend)
endif (WITH_ASCEND)
if (WITH_PSCORE)
include(external/snappy)
list(APPEND third_party_deps extern_snappy)
......
......@@ -31,3 +31,7 @@ endif(WITH_GLOO)
cc_library(heter_wrapper SRCS heter_wrapper.cc DEPS framework_proto device_context heter_service_proto)
cc_test(test_fleet SRCS test_fleet.cc DEPS fleet_wrapper gloo_wrapper fs shell)
if(WITH_ASCEND)
cc_library(ascend_wrapper SRCS ascend_wrapper.cc DEPS framework_proto lod_tensor ascend ascend_graph)
endif(WITH_ASCEND)
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/framework/fleet/ascend_wrapper.h"
namespace paddle {
namespace framework {
std::shared_ptr<AscendInstance> AscendInstance::ascend_instance_ = nullptr;
} // end namespace framework
} // end namespace paddle
#endif
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifdef PADDLE_WITH_ASCEND
#include <glog/logging.h>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/platform/gpu_info.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/timer.h"
#include "ge/ge_api.h"
#include "ge/ge_api_types.h"
#include "graph/attr_value.h"
#include "graph/tensor.h"
#include "graph/types.h"
namespace paddle {
namespace framework {
// typedef std::vector<std::string> AscendGraphDesc;
typedef ge::Graph AscendGraphDesc;
class AscendInstance {
public:
virtual ~AscendInstance() {}
AscendInstance() {}
std::map<std::string, std::string> GetDefaultInitSessionOptions() {
std::map<std::string, std::string> init_options;
init_options["a"] = "b";
init_options["ge.trainFlag"] = "1";
return init_options;
}
// add other parameters here to init
void InitGlobalResouces() {
session_.reset(new ge::Session(GetDefaultInitSessionOptions()));
VLOG(1) << "InitGlobalResouces Done";
}
static std::shared_ptr<AscendInstance> GetInstance() {
if (nullptr == ascend_instance_) {
ascend_instance_.reset(new paddle::framework::AscendInstance());
VLOG(1) << "Initialize AscendInstance Done";
}
return ascend_instance_;
}
void AddAscendSubgraph(int graph_idx, const AscendGraphDesc &graph) {
ge::Status status = session_->AddGraph(graph_idx, graph);
PADDLE_ENFORCE_EQ(status, ge::SUCCESS,
paddle::platform::errors::PreconditionNotMet(
"Calling addGraph of graph engine failed, please "
"check Ascend Log."));
VLOG(1) << "AddAscendSubgraph " << graph_idx << " Done";
}
ge::DataType VarTypeToGeType(proto::VarType::Type type) {
if (type == proto::VarType::FP16) {
return ge::DataType::DT_FLOAT16;
} else if (type == proto::VarType::FP32) {
return ge::DataType::DT_FLOAT;
} else if (type == proto::VarType::FP64) {
return ge::DataType::DT_DOUBLE;
} else if (type == proto::VarType::INT32) {
return ge::DataType::DT_INT32;
} else if (type == proto::VarType::INT64) {
return ge::DataType::DT_INT64;
} else {
PADDLE_THROW(platform::errors::Unimplemented(
"Not support %s as tensor type.", DataTypeToString(type)));
}
}
int GeTypeSize(proto::VarType::Type type) {
if (type == proto::VarType::FP16) {
return 2;
} else if (type == proto::VarType::FP32) {
return 4;
} else if (type == proto::VarType::FP64) {
return 8;
} else if (type == proto::VarType::INT32) {
return 4;
} else if (type == proto::VarType::INT64) {
return 8;
} else {
PADDLE_THROW(platform::errors::Unimplemented(
"Not support %s as tensor type.", DataTypeToString(type)));
}
}
ge::Tensor ConvertToGeTensor(const Tensor *tensor) {
auto numel = tensor->numel();
std::vector<int64_t> vec_dim;
auto dimen = arity(tensor->dims());
for (auto i = 0; i < dimen; ++i) {
vec_dim.push_back(tensor->dims()[i]);
}
// For Debug
// VLOG(1) << "input numel: " << numel << ", dimen is " << vec_dim.size() <<
// ", and shape is";
// for (const auto e : vec_dim) {
// VLOG(0) << e;
// }
ge::Shape shape(vec_dim);
ge::TensorDesc tensor_desc(shape, ge::Format::FORMAT_ND,
VarTypeToGeType(tensor->type()));
tensor_desc.SetRealDimCnt(vec_dim.size());
const uint8_t *data =
reinterpret_cast<const uint8_t *>(tensor->data<void>());
std::vector<uint8_t> dst(numel * GeTypeSize(tensor->type()));
memcpy(dst.data(), data, GeTypeSize(tensor->type()) * numel);
ge::Tensor ge_tensor(tensor_desc, dst);
return ge_tensor;
}
void RunAscendSubgraph(int graph_idx,
const std::vector<const Tensor *> &inputs,
std::vector<Tensor *> *outputs) {
VLOG(1) << "Ascend Graph[" << graph_idx << "] is about to run.";
// Convert paddle Tensor to GE Tensor
std::vector<ge::Tensor> ge_inputs;
for (const auto &e : inputs) {
ge_inputs.push_back(ConvertToGeTensor(e));
}
// Run Graph
std::vector<ge::Tensor> ge_outputs;
ge::Status status = session_->RunGraph(graph_idx, ge_inputs, ge_outputs);
PADDLE_ENFORCE_EQ(status, ge::SUCCESS,
paddle::platform::errors::PreconditionNotMet(
"Calling RunGraph of graph engine failed, please "
"check Ascend Log."));
VLOG(1) << "Run Ascend Graph[" << graph_idx << "] Done";
// change tensor back, note all tensor's type computed in GE is uint8
for (size_t i = 0; i < ge_outputs.size(); ++i) {
const uint8_t *ret_data = ge_outputs[i].GetData();
size_t size = ge_outputs[i].GetSize();
VLOG(1) << "GE Tensor size of the " << i << "th output var is " << size;
auto *dst = (*outputs)[i]->mutable_data<uint8_t>({(int64_t)size},
platform::CPUPlace());
memcpy(dst, ret_data, size);
// Following for debug:
// VLOG(0) << "output for " << i << " var: ";
// float *tmp = reinterpret_cast<float*>(dst);
// for (size_t j = 0; j < size / 4; ++j) {
// printf("%f ", tmp[j]);
// }
// printf("\n");
}
}
protected:
std::shared_ptr<ge::Session> session_;
private:
static std::shared_ptr<AscendInstance> ascend_instance_;
};
} // end namespace framework
} // end namespace paddle
#endif
......@@ -106,6 +106,9 @@ set(COMMON_OP_DEPS ${COMMON_OP_DEPS} device_memory_aligment)
set(COMMON_OP_DEPS ${COMMON_OP_DEPS} layer)
set(COMMON_OP_DEPS ${COMMON_OP_DEPS} tensor_formatter)
set(COMMON_OP_DEPS ${COMMON_OP_DEPS} op_version_registry)
if (WITH_ASCEND)
set(COMMON_OP_DEPS ${COMMON_OP_DEPS} ascend_wrapper)
endif()
# FIXME(typhoonzero): operator deps may not needed.
# op_library(lod_tensor_to_array_op DEPS lod_rank_table_op)
......
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/ascend_trigger_op.h"
namespace paddle {
namespace operators {
class AscendTriggerOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(framework::proto::VarType::FP32,
ctx.device_context());
}
};
class AscendTriggerOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("FeedList", "FeedList of Ascend SubGraph").AsDuplicable();
AddOutput("FetchList", "FetchList of Ascend SubGraph").AsDuplicable();
AddAttr<int>("graph_idx", "(int, the graph index").SetDefault(-1);
AddComment(R"DOC(
Trigger Ascend SubGraph
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(ascend_trigger, ops::AscendTriggerOp,
ops::AscendTriggerOpMaker);
REGISTER_OP_CPU_KERNEL(ascend_trigger, ops::AscendTriggerCPUKernel<float>)
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/framework/fleet/ascend_wrapper.h"
#include "paddle/fluid/framework/tensor.h"
#endif
namespace paddle {
namespace operators {
template <typename T>
class AscendTriggerCPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
#ifdef PADDLE_WITH_ASCEND
auto ascend_ptr = paddle::framework::AscendInstance::GetInstance();
auto graph_idx = ctx.Attr<int>("graph_idx");
VLOG(4) << "AscendTrigger Kernel, begin to run graph: " << graph_idx;
auto inputs = ctx.MultiInput<framework::Tensor>("FeedList");
auto outputs = ctx.MultiOutput<framework::Tensor>("FetchList");
ascend_ptr->RunAscendSubgraph(graph_idx, inputs, &outputs);
#else
PADDLE_THROW(platform::errors::PreconditionNotMet(
"Please compile WITH_ASCEND option to enable ascend_trigger op"));
#endif
}
};
} // namespace operators
} // namespace paddle
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import unittest
class TestAscendTriggerOP(unittest.TestCase):
""" TestCases for ascend_trigger op"""
def test_ascend_trigger_op(self):
paddle.enable_static()
program = fluid.Program()
block = program.global_block()
with fluid.program_guard(program):
x = fluid.data(name='x', shape=[1], dtype='int64', lod_level=0)
y = fluid.data(name='y', shape=[1], dtype='int64', lod_level=0)
block.append_op(
type="ascend_trigger",
inputs={"FeedList": [x]},
outputs={"FetchList": [y]},
attrs={'graph_idx': 0})
exe = paddle.static.Executor(paddle.CPUPlace())
try:
exe.run(program)
except RuntimeError as e:
pass
except:
self.assertTrue(False)
paddle.disable_static()
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册