提交 6bb84490 编写于 作者: M minqiyang

Fix imperative unit test

test=develop
上级 336160e6
...@@ -61,6 +61,9 @@ class Autograd { ...@@ -61,6 +61,9 @@ class Autograd {
for (size_t i = 0; i < input_grads.size(); ++i) { for (size_t i = 0; i < input_grads.size(); ++i) {
if (!input_grads[i]) continue; if (!input_grads[i]) continue;
if (ready_op->input_vars_->at(i)->stop_gradient_) {
continue;
}
OpBase* pre_op = ready_op->pre_ops_->at(i); OpBase* pre_op = ready_op->pre_ops_->at(i);
if (!pre_op) continue; if (!pre_op) continue;
...@@ -152,7 +155,7 @@ void VarBase::ApplyGrad(framework::Scope* scope, Variable* grad) { ...@@ -152,7 +155,7 @@ void VarBase::ApplyGrad(framework::Scope* scope, Variable* grad) {
} }
std::vector<Variable*> OpBase::ApplyGrad(framework::Scope* scope) { std::vector<Variable*> OpBase::ApplyGrad(framework::Scope* scope) {
VLOG(3) << "op grad " << grad_op_desc_->Type(); VLOG(3) << "op grad type: " << grad_op_desc_->Type();
for (const std::string& grad_invar : grad_op_desc_->InputArgumentNames()) { for (const std::string& grad_invar : grad_op_desc_->InputArgumentNames()) {
if (grad_to_var_->find(grad_invar) == grad_to_var_->end()) { if (grad_to_var_->find(grad_invar) == grad_to_var_->end()) {
......
...@@ -93,6 +93,8 @@ class Tracer { ...@@ -93,6 +93,8 @@ class Tracer {
LOG(ERROR) << "tracer doesn't support yet"; LOG(ERROR) << "tracer doesn't support yet";
} }
} }
outputs[i]->stop_gradient_ = stop_gradient;
outputs[i]->var_ = var; outputs[i]->var_ = var;
outputs[i]->pre_op_ = op; outputs[i]->pre_op_ = op;
outputs[i]->pre_op_out_idx_ = i; outputs[i]->pre_op_out_idx_ = i;
...@@ -106,6 +108,7 @@ class Tracer { ...@@ -106,6 +108,7 @@ class Tracer {
CreateGradOp(*op_desc, {}, {block}, &grad_op_desc, grad_to_var); CreateGradOp(*op_desc, {}, {block}, &grad_op_desc, grad_to_var);
op->grad_op_desc_ = grad_op_desc; op->grad_op_desc_ = grad_op_desc;
op->grad_to_var_ = grad_to_var; op->grad_to_var_ = grad_to_var;
VLOG(3) << "tracer create grad op " << grad_op_desc->Type();
} }
op->block_ = block; op->block_ = block;
} }
......
...@@ -9348,7 +9348,7 @@ class PyFuncRegistry(object): ...@@ -9348,7 +9348,7 @@ class PyFuncRegistry(object):
raise TypeError('func must be a Python function') raise TypeError('func must be a Python function')
self._func = func self._func = func
# find named args using reflection # find named args using reflection
args = inspect.getargspec(self._func) args = inspect.getargspec(self._func)
if len(args[0]) == 0 and args[1] is None and args[2] is None: if len(args[0]) == 0 and args[1] is None and args[2] is None:
# Function with no inputs # Function with no inputs
...@@ -9359,15 +9359,15 @@ class PyFuncRegistry(object): ...@@ -9359,15 +9359,15 @@ class PyFuncRegistry(object):
''' '''
Why record self here? Why record self here?
1. For debug usage. Users can call 1. For debug usage. Users can call
:code:`py_func.registered_func(idx)` method :code:`py_func.registered_func(idx)` method
to find the registered function corresponding to find the registered function corresponding
to :code:`idx`. to :code:`idx`.
2. For increasing reference count of self. 2. For increasing reference count of self.
It seems that to release Python object It seems that to release Python object
whose reference count is 1 would cause whose reference count is 1 would cause
segmentation fault error in C++ side. segmentation fault error in C++ side.
May be lack of Python GC in C++ side? May be lack of Python GC in C++ side?
''' '''
PyFuncRegistry._register_funcs.append(self) PyFuncRegistry._register_funcs.append(self)
...@@ -9418,7 +9418,7 @@ class PyFuncRegistry(object): ...@@ -9418,7 +9418,7 @@ class PyFuncRegistry(object):
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None): def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
""" """
PyFunc Operator. PyFunc Operator.
User can use :code:`py_func` to register operators in Python side. User can use :code:`py_func` to register operators in Python side.
The inputs of :code:`func` is :code:`LoDTensor` and outputs can be The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
numpy array or :code:`LoDTensor`. Paddle would call the registered numpy array or :code:`LoDTensor`. Paddle would call the registered
...@@ -9436,7 +9436,7 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None): ...@@ -9436,7 +9436,7 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
no gradient, users should return None. no gradient, users should return None.
This function can also be used to debug the running network. User can This function can also be used to debug the running network. User can
add a :code:`py_func` operator without output, and print input add a :code:`py_func` operator without output, and print input
:code:`x` inside :code:`func`. :code:`x` inside :code:`func`.
Args: Args:
...@@ -9444,50 +9444,50 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None): ...@@ -9444,50 +9444,50 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`. x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`. out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
Paddle cannot infer shapes and data types of :code:`out`. Users Paddle cannot infer shapes and data types of :code:`out`. Users
should create :code:`out` beforehand. should create :code:`out` beforehand.
backward_func (callable|None): backward Python function. backward_func (callable|None): backward Python function.
None means no backward. Default None. None means no backward. Default None.
skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)): skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
Variables that are not needed in :code:`backward_func` inputs. Variables that are not needed in :code:`backward_func` inputs.
These variables must be any of :code:`x` and :code:`out`. These variables must be any of :code:`x` and :code:`out`.
If set, these vars would not be inputs of :code:`backward_func`, If set, these vars would not be inputs of :code:`backward_func`,
Only useful when :code:`backward_func` is not None. Default None. Only useful when :code:`backward_func` is not None. Default None.
Returns: Returns:
out (Variable|list(Variable)|tuple(Variable)): input :code:`out` out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
Examples: Examples:
>>> import paddle.fluid as fluid >>> import paddle.fluid as fluid
>>> import six >>> import six
>>> >>>
>>> def create_tmp_var(name, dtype, shape): >>> def create_tmp_var(name, dtype, shape):
>>> return fluid.default_main_program().current_block().create_var( >>> return fluid.default_main_program().current_block().create_var(
>>> name=name, dtype=dtype, shape=shape) >>> name=name, dtype=dtype, shape=shape)
>>> >>>
>>> # tanh activation has been provided by Paddle C++ op >>> # tanh activation has been provided by Paddle C++ op
>>> # Here, we only use tanh to be an example to show the usage >>> # Here, we only use tanh to be an example to show the usage
>>> # of py_func >>> # of py_func
>>> def tanh(x): >>> def tanh(x):
>>> return np.tanh(x) >>> return np.tanh(x)
>>> >>>
>>> # forward input x is skipped >>> # forward input x is skipped
>>> def tanh_grad(y, dy): >>> def tanh_grad(y, dy):
>>> return np.array(dy) * (1 - np.square(np.array(y))) >>> return np.array(dy) * (1 - np.square(np.array(y)))
>>> >>>
>>> def debug_func(x): >>> def debug_func(x):
>>> print(x) >>> print(x)
>>> >>>
>>> def simple_net(img, label): >>> def simple_net(img, label):
>>> hidden = img >>> hidden = img
>>> for idx in six.moves.range(4): >>> for idx in six.moves.range(4):
>>> hidden = fluid.layers.fc(hidden, size=200) >>> hidden = fluid.layers.fc(hidden, size=200)
>>> new_hidden = create_tmp_var(name='hidden_{}'.format(idx), >>> new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
>>> dtype=hidden.dtype, shape=hidden.shape) >>> dtype=hidden.dtype, shape=hidden.shape)
>>> >>>
>>> # user-defined layers with forward and backward >>> # user-defined layers with forward and backward
>>> hidden = fluid.layers.py_func(func=tanh, x=hidden, >>> hidden = fluid.layers.py_func(func=tanh, x=hidden,
>>> out=new_hidden, backward_func=tanh_grad, >>> out=new_hidden, backward_func=tanh_grad,
>>> skip_vars_in_backward_input=hidden) >>> skip_vars_in_backward_input=hidden)
>>> >>>
>>> # user-defined debug layers to print variables >>> # user-defined debug layers to print variables
...@@ -9666,14 +9666,15 @@ class FC(layers.PyLayer): ...@@ -9666,14 +9666,15 @@ class FC(layers.PyLayer):
param_attr=None, param_attr=None,
num_flatten_dims=1, num_flatten_dims=1,
dtype=core.VarDesc.VarType.FP32): dtype=core.VarDesc.VarType.FP32):
super(FC, self).__init__() super(FC, self).__init__(param_attr=param_attr)
self._size = size self._size = size
self._num_flatten_dims = num_flatten_dims self._num_flatten_dims = num_flatten_dims
self._dtype = dtype self._dtype = dtype
self._helper = LayerHelper('FC', param_attr=param_attr) self._tmp = self._helper.create_variable_for_type_inference(self._dtype)
self._out = self._helper.create_variable_for_type_inference(self._dtype)
def _build_once(self, inputs): def _build_once(self, inputs):
input_shape = inputs[0].shape input_shape = inputs.shape
param_shape = [ param_shape = [
reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1) reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1)
] + [self._size] ] + [self._size]
...@@ -9684,21 +9685,20 @@ class FC(layers.PyLayer): ...@@ -9684,21 +9685,20 @@ class FC(layers.PyLayer):
is_bias=False) is_bias=False)
def forward(self, inputs): def forward(self, inputs):
tmp = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op( self._helper.append_op(
type="mul", type="mul",
inputs={"X": inputs[0], inputs={"X": inputs,
"Y": self._w}, "Y": self._w},
outputs={"Out": tmp}, outputs={"Out": self._tmp},
attrs={ attrs={
"x_num_col_dims": self._num_flatten_dims, "x_num_col_dims": self._num_flatten_dims,
"y_num_col_dims": 1 "y_num_col_dims": 1
}) })
out = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op( self._helper.append_op(
type="sum", type="sum",
inputs={"X": [tmp]}, inputs={"X": [self._tmp]},
outputs={"Out": out}, outputs={"Out": self._out},
attrs={"use_mkldnn": False}) attrs={"use_mkldnn": False})
return out
return self._out
...@@ -36,7 +36,7 @@ class MyLayer(fluid.imperative.PyLayer): ...@@ -36,7 +36,7 @@ class MyLayer(fluid.imperative.PyLayer):
super(MyLayer, self).__init__() super(MyLayer, self).__init__()
def forward(self, inputs): def forward(self, inputs):
x = fluid.layers.relu(inputs[0]) x = fluid.layers.relu(inputs)
self._x_for_debug = x self._x_for_debug = x
return [fluid.layers.elementwise_mul(x, x)] return [fluid.layers.elementwise_mul(x, x)]
...@@ -52,7 +52,7 @@ class MLP(fluid.imperative.PyLayer): ...@@ -52,7 +52,7 @@ class MLP(fluid.imperative.PyLayer):
initializer=fluid.initializer.Constant(value=0.1))) initializer=fluid.initializer.Constant(value=0.1)))
def forward(self, inputs): def forward(self, inputs):
x = self._fc1(inputs[0]) x = self._fc1(inputs)
x = self._fc2(x) x = self._fc2(x)
x = fluid.layers.reduce_sum(x) x = fluid.layers.reduce_sum(x)
return x return x
...@@ -64,13 +64,14 @@ class TestImperative(unittest.TestCase): ...@@ -64,13 +64,14 @@ class TestImperative(unittest.TestCase):
cl = core.Layer() cl = core.Layer()
cl.forward([]) cl.forward([])
l = fluid.imperative.PyLayer() l = fluid.imperative.PyLayer()
l.forward([]) self.assertRaises(NotImplementedError, l.forward, [])
def test_layer_in_out(self): def test_layer_in_out(self):
np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32) np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
with fluid.imperative.guard(): with fluid.imperative.guard():
var_inp = fluid.imperative.base.to_variable(np_inp)
l = MyLayer() l = MyLayer()
x = l(np_inp)[0] x = l(var_inp)[0]
self.assertIsNotNone(x) self.assertIsNotNone(x)
dy_out = x._numpy() dy_out = x._numpy()
x._backward() x._backward()
...@@ -95,8 +96,9 @@ class TestImperative(unittest.TestCase): ...@@ -95,8 +96,9 @@ class TestImperative(unittest.TestCase):
def test_mlp(self): def test_mlp(self):
np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32) np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
with fluid.imperative.guard(): with fluid.imperative.guard():
var_inp = fluid.imperative.base.to_variable(np_inp)
mlp = MLP() mlp = MLP()
out = mlp(np_inp) out = mlp(var_inp)
dy_out = out._numpy() dy_out = out._numpy()
out._backward() out._backward()
dy_grad = mlp._fc1._w._gradient() dy_grad = mlp._fc1._w._gradient()
......
...@@ -101,7 +101,7 @@ class TestImperativeMnist(unittest.TestCase): ...@@ -101,7 +101,7 @@ class TestImperativeMnist(unittest.TestCase):
mnist = MNIST() mnist = MNIST()
sgd = SGDOptimizer(learning_rate=1e-3) sgd = SGDOptimizer(learning_rate=1e-3)
for i in range(1): for i in range(2):
x_data = np.random.rand(128, 1, 28, 28).astype('float32') x_data = np.random.rand(128, 1, 28, 28).astype('float32')
img = to_variable(x_data) img = to_variable(x_data)
y_data = np.random.rand(128, 1).astype('int64') y_data = np.random.rand(128, 1).astype('int64')
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册