未验证 提交 6a179e48 编写于 作者: F fuyou765 提交者: GitHub

[MLU]add mlu kernel for expand_v2 op (#43353)

上级 f3a09de4
...@@ -50,6 +50,13 @@ inline std::vector<int> get_expand_shape( ...@@ -50,6 +50,13 @@ inline std::vector<int> get_expand_shape(
&cpu_shape_tensor); &cpu_shape_tensor);
shape_data = cpu_shape_tensor.data<int>(); shape_data = cpu_shape_tensor.data<int>();
} }
#endif
#ifdef PADDLE_WITH_MLU
if (platform::is_mlu_place(shape_tensor->place())) {
paddle::framework::TensorCopySync(*shape_tensor, platform::CPUPlace(),
&cpu_shape_tensor);
shape_data = cpu_shape_tensor.data<int>();
}
#endif #endif
auto vec_shape = auto vec_shape =
std::vector<int>(shape_data, shape_data + shape_tensor->numel()); std::vector<int>(shape_data, shape_data + shape_tensor->numel());
...@@ -81,6 +88,13 @@ inline std::vector<int> get_expand_shape( ...@@ -81,6 +88,13 @@ inline std::vector<int> get_expand_shape(
paddle::framework::TensorCopySync(*tensor, platform::CPUPlace(), &temp); paddle::framework::TensorCopySync(*tensor, platform::CPUPlace(), &temp);
vec_epxand_shape.push_back(*temp.data<int32_t>()); vec_epxand_shape.push_back(*temp.data<int32_t>());
} }
#endif
#ifdef PADDLE_WITH_MLU
else if (platform::is_mlu_place(tensor->place())) { // NOLINT
framework::Tensor temp;
paddle::framework::TensorCopySync(*tensor, platform::CPUPlace(), &temp);
vec_epxand_shape.push_back(*temp.data<int32_t>());
}
#endif #endif
else { // NOLINT else { // NOLINT
vec_epxand_shape.push_back(*tensor->data<int32_t>()); vec_epxand_shape.push_back(*tensor->data<int32_t>());
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/expand_v2_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace paddle {
namespace operators {
template <typename T>
class ExpandV2MLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* X = ctx.Input<framework::Tensor>("X");
auto* Out = ctx.Output<framework::Tensor>("Out");
auto in_dims = X->dims();
auto expand_shape = get_expand_shape(ctx);
auto vec_in_dims = phi::vectorize<int>(in_dims);
auto diff = expand_shape.size() - vec_in_dims.size();
vec_in_dims.insert(vec_in_dims.begin(), diff, 1);
std::vector<int> final_expand_shape(vec_in_dims.size());
for (size_t i = 0; i < vec_in_dims.size(); ++i) {
PADDLE_ENFORCE_NE(expand_shape[i], 0,
platform::errors::InvalidArgument(
"The expanded size cannot be zero."));
if (i < diff) { // expand_shape = [3,4,-1,-1], X = [10,2] -->
// final_expand_shape = [3,4,10,2]
PADDLE_ENFORCE_GT(
expand_shape[i], 0,
platform::errors::InvalidArgument(
"The expanded size (%d) for non-existing dimensions must be "
"positive for expand_v2 op.",
expand_shape[i]));
final_expand_shape[i] = expand_shape[i];
} else if (expand_shape[i] > 0) { // expand_shape = [3,4,10,4], X =
// [10,1] --> final_expand_shape =
// [3,4,10,4]
if (vec_in_dims[i] != 1) {
PADDLE_ENFORCE_EQ(
vec_in_dims[i], expand_shape[i],
platform::errors::InvalidArgument(
"The value (%d) of the non-singleton dimension does not match"
" the corresponding value (%d) in shape for expand_v2 op.",
vec_in_dims[i], expand_shape[i]));
final_expand_shape[i] = expand_shape[i];
} else {
final_expand_shape[i] = expand_shape[i];
}
} else { // expand_shape = [3,4,-1,-1], X = [10,2] --> final_expand_shape
// = [3,4,10,2]
PADDLE_ENFORCE_EQ(
expand_shape[i], -1,
platform::errors::InvalidArgument(
"When the value in shape is negative for expand_v2 op, "
"only -1 is supported, but the value received is %d.",
expand_shape[i]));
final_expand_shape[i] = vec_in_dims[i];
}
}
auto rank = X->dims().size();
PADDLE_ENFORCE_GE(
rank, 1,
platform::errors::InvalidArgument(
"The rank of the input 'X' for expand_v2_mlu op must be positive, "
"but the value received is %d.",
rank));
auto shape_size = final_expand_shape.size();
PADDLE_ENFORCE_GE(
shape_size, rank,
platform::errors::InvalidArgument(
"The number (%d) of elements of 'shape' for expand_v2_mlu op must "
"be "
"greater than or equal to the rank (%d) of the input 'X'.",
shape_size, rank));
framework::DDim out_dims = phi::make_ddim(final_expand_shape);
Out->Resize(out_dims);
auto place = ctx.GetPlace();
Out->mutable_data<T>(place);
MLUCnnlTensorDesc x_desc(*X);
MLUCnnlTensorDesc out_desc(*Out);
MLUCnnl::BroadcastTo(ctx, x_desc.get(), GetBasePtr(X), out_desc.get(),
GetBasePtr(Out));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_MLU_KERNEL(expand_v2, ops::ExpandV2MLUKernel<float>,
ops::ExpandV2MLUKernel<paddle::platform::float16>,
ops::ExpandV2MLUKernel<bool>,
ops::ExpandV2MLUKernel<int>,
ops::ExpandV2MLUKernel<int64_t>);
#endif
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import sys
sys.path.append("..")
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
import paddle
from paddle.fluid.framework import _test_eager_guard
# Situation 1: shape is a list(without tensor)
class TestExpandV2OpRank1(OpTest):
def setUp(self):
self.op_type = "expand_v2"
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
self.init_data()
self.python_api = paddle.expand
self.inputs = {'X': np.random.random(self.ori_shape).astype("float32")}
self.attrs = {'shape': self.shape}
output = np.tile(self.inputs['X'], self.expand_times)
self.outputs = {'Out': output}
def init_data(self):
self.ori_shape = [100]
self.shape = [100]
self.expand_times = [1]
def test_check_output(self):
self.check_output_with_place(self.place, check_eager=False)
def test_check_grad(self):
self.check_grad(['X'], 'Out', check_eager=True)
class TestExpandV2OpRank2_DimExpanding(TestExpandV2OpRank1):
def init_data(self):
self.ori_shape = [120]
self.shape = [2, 120]
self.expand_times = [2, 1]
class TestExpandV2OpRank2(TestExpandV2OpRank1):
def init_data(self):
self.ori_shape = [1, 140]
self.shape = [12, 140]
self.expand_times = [12, 1]
class TestExpandV2OpRank3_Corner(TestExpandV2OpRank1):
def init_data(self):
self.ori_shape = (2, 10, 5)
self.shape = (2, 10, 5)
self.expand_times = (1, 1, 1)
class TestExpandV2OpRank4(TestExpandV2OpRank1):
def init_data(self):
self.ori_shape = (2, 4, 5, 7)
self.shape = (-1, -1, -1, -1)
self.expand_times = (1, 1, 1, 1)
class TestExpandV2OpRank5(TestExpandV2OpRank1):
def init_data(self):
self.ori_shape = (2, 4, 1, 15)
self.shape = (2, -1, 4, -1)
self.expand_times = (1, 1, 4, 1)
class TestExpandV2OpRank6(TestExpandV2OpRank1):
def init_data(self):
self.ori_shape = (4, 1, 30)
self.shape = (2, -1, 4, 30)
self.expand_times = (2, 1, 4, 1)
# Situation 2: shape is a list(with tensor)
class TestExpandV2OpRank1_tensor_attr(OpTest):
def setUp(self):
self.op_type = "expand_v2"
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
self.init_data()
expand_shapes_tensor = []
for index, ele in enumerate(self.expand_shape):
expand_shapes_tensor.append(("x" + str(index), np.ones(
(1)).astype('int32') * ele))
self.inputs = {
'X': np.random.random(self.ori_shape).astype("float32"),
'expand_shapes_tensor': expand_shapes_tensor,
}
self.attrs = {"shape": self.infer_expand_shape}
output = np.tile(self.inputs['X'], self.expand_times)
self.outputs = {'Out': output}
def init_data(self):
self.ori_shape = [100]
self.expand_times = [1]
self.expand_shape = [100]
self.infer_expand_shape = [-1]
def test_check_output(self):
self.check_output_with_place(self.place, check_eager=False)
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class TestExpandV2OpRank2_Corner_tensor_attr(TestExpandV2OpRank1_tensor_attr):
def init_data(self):
self.ori_shape = [12, 14]
self.expand_times = [1, 1]
self.expand_shape = [12, 14]
self.infer_expand_shape = [12, -1]
# Situation 3: shape is a tensor
class TestExpandV2OpRank1_tensor(OpTest):
def setUp(self):
self.op_type = "expand_v2"
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
self.init_data()
self.inputs = {
'X': np.random.random(self.ori_shape).astype("float32"),
'Shape': np.array(self.expand_shape).astype("int32"),
}
self.attrs = {}
output = np.tile(self.inputs['X'], self.expand_times)
self.outputs = {'Out': output}
def init_data(self):
self.ori_shape = [100]
self.expand_times = [2, 1]
self.expand_shape = [2, 100]
def test_check_output(self):
self.check_output_with_place(self.place, check_eager=False)
def test_check_grad(self):
self.check_grad(['X'], 'Out')
# Situation 4: input x is Integer
class TestExpandV2OpInteger(OpTest):
def setUp(self):
self.op_type = "expand_v2"
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
self.inputs = {
'X': np.random.randint(10, size=(2, 4, 5)).astype("int32")
}
self.attrs = {'shape': [2, 4, 5]}
output = np.tile(self.inputs['X'], (1, 1, 1))
self.outputs = {'Out': output}
def test_check_output(self):
self.check_output_with_place(self.place, check_eager=False)
# Situation 5: input x is Bool
class TestExpandV2OpBoolean(OpTest):
def setUp(self):
self.op_type = "expand_v2"
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
self.inputs = {'X': np.random.randint(2, size=(2, 4, 5)).astype("bool")}
self.attrs = {'shape': [2, 4, 5]}
output = np.tile(self.inputs['X'], (1, 1, 1))
self.outputs = {'Out': output}
def test_check_output(self):
self.check_output_with_place(self.place, check_eager=False)
# Situation 56: input x is Integer
class TestExpandV2OpInt64_t(OpTest):
def setUp(self):
self.op_type = "expand_v2"
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
self.inputs = {
'X': np.random.randint(10, size=(2, 4, 5)).astype("int64")
}
self.attrs = {'shape': [2, 4, 5]}
output = np.tile(self.inputs['X'], (1, 1, 1))
self.outputs = {'Out': output}
def test_check_output(self):
self.check_output_with_place(self.place, check_eager=False)
class TestExpandV2Error(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
x1 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
paddle.device.MLUPlace(0))
shape = [2, 2]
self.assertRaises(TypeError, paddle.tensor.expand, x1, shape)
x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8")
self.assertRaises(TypeError, paddle.tensor.expand, x2, shape)
x3 = fluid.layers.data(name='x3', shape=[4], dtype="bool")
x3.stop_gradient = False
self.assertRaises(ValueError, paddle.tensor.expand, x3, shape)
# Test python API
class TestExpandV2API(unittest.TestCase):
def test_api(self):
input = np.random.random([12, 14]).astype("float32")
x = fluid.layers.data(name='x',
shape=[12, 14],
append_batch_size=False,
dtype="float32")
positive_2 = fluid.layers.fill_constant([1], "int32", 12)
expand_shape = fluid.layers.data(name="expand_shape",
shape=[2],
append_batch_size=False,
dtype="int32")
out_1 = paddle.expand(x, shape=[12, 14])
out_2 = paddle.expand(x, shape=[positive_2, 14])
out_3 = paddle.expand(x, shape=expand_shape)
g0 = fluid.backward.calc_gradient(out_2, x)
exe = fluid.Executor(place=paddle.device.MLUPlace(0))
res_1, res_2, res_3 = exe.run(fluid.default_main_program(),
feed={
"x":
input,
"expand_shape":
np.array([12, 14]).astype("int32")
},
fetch_list=[out_1, out_2, out_3])
assert np.array_equal(res_1, np.tile(input, (1, 1)))
assert np.array_equal(res_2, np.tile(input, (1, 1)))
assert np.array_equal(res_3, np.tile(input, (1, 1)))
class TestExpandInferShape(unittest.TestCase):
def test_shape_with_var(self):
with program_guard(Program(), Program()):
x = paddle.static.data(shape=[-1, 1, 3], name='x')
fake_var = paddle.randn([2, 3])
target_shape = [
-1, paddle.shape(fake_var)[0],
paddle.shape(fake_var)[1]
]
out = paddle.expand(x, shape=target_shape)
self.assertListEqual(list(out.shape), [-1, -1, -1])
# Test python Dygraph API
class TestExpandV2DygraphAPI(unittest.TestCase):
def test_expand_times_is_tensor(self):
with paddle.fluid.dygraph.guard():
paddle.seed(1)
a = paddle.rand([2, 5])
expand_1 = paddle.expand(a, shape=[2, 5])
np_array = np.array([2, 5])
expand_2 = paddle.expand(a, shape=np_array)
self.assertTrue(np.array_equal(expand_1.numpy(), expand_2.numpy()))
if __name__ == "__main__":
paddle.enable_static()
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册