未验证 提交 6f2bac7c 编写于 作者: C Charles-hit 提交者: GitHub

move elementwise XPU kernels to phi (#45603)

* move elementwise_floordiv、elementwise_max、elementwise_max_grad XPU kernel to phi,test=kunlun

* move elementwise_min elementwise_min_grad kernels to phi,test=kunlun

* delete elementwise_min_xpu.cc,test=kunlun

* move elementwise_mod elementwise_pow XPU kernels to phi,test=kunlun
上级 1ac8ca4d
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/elementwise/elementwise_div_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_xpu.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class ElementwiseFloordivXPUKernel : public framework::OpKernel<T> {
using XPUType = typename XPUTypeTrait<T>::Type;
public:
void Compute(const framework::ExecutionContext& ctx) const override {
XPUElementwise<T, XPUType>(ctx, xpu::broadcast_floordiv<XPUType>);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
elementwise_floordiv,
ops::ElementwiseFloordivXPUKernel<paddle::platform::XPUDeviceContext,
float>,
ops::ElementwiseFloordivXPUKernel<paddle::platform::XPUDeviceContext,
paddle::platform::float16>);
#endif
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_xpu.h"
namespace paddle {
namespace operators {
template <typename T>
class ElementwiseMaxXPUKernel : public framework::OpKernel<T> {
using XPUType = typename XPUTypeTrait<T>::Type;
public:
void Compute(const framework::ExecutionContext& ctx) const override {
XPUElementwise<T, XPUType>(ctx, xpu::broadcast_max<XPUType>);
}
};
template <typename T>
class ElementwiseMaxGradXPUKernel : public ElemwiseGradKernel<T> {
using XPUType = typename XPUTypeTrait<T>::Type;
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElemwiseGradKernel<T>::Compute(ctx);
XPUElementwiseGrad<T, XPUType>(ctx, xpu::broadcast_max_grad<XPUType>, true);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(elementwise_max,
ops::ElementwiseMaxXPUKernel<float>,
ops::ElementwiseMaxXPUKernel<paddle::platform::float16>);
REGISTER_OP_XPU_KERNEL(
elementwise_max_grad,
ops::ElementwiseMaxGradXPUKernel<float>,
ops::ElementwiseMaxGradXPUKernel<paddle::platform::float16>);
#endif
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_xpu.h"
namespace paddle {
namespace operators {
template <typename T>
class ElementwiseMinXPUKernel : public framework::OpKernel<T> {
using XPUType = typename XPUTypeTrait<T>::Type;
public:
void Compute(const framework::ExecutionContext& ctx) const override {
XPUElementwise<T, XPUType>(ctx, xpu::broadcast_min<XPUType>);
}
};
template <typename T>
class ElementwiseMinGradXPUKernel : public ElemwiseGradKernel<T> {
using XPUType = typename XPUTypeTrait<T>::Type;
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElemwiseGradKernel<T>::Compute(ctx);
XPUElementwiseGrad<T, XPUType>(ctx, xpu::broadcast_min_grad<XPUType>, true);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(elementwise_min,
ops::ElementwiseMinXPUKernel<float>,
ops::ElementwiseMinXPUKernel<paddle::platform::float16>);
REGISTER_OP_XPU_KERNEL(
elementwise_min_grad,
ops::ElementwiseMinGradXPUKernel<float>,
ops::ElementwiseMinGradXPUKernel<paddle::platform::float16>);
#endif
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include <memory>
#include <string>
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/common_infer_shape_functions.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/elementwise/elementwise_xpu.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
namespace paddle {
namespace operators {
template <typename T>
class ElementwiseModXPUKernel : public framework::OpKernel<T> {
using XPUType = typename XPUTypeTrait<T>::Type;
public:
void Compute(const framework::ExecutionContext& ctx) const override {
XPUElementwise<T, XPUType>(ctx, xpu::broadcast_mod<XPUType>);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(elementwise_mod,
ops::ElementwiseModXPUKernel<float>,
ops::ElementwiseModXPUKernel<paddle::platform::float16>,
ops::ElementwiseModXPUKernel<int32_t>,
ops::ElementwiseModXPUKernel<int64_t>);
#endif
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_xpu.h"
#include "xpu/refactor/math.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class ElementwisePowXPUKernel : public framework::OpKernel<T> {
using XPUType = typename XPUTypeTrait<T>::Type;
public:
void Compute(const framework::ExecutionContext& ctx) const override {
XPUElementwise<T, XPUType>(ctx, xpu::broadcast_pow<XPUType>);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
elementwise_pow,
ops::ElementwisePowXPUKernel<paddle::platform::XPUDeviceContext, float>,
ops::ElementwisePowXPUKernel<paddle::platform::XPUDeviceContext,
paddle::platform::float16>);
#endif
......@@ -336,3 +336,30 @@ PD_REGISTER_KERNEL(multiply,
float) {}
#endif
#if defined PADDLE_WITH_XPU
PD_REGISTER_KERNEL(floor_divide,
XPU,
ALL_LAYOUT,
phi::FloorDivideKernel,
float,
phi::dtype::float16) {}
PD_REGISTER_KERNEL(
maximum, XPU, ALL_LAYOUT, phi::MaximumKernel, float, phi::dtype::float16) {}
PD_REGISTER_KERNEL(
minimum, XPU, ALL_LAYOUT, phi::MinimumKernel, float, phi::dtype::float16) {}
PD_REGISTER_KERNEL(remainder,
XPU,
ALL_LAYOUT,
phi::RemainderKernel,
float,
phi::dtype::float16,
int32_t,
int64_t) {}
PD_REGISTER_KERNEL(elementwise_pow,
XPU,
ALL_LAYOUT,
phi::ElementwisePowKernel,
float,
phi::dtype::float16) {}
#endif
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/elementwise_grad_kernel.h"
#include "paddle/phi/kernels/xpu/elementwise.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void MaximumGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& y,
const DenseTensor& dout,
int axis,
DenseTensor* dx,
DenseTensor* dy) {
using XPUType = typename XPUTypeTrait<T>::Type;
XPUElementwiseGrad<T, XPUType>(dev_ctx,
x,
y,
dout,
axis,
dx,
dy,
xpu::broadcast_max_grad<XPUType>,
true);
}
template <typename T, typename Context>
void MinimumGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& y,
const DenseTensor& dout,
int axis,
DenseTensor* dx,
DenseTensor* dy) {
using XPUType = typename XPUTypeTrait<T>::Type;
XPUElementwiseGrad<T, XPUType>(dev_ctx,
x,
y,
dout,
axis,
dx,
dy,
xpu::broadcast_min_grad<XPUType>,
true);
}
} // namespace phi
PD_REGISTER_KERNEL(maximum_grad,
XPU,
ALL_LAYOUT,
phi::MaximumGradKernel,
float,
phi::dtype::float16) {}
PD_REGISTER_KERNEL(minimum_grad,
XPU,
ALL_LAYOUT,
phi::MinimumGradKernel,
float,
phi::dtype::float16) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/elementwise_kernel.h"
#include "paddle/phi/kernels/xpu/elementwise.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void FloorDivideRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& y,
int axis,
DenseTensor* out) {
using XPUType = typename XPUTypeTrait<T>::Type;
XPUElementwise<T, XPUType>(
dev_ctx, x, y, axis, out, xpu::broadcast_floordiv<XPUType>);
}
template <typename T, typename Context>
void MaximumRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& y,
int axis,
DenseTensor* out) {
using XPUType = typename XPUTypeTrait<T>::Type;
XPUElementwise<T, XPUType>(
dev_ctx, x, y, axis, out, xpu::broadcast_max<XPUType>);
}
template <typename T, typename Context>
void MinimumRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& y,
int axis,
DenseTensor* out) {
using XPUType = typename XPUTypeTrait<T>::Type;
XPUElementwise<T, XPUType>(
dev_ctx, x, y, axis, out, xpu::broadcast_min<XPUType>);
}
template <typename T, typename Context>
void RemainderRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& y,
int axis,
DenseTensor* out) {
using XPUType = typename XPUTypeTrait<T>::Type;
XPUElementwise<T, XPUType>(
dev_ctx, x, y, axis, out, xpu::broadcast_mod<XPUType>);
}
template <typename T, typename Context>
void ElementwisePowRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& y,
int axis,
DenseTensor* out) {
using XPUType = typename XPUTypeTrait<T>::Type;
XPUElementwise<T, XPUType>(
dev_ctx, x, y, axis, out, xpu::broadcast_pow<XPUType>);
}
} // namespace phi
PD_REGISTER_KERNEL(floor_divide_raw,
XPU,
ALL_LAYOUT,
phi::FloorDivideRawKernel,
float,
phi::dtype::float16) {}
PD_REGISTER_KERNEL(maximum_raw,
XPU,
ALL_LAYOUT,
phi::MaximumRawKernel,
float,
phi::dtype::float16) {}
PD_REGISTER_KERNEL(minimum_raw,
XPU,
ALL_LAYOUT,
phi::MinimumRawKernel,
float,
phi::dtype::float16) {}
PD_REGISTER_KERNEL(remainder_raw,
XPU,
ALL_LAYOUT,
phi::RemainderRawKernel,
float,
phi::dtype::float16,
int32_t,
int64_t) {}
PD_REGISTER_KERNEL(elementwise_pow_raw,
XPU,
ALL_LAYOUT,
phi::ElementwisePowRawKernel,
float,
phi::dtype::float16) {}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册