"comment":"\n\nAdaptive Gradient Algorithm (Adagrad).\n\nThe update is done as follows:\n\n$$momentOut = moment + grad * grad \\break\nparamOut = param - learningRate * grad / ($\\sqrt{momentOut}$ + \\epsilon) \\break\n$$\n\nThe original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)\ndoes not have the epsilon attribute. It is added here in our implementation\nas also proposed here: http://cs231n.github.io/neural-networks-3/#ada\nfor numerical stability to avoid the division by zero error.\n\n",
"comment":"\n\nAdaptive Gradient Algorithm (Adagrad).\n\nThe update is done as follows:\n\n$$moment\\_out = moment + grad * grad \\\\\nparam\\_out = param - \\frac{learning\\_rate * grad}{\\sqrt{moment\\_out} + \\epsilon}\n$$\n\nThe original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)\ndoes not have the epsilon attribute. It is added here in our implementation\nas also proposed here: http://cs231n.github.io/neural-networks-3/#ada\nfor numerical stability to avoid the division by zero error.\n\n",
"inputs":[
"inputs":[
{
{
"name":"Param",
"name":"Param",
...
@@ -1255,7 +1255,7 @@
...
@@ -1255,7 +1255,7 @@
"attrs":[]
"attrs":[]
},{
},{
"type":"adam",
"type":"adam",
"comment":"\nAdam Optimizer.\n\nThis implements the Adam optimizer from Section 2 of the Adam\npaper : https://arxiv.org/abs/1412.6980.\nAdam is a first-order gradient-based optimization method based on\nadaptive estimates of lower-order moments.\n\nAdam updates:\n\n$$moment_1_{out} = \\beta_1 * moment_1 + (1 - \\beta_1) * grad \\break\nmoment_2_{out} = \\beta_2 * moment_2 + (1 - \\beta_2) * grad * grad \\break\nlearningRate = learningRate *\n $\\sqrt{(1 - \\beta_2_{pow})}$ / (1 - \\beta_1_{pow}) \\break\nparamOut = param - learningRate * moment_1/ ($\\sqrt{(moment_2)} + \\epsilon)$$\n\n",
"comment":"\nAdam Optimizer.\n\nThis implements the Adam optimizer from Section 2 of the Adam\npaper : https://arxiv.org/abs/1412.6980.\nAdam is a first-order gradient-based optimization method based on\nadaptive estimates of lower-order moments.\n\nAdam updates:\n\n$$\nmoment\\_1\\_out = \\beta_1 * moment\\_1 + (1 - \\beta_1) * grad \\\\\nmoment\\_2_\\out = \\beta_2 * moment\\_2 + (1 - \\beta_2) * grad * grad \\\\\nlearning\\_rate = learning\\_rate *\n\\frac{\\sqrt{1 - \\beta_{2\\_pow}}}{1 - \\beta_{1\\_pow}} \\\\\nparam\\_out = param - learning\\_rate * \\frac{moment\\_1}{\\sqrt{moment\\_2} + \\epsilon}\n$$\n\n",
"inputs":[
"inputs":[
{
{
"name":"Param",
"name":"Param",
...
@@ -1930,7 +1930,7 @@
...
@@ -1930,7 +1930,7 @@
}]
}]
},{
},{
"type":"adamax",
"type":"adamax",
"comment":"\nAdamax Optimizer.\n\nWe implement the Adamax optimizer from Section 7 of the Adam\npaper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the\nAdam algorithm based on the infinity norm.\n\nAdamax updates:\n\n$$\n momentOut = \\beta_{1} * moment + (1 - \\beta_{1}) * grad \\\\\n infNormOut = max(\\beta_{2} * infNorm + \\epsilon, |grad|) \\\\\n learningRate = \\frac{learningRate}{1 - \\beta_{1}^{Beta1Pow}} \\\\\n paramOut = param - learningRate * \\frac{momentOut}{infNormOut}\n$$\n\nThe original paper does not have an epsilon attribute.\nHowever, it is added here for numerical stability to prevent the\ndivision by 0 error.\n\n",
"comment":"\nAdamax Optimizer.\n\nWe implement the Adamax optimizer from Section 7 of the Adam\npaper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the\nAdam algorithm based on the infinity norm.\n\nAdamax updates:\n\n$$\nmoment\\_out = \\beta_1 * moment + (1 - \\beta_1) * grad \\\\\ninf\\_norm\\_out = max(\\beta_2 * inf\\_norm + \\epsilon, |grad|) \\\\\nlearning\\_rate = \\frac{learning\\_rate}{1 - \\beta_{1\\_pow}} \\\\\nparam\\_out = param - learning\\_rate * \\frac{moment\\_out}{inf\\_norm\\_out}\n$$\n\nThe original paper does not have an epsilon attribute.\nHowever, it is added here for numerical stability to prevent the\ndivision by 0 error.\n\n",
"inputs":[
"inputs":[
{
{
"name":"Param",
"name":"Param",
...
@@ -2557,7 +2557,7 @@
...
@@ -2557,7 +2557,7 @@
}]
}]
},{
},{
"type":"adadelta",
"type":"adadelta",
"comment":"\nAdadelta Optimizer.\n\nAdadelta optimizer is implemented as explained in:\nhttps://arxiv.org/abs/1212.5701\nAdadelta is a per-dimension adaptive learning rate method used\nfor gradient descent.\n\nAdadelta updates are as follows:\n\n$$avgSquaredGradOut = \\rho * avgSquaredGrad + (1 - \\rho) * grad * grad \\break\nparamUpdate = - $\\sqrt{((avgSquaredUpdate + \\epsilon) /\n (avgSquaredGrad_out + \\epsilon))}$ * grad \\break\navgSquaredUpdateOut = \\rho * avgSquaredUpdate + (1 - \\rho) *\n {(paramUpdate)}^2 \\break\nparamOut = param + paramUpdate$$\n\n",
"comment":"\nAdadelta Optimizer.\n\nAdadelta optimizer is implemented as explained in:\nhttps://arxiv.org/abs/1212.5701\nAdadelta is a per-dimension adaptive learning rate method used\nfor gradient descent.\n\nAdadelta updates are as follows:\n\n$$\navg\\_squared\\_grad\\_out = \\rho * avg\\_squared\\_grad + (1 - \\rho) * grad * grad \\\\\nparam\\_update = - \\sqrt{\\frac{avg\\_squared\\_update + \\epsilon}{avg\\_squared\\_grad\\_out + \\epsilon}} * grad \\\\\navg\\_squared\\_update\\_out = \\rho * avg\\_squared\\_update + (1 - \\rho) * {param\\_update}^2 \\\\\nparam\\_out = param + param\\_update\n$$\n\n",