Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
68b22140
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
68b22140
编写于
8月 14, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into port_pybind11
上级
812de6e8
8dda526a
变更
46
隐藏空白更改
内联
并排
Showing
46 changed file
with
1292 addition
and
822 deletion
+1292
-822
cmake/external/mkldnn.cmake
cmake/external/mkldnn.cmake
+4
-2
doc/fluid/design/ir/overview.md
doc/fluid/design/ir/overview.md
+2
-2
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+1
-1
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+4
-4
paddle/fluid/framework/details/multi_devices_graph_check_pass.cc
...fluid/framework/details/multi_devices_graph_check_pass.cc
+2
-2
paddle/fluid/framework/details/multi_devices_graph_check_pass.h
.../fluid/framework/details/multi_devices_graph_check_pass.h
+2
-2
paddle/fluid/framework/details/multi_devices_graph_pass.cc
paddle/fluid/framework/details/multi_devices_graph_pass.cc
+88
-2
paddle/fluid/framework/details/multi_devices_graph_pass.h
paddle/fluid/framework/details/multi_devices_graph_pass.h
+2
-2
paddle/fluid/framework/details/multi_devices_graph_print_pass.cc
...fluid/framework/details/multi_devices_graph_print_pass.cc
+2
-2
paddle/fluid/framework/details/multi_devices_graph_print_pass.h
.../fluid/framework/details/multi_devices_graph_print_pass.h
+2
-2
paddle/fluid/framework/details/multi_devices_helper.cc
paddle/fluid/framework/details/multi_devices_helper.cc
+20
-0
paddle/fluid/framework/details/multi_devices_helper.h
paddle/fluid/framework/details/multi_devices_helper.h
+0
-27
paddle/fluid/framework/details/ssa_graph_builder.cc
paddle/fluid/framework/details/ssa_graph_builder.cc
+0
-107
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
...le/fluid/framework/details/threaded_ssa_graph_executor.cc
+1
-1
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+25
-25
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+1
-1
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+7
-2
paddle/fluid/operators/crop_op.cc
paddle/fluid/operators/crop_op.cc
+3
-2
paddle/fluid/operators/crop_op.cu
paddle/fluid/operators/crop_op.cu
+3
-2
paddle/fluid/operators/crop_op.h
paddle/fluid/operators/crop_op.h
+57
-15
paddle/fluid/operators/detection/mine_hard_examples_op.cc
paddle/fluid/operators/detection/mine_hard_examples_op.cc
+3
-0
paddle/fluid/operators/distributed/request_handler_impl.cc
paddle/fluid/operators/distributed/request_handler_impl.cc
+1
-0
paddle/fluid/operators/distributed/rpc_server.cc
paddle/fluid/operators/distributed/rpc_server.cc
+33
-0
paddle/fluid/operators/distributed/rpc_server.h
paddle/fluid/operators/distributed/rpc_server.h
+19
-0
paddle/fluid/operators/elementwise_add_op.cu
paddle/fluid/operators/elementwise_add_op.cu
+54
-0
paddle/fluid/operators/elementwise_add_op.h
paddle/fluid/operators/elementwise_add_op.h
+33
-8
paddle/fluid/operators/layer_norm_op.cu
paddle/fluid/operators/layer_norm_op.cu
+505
-1
paddle/fluid/operators/listen_and_serv_op.cc
paddle/fluid/operators/listen_and_serv_op.cc
+3
-23
paddle/fluid/platform/cpu_info.cc
paddle/fluid/platform/cpu_info.cc
+3
-0
paddle/fluid/platform/device_tracer.cc
paddle/fluid/platform/device_tracer.cc
+13
-38
paddle/fluid/platform/device_tracer.h
paddle/fluid/platform/device_tracer.h
+9
-0
paddle/fluid/platform/profiler.cc
paddle/fluid/platform/profiler.cc
+0
-7
python/paddle/dataset/wmt14.py
python/paddle/dataset/wmt14.py
+1
-2
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+2
-1
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+2
-2
python/paddle/fluid/profiler.py
python/paddle/fluid/profiler.py
+2
-2
python/paddle/fluid/tests/unittests/dist_mnist.py
python/paddle/fluid/tests/unittests/dist_mnist.py
+103
-0
python/paddle/fluid/tests/unittests/dist_se_resnext.py
python/paddle/fluid/tests/unittests/dist_se_resnext.py
+39
-147
python/paddle/fluid/tests/unittests/dist_word2vec.py
python/paddle/fluid/tests/unittests/dist_word2vec.py
+119
-0
python/paddle/fluid/tests/unittests/test_dist_base.py
python/paddle/fluid/tests/unittests/test_dist_base.py
+107
-6
python/paddle/fluid/tests/unittests/test_dist_mnist.py
python/paddle/fluid/tests/unittests/test_dist_mnist.py
+4
-191
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
+1
-1
python/paddle/fluid/tests/unittests/test_dist_word2vec.py
python/paddle/fluid/tests/unittests/test_dist_word2vec.py
+4
-183
python/paddle/v2/dataset/wmt14.py
python/paddle/v2/dataset/wmt14.py
+2
-3
tools/diff_api.py
tools/diff_api.py
+1
-3
tools/manylinux1/Dockerfile.x64
tools/manylinux1/Dockerfile.x64
+3
-1
未找到文件。
cmake/external/mkldnn.cmake
浏览文件 @
68b22140
...
...
@@ -24,7 +24,7 @@ SET(MKLDNN_INSTALL_DIR ${THIRD_PARTY_PATH}/install/mkldnn)
SET
(
MKLDNN_INC_DIR
"
${
MKLDNN_INSTALL_DIR
}
/include"
CACHE PATH
"mkldnn include directory."
FORCE
)
IF
(
WIN32 OR APPLE
)
MESSAGE
(
WARNING
MESSAGE
(
WARNING
"Windows or Mac is not supported with MKLDNN in Paddle yet."
"Force WITH_MKLDNN=OFF"
)
SET
(
WITH_MKLDNN OFF CACHE STRING
"Disable MKLDNN in Windows and MacOS"
FORCE
)
...
...
@@ -57,8 +57,10 @@ ExternalProject_Add(
GIT_TAG
"a29d8487a63afca3d5b8c5bbdbb473cf8ccc6e51"
PREFIX
${
MKLDNN_SOURCES_DIR
}
UPDATE_COMMAND
""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=
${
CMAKE_CXX_COMPILER
}
CMAKE_ARGS -DCMAKE_C_COMPILER=
${
CMAKE_C_COMPILER
}
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=
${
MKLDNN_INSTALL_DIR
}
CMAKE_ARGS -DCMAKE_BUILD_TYPE=
${
CMAKE_BUILD_TYPE
}
CMAKE_ARGS -DCMAKE_BUILD_TYPE=
${
CMAKE_BUILD_TYPE
}
CMAKE_ARGS -DMKLROOT=
${
MKLML_ROOT
}
CMAKE_ARGS -DCMAKE_C_FLAGS=
${
MKLDNN_CFLAG
}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=
${
MKLDNN_CXXFLAG
}
...
...
doc/fluid/design/ir/
draft
.md
→
doc/fluid/design/ir/
overview
.md
浏览文件 @
68b22140
...
...
@@ -177,8 +177,8 @@ graph = PassRegistry::Instance().Get("op_fuse_pass").Apply(std::move(grah));
auto mem_opt_pass = PassRegistry::Instance().Get("memory_optimization_pass");
mem_opt_pass.SetNotOwned<int>("optimize_level", 1);
mem_opt_pass->Apply(std::move(graph));
graph = PassRegistry::Instance().Get("multi_device_pass").Apply(std::move(grah));
graph = PassRegistry::Instance().Get("multi_device_check_pass").Apply(std::move(grah));
graph = PassRegistry::Instance().Get("multi_device
s
_pass").Apply(std::move(grah));
graph = PassRegistry::Instance().Get("multi_device
s
_check_pass").Apply(std::move(grah));
Executor exe;
exe.Run(graph);
...
...
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
68b22140
...
...
@@ -100,7 +100,7 @@ else()
endif
()
cc_library
(
parallel_executor SRCS parallel_executor.cc DEPS threaded_ssa_graph_executor scope_buffered_ssa_graph_executor graph graph_viz_pass multi_devices_graph_
builder ssa_graph_printer ssa_graph_checker
)
cc_library
(
parallel_executor SRCS parallel_executor.cc DEPS threaded_ssa_graph_executor scope_buffered_ssa_graph_executor graph graph_viz_pass multi_devices_graph_
pass multi_devices_graph_print_pass multi_devices_graph_check_pass
)
cc_library
(
prune SRCS prune.cc DEPS framework_proto
)
cc_test
(
prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context
)
...
...
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
68b22140
...
...
@@ -5,9 +5,9 @@ cc_library(fetch_op_handle SRCS fetch_op_handle.cc DEPS op_handle_base scope lod
cc_library
(
computation_op_handle SRCS computation_op_handle.cc DEPS framework_proto scope place operator op_registry
)
cc_library
(
rpc_op_handle SRCS rpc_op_handle.cc DEPS framework_proto scope place operator op_registry
)
cc_library
(
ssa_graph_builder SRCS ssa_graph_build
er.cc DEPS graph graph_helper
)
cc_library
(
ssa_graph_printer SRCS ssa_graph_printer.cc DEPS ssa_graph_build
er
)
cc_library
(
ssa_graph_checker SRCS ssa_graph_checker.cc DEPS ssa_graph_build
er
)
cc_library
(
multi_devices_helper SRCS multi_devices_help
er.cc DEPS graph graph_helper
)
cc_library
(
multi_devices_graph_print_pass SRCS multi_devices_graph_print_pass.cc DEPS multi_devices_help
er
)
cc_library
(
multi_devices_graph_check_pass SRCS multi_devices_graph_check_pass.cc DEPS multi_devices_help
er
)
cc_library
(
variable_visitor SRCS variable_visitor.cc DEPS lod_tensor selected_rows
)
...
...
@@ -28,7 +28,7 @@ cc_library(data_balance_op_handle SRCS data_balance_op_handle.cc DEPS op_handle_
cc_library
(
gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor
)
cc_library
(
fuse_vars_op_handle SRCS fuse_vars_op_handle.cc DEPS op_handle_base scope
)
cc_library
(
multi_devices_graph_
builder SRCS multi_devices_graph_builder.cc DEPS ssa_graph_build
er computation_op_handle
cc_library
(
multi_devices_graph_
pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_help
er computation_op_handle
scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle
)
cc_library
(
ssa_graph_executor SRCS ssa_graph_executor.cc DEPS graph framework_proto
)
...
...
paddle/fluid/framework/details/
ssa_graph_checker
.cc
→
paddle/fluid/framework/details/
multi_devices_graph_check_pass
.cc
浏览文件 @
68b22140
...
...
@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/
ssa_graph_checker
.h"
#include "paddle/fluid/framework/details/
multi_devices_graph_check_pass
.h"
#include <string>
#include "paddle/fluid/framework/ir/graph.h"
...
...
@@ -86,7 +86,7 @@ bool SSAGraghBuilderWithChecker::IsValidGraph(const ir::Graph *graph) const {
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
multi_device_check_pass
,
REGISTER_PASS
(
multi_device
s
_check_pass
,
paddle
::
framework
::
details
::
SSAGraghBuilderWithChecker
)
.
RequireGraphAttr
(
paddle
::
framework
::
details
::
kGraphVars
)
.
RequireGraphAttr
(
paddle
::
framework
::
details
::
kGraphDepVars
)
...
...
paddle/fluid/framework/details/
ssa_graph_checker
.h
→
paddle/fluid/framework/details/
multi_devices_graph_check_pass
.h
浏览文件 @
68b22140
...
...
@@ -14,7 +14,7 @@
#pragma once
#include "paddle/fluid/framework/details/
ssa_graph_build
er.h"
#include "paddle/fluid/framework/details/
multi_devices_help
er.h"
#include <string>
...
...
@@ -22,7 +22,7 @@ namespace paddle {
namespace
framework
{
namespace
details
{
class
SSAGraghBuilderWithChecker
:
public
SSAGraphBuilder
{
class
SSAGraghBuilderWithChecker
:
public
ir
::
Pass
{
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
{
...
...
paddle/fluid/framework/details/multi_devices_graph_
builder
.cc
→
paddle/fluid/framework/details/multi_devices_graph_
pass
.cc
浏览文件 @
68b22140
...
...
@@ -21,7 +21,7 @@
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/data_balance_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_graph_
builder
.h"
#include "paddle/fluid/framework/details/multi_devices_graph_
pass
.h"
#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "paddle/fluid/framework/details/rpc_op_handle.h"
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
...
...
@@ -33,6 +33,92 @@
namespace
paddle
{
namespace
framework
{
namespace
details
{
namespace
{
void
PolishGraphToSupportDataHazards
(
ir
::
Graph
*
graph
)
{
for
(
auto
&
var_map
:
graph
->
Get
<
GraphVars
>
(
kGraphVars
))
{
for
(
auto
&
name_pair
:
var_map
)
{
if
(
name_pair
.
second
.
size
()
<=
1
)
{
continue
;
}
auto
it_new
=
name_pair
.
second
.
rbegin
();
auto
it_old
=
name_pair
.
second
.
rbegin
();
++
it_old
;
for
(;
it_old
!=
name_pair
.
second
.
rend
();
it_new
=
it_old
,
++
it_old
)
{
OpHandleBase
*
write_op
=
(
*
it_new
)
->
GeneratedOp
();
const
auto
&
read_ops
=
(
*
it_old
)
->
PendingOps
();
for
(
auto
*
read_op
:
read_ops
)
{
// Manually add a dependency var from read_op to write_op;
if
(
read_op
==
write_op
)
{
// Read Write is the same op.
continue
;
}
bool
has_dep
=
false
;
for
(
auto
*
r_out
:
read_op
->
Outputs
())
{
for
(
auto
*
w_in
:
write_op
->
Inputs
())
{
if
(
r_out
->
Node
()
==
w_in
->
Node
())
{
has_dep
=
true
;
break
;
}
}
}
if
(
has_dep
)
continue
;
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
read_op
->
AddOutput
(
dep_var
);
write_op
->
AddInput
(
dep_var
);
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dep_var
);
}
}
}
}
}
VarHandle
*
CreateOrGetLatestVarHandle
(
ir
::
Graph
*
graph
,
ir
::
Node
*
node
,
const
platform
::
Place
&
place
,
size_t
place_offset
)
{
auto
&
var_holders
=
graph
->
Get
<
GraphVars
>
(
kGraphVars
)[
place_offset
];
auto
&
var_holder
=
var_holders
[
node
->
Name
()];
VarHandle
*
var
=
nullptr
;
if
(
var_holder
.
empty
())
{
if
(
node
->
Var
())
{
var
=
new
VarHandle
(
graph
->
CreateVarNode
(
node
->
Var
()),
0
,
place_offset
,
node
->
Name
(),
place
);
}
else
{
var
=
new
VarHandle
(
graph
->
CreateEmptyNode
(
node
->
Name
(),
ir
::
Node
::
Type
::
kVariable
),
0
,
place_offset
,
node
->
Name
(),
place
);
}
var_holder
.
emplace_back
(
var
);
}
else
{
var
=
var_holder
.
rbegin
()
->
get
();
}
return
var
;
}
void
CreateOpOutput
(
ir
::
Graph
*
graph
,
OpHandleBase
*
op_handle
,
ir
::
Node
*
new_node
,
const
platform
::
Place
&
place
,
size_t
place_offset
)
{
auto
&
vars
=
graph
->
Get
<
GraphVars
>
(
kGraphVars
)[
place_offset
][
new_node
->
Name
()];
size_t
version
=
vars
.
size
();
auto
var
=
new
VarHandle
(
new_node
,
version
,
place_offset
,
new_node
->
Name
(),
place
);
vars
.
emplace_back
(
var
);
op_handle
->
AddOutput
(
var
);
}
void
AddOutputToLeafOps
(
ir
::
Graph
*
graph
)
{
for
(
auto
&
op
:
graph
->
Get
<
GraphOps
>
(
kGraphOps
))
{
if
(
!
op
->
Outputs
().
empty
())
{
continue
;
}
auto
*
dummy_leaf
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dummy_leaf
);
op
->
AddOutput
(
dummy_leaf
);
}
}
}
// namespace
static
const
char
kLossVarName
[]
=
"loss_var_name"
;
static
const
char
kPlaces
[]
=
"places"
;
...
...
@@ -751,7 +837,7 @@ bool MultiDevSSAGraphBuilder::IsScaleLossOp(ir::Node *node) const {
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
multi_device_pass
,
REGISTER_PASS
(
multi_device
s
_pass
,
paddle
::
framework
::
details
::
MultiDevSSAGraphBuilder
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kLossVarName
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kPlaces
)
...
...
paddle/fluid/framework/details/multi_devices_graph_
builder
.h
→
paddle/fluid/framework/details/multi_devices_graph_
pass
.h
浏览文件 @
68b22140
...
...
@@ -18,7 +18,7 @@
#include <vector>
#include "paddle/fluid/framework/details/build_strategy.h"
#include "paddle/fluid/framework/details/
ssa_graph_build
er.h"
#include "paddle/fluid/framework/details/
multi_devices_help
er.h"
#include "paddle/fluid/framework/ir/graph.h"
namespace
paddle
{
...
...
@@ -30,7 +30,7 @@ namespace framework {
class
Scope
;
namespace
details
{
class
MultiDevSSAGraphBuilder
:
public
SSAGraphBuilder
{
class
MultiDevSSAGraphBuilder
:
public
ir
::
Pass
{
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
;
...
...
paddle/fluid/framework/details/
ssa_graph_printer
.cc
→
paddle/fluid/framework/details/
multi_devices_graph_print_pass
.cc
浏览文件 @
68b22140
...
...
@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/
ssa_graph_printer
.h"
#include "paddle/fluid/framework/details/
multi_devices_graph_print_pass
.h"
#include <string>
#include "paddle/fluid/framework/ir/graph.h"
...
...
@@ -82,5 +82,5 @@ void GraphvizSSAGraphPrinter::Print(const ir::Graph &graph,
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
multi_device_print_pass
,
REGISTER_PASS
(
multi_device
s
_print_pass
,
paddle
::
framework
::
details
::
SSAGraghBuilderWithPrinter
);
paddle/fluid/framework/details/
ssa_graph_printer
.h
→
paddle/fluid/framework/details/
multi_devices_graph_print_pass
.h
浏览文件 @
68b22140
...
...
@@ -18,7 +18,7 @@
#include <iosfwd>
#include <ostream>
#include <string>
#include "paddle/fluid/framework/details/
ssa_graph_build
er.h"
#include "paddle/fluid/framework/details/
multi_devices_help
er.h"
namespace
paddle
{
namespace
framework
{
...
...
@@ -35,7 +35,7 @@ class GraphvizSSAGraphPrinter : public SSAGraphPrinter {
void
Print
(
const
ir
::
Graph
&
graph
,
std
::
ostream
&
sout
)
const
override
;
};
class
SSAGraghBuilderWithPrinter
:
public
SSAGraphBuilder
{
class
SSAGraghBuilderWithPrinter
:
public
ir
::
Pass
{
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
{
...
...
paddle/fluid/framework/details/multi_devices_helper.cc
0 → 100644
浏览文件 @
68b22140
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/multi_devices_helper.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/
ssa_graph_build
er.h
→
paddle/fluid/framework/details/
multi_devices_help
er.h
浏览文件 @
68b22140
...
...
@@ -52,33 +52,6 @@ const char kGraphOps[] = "ops";
typedef
std
::
unordered_map
<
std
::
string
,
int
>
ShardedVarDevice
;
const
char
kShardedVarDevice
[]
=
"sharded_var_device"
;
class
SSAGraphBuilder
:
public
ir
::
Pass
{
public:
SSAGraphBuilder
()
{}
virtual
~
SSAGraphBuilder
()
{}
DISABLE_COPY_AND_ASSIGN
(
SSAGraphBuilder
);
protected:
/*
Dependency graph has been constructed. However, there are still data
hazards need to be handled.
*/
static
void
PolishGraphToSupportDataHazards
(
ir
::
Graph
*
graph
);
static
VarHandle
*
CreateOrGetLatestVarHandle
(
ir
::
Graph
*
graph
,
ir
::
Node
*
node
,
const
platform
::
Place
&
place
,
size_t
place_offset
);
// Add an output variable (each_var_name, place, place_offset) to op_handle,
// which belongs to graph
static
void
CreateOpOutput
(
ir
::
Graph
*
graph
,
OpHandleBase
*
op_handle
,
ir
::
Node
*
new_node
,
const
platform
::
Place
&
place
,
size_t
place_offset
);
static
void
AddOutputToLeafOps
(
ir
::
Graph
*
graph
);
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/ssa_graph_builder.cc
已删除
100644 → 0
浏览文件 @
812de6e8
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/ssa_graph_builder.h"
#include <utility>
namespace
paddle
{
namespace
framework
{
namespace
details
{
void
SSAGraphBuilder
::
PolishGraphToSupportDataHazards
(
ir
::
Graph
*
graph
)
{
for
(
auto
&
var_map
:
graph
->
Get
<
GraphVars
>
(
kGraphVars
))
{
for
(
auto
&
name_pair
:
var_map
)
{
if
(
name_pair
.
second
.
size
()
<=
1
)
{
continue
;
}
auto
it_new
=
name_pair
.
second
.
rbegin
();
auto
it_old
=
name_pair
.
second
.
rbegin
();
++
it_old
;
for
(;
it_old
!=
name_pair
.
second
.
rend
();
it_new
=
it_old
,
++
it_old
)
{
OpHandleBase
*
write_op
=
(
*
it_new
)
->
GeneratedOp
();
const
auto
&
read_ops
=
(
*
it_old
)
->
PendingOps
();
for
(
auto
*
read_op
:
read_ops
)
{
// Manually add a dependency var from read_op to write_op;
if
(
read_op
==
write_op
)
{
// Read Write is the same op.
continue
;
}
bool
has_dep
=
false
;
for
(
auto
*
r_out
:
read_op
->
Outputs
())
{
for
(
auto
*
w_in
:
write_op
->
Inputs
())
{
if
(
r_out
->
Node
()
==
w_in
->
Node
())
{
has_dep
=
true
;
break
;
}
}
}
if
(
has_dep
)
continue
;
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
read_op
->
AddOutput
(
dep_var
);
write_op
->
AddInput
(
dep_var
);
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dep_var
);
}
}
}
}
}
VarHandle
*
SSAGraphBuilder
::
CreateOrGetLatestVarHandle
(
ir
::
Graph
*
graph
,
ir
::
Node
*
node
,
const
platform
::
Place
&
place
,
size_t
place_offset
)
{
auto
&
var_holders
=
graph
->
Get
<
GraphVars
>
(
kGraphVars
)[
place_offset
];
auto
&
var_holder
=
var_holders
[
node
->
Name
()];
VarHandle
*
var
=
nullptr
;
if
(
var_holder
.
empty
())
{
if
(
node
->
Var
())
{
var
=
new
VarHandle
(
graph
->
CreateVarNode
(
node
->
Var
()),
0
,
place_offset
,
node
->
Name
(),
place
);
}
else
{
var
=
new
VarHandle
(
graph
->
CreateEmptyNode
(
node
->
Name
(),
ir
::
Node
::
Type
::
kVariable
),
0
,
place_offset
,
node
->
Name
(),
place
);
}
var_holder
.
emplace_back
(
var
);
}
else
{
var
=
var_holder
.
rbegin
()
->
get
();
}
return
var
;
}
void
SSAGraphBuilder
::
CreateOpOutput
(
ir
::
Graph
*
graph
,
OpHandleBase
*
op_handle
,
ir
::
Node
*
new_node
,
const
platform
::
Place
&
place
,
size_t
place_offset
)
{
auto
&
vars
=
graph
->
Get
<
GraphVars
>
(
kGraphVars
)[
place_offset
][
new_node
->
Name
()];
size_t
version
=
vars
.
size
();
auto
var
=
new
VarHandle
(
new_node
,
version
,
place_offset
,
new_node
->
Name
(),
place
);
vars
.
emplace_back
(
var
);
op_handle
->
AddOutput
(
var
);
}
void
SSAGraphBuilder
::
AddOutputToLeafOps
(
ir
::
Graph
*
graph
)
{
for
(
auto
&
op
:
graph
->
Get
<
GraphOps
>
(
kGraphOps
))
{
if
(
!
op
->
Outputs
().
empty
())
{
continue
;
}
auto
*
dummy_leaf
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dummy_leaf
);
op
->
AddOutput
(
dummy_leaf
);
}
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
浏览文件 @
68b22140
...
...
@@ -14,7 +14,7 @@
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/
ssa_graph_build
er.h"
#include "paddle/fluid/framework/details/
multi_devices_help
er.h"
#include "paddle/fluid/platform/profiler.h"
namespace
paddle
{
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
68b22140
...
...
@@ -25,9 +25,9 @@ limitations under the License. */
#include "paddle/fluid/platform/nccl_helper.h"
#endif
#include "paddle/fluid/framework/details/multi_devices_graph_check_pass.h"
#include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h"
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/ssa_graph_checker.h"
#include "paddle/fluid/framework/details/ssa_graph_printer.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
#include "paddle/fluid/platform/profiler.h"
...
...
@@ -57,39 +57,39 @@ std::unique_ptr<ir::Graph> ApplyParallelExecutorPass(
}
// Convert graph to run on multi-devices.
auto
multi_device_pass
=
ir
::
PassRegistry
::
Instance
().
Get
(
"multi_device_pass"
);
multi_device_pass
->
SetNotOwned
<
const
std
::
vector
<
platform
::
Place
>>
(
"places"
,
&
places
);
multi_device_pass
->
SetNotOwned
<
const
std
::
string
>
(
"loss_var_name"
,
&
loss_var_name
);
multi_device_pass
->
SetNotOwned
<
const
std
::
unordered_set
<
std
::
string
>>
(
auto
multi_device
s
_pass
=
ir
::
PassRegistry
::
Instance
().
Get
(
"multi_device
s
_pass"
);
multi_device
s
_pass
->
SetNotOwned
<
const
std
::
vector
<
platform
::
Place
>>
(
"places"
,
&
places
);
multi_device
s
_pass
->
SetNotOwned
<
const
std
::
string
>
(
"loss_var_name"
,
&
loss_var_name
);
multi_device
s
_pass
->
SetNotOwned
<
const
std
::
unordered_set
<
std
::
string
>>
(
"params"
,
&
param_names
);
multi_device_pass
->
SetNotOwned
<
const
std
::
vector
<
Scope
*>>
(
"local_scopes"
,
&
local_scopes
);
multi_device_pass
->
SetNotOwned
<
const
BuildStrategy
>
(
"strategy"
,
&
strategy
);
multi_device
s
_pass
->
SetNotOwned
<
const
std
::
vector
<
Scope
*>>
(
"local_scopes"
,
&
local_scopes
);
multi_device
s
_pass
->
SetNotOwned
<
const
BuildStrategy
>
(
"strategy"
,
&
strategy
);
#ifdef PADDLE_WITH_CUDA
platform
::
NCCLContextMap
*
nctx
=
use_cuda
?
nccl_ctxs
:
nullptr
;
multi_device_pass
->
SetNotOwned
<
platform
::
NCCLContextMap
>
(
"nccl_ctxs"
,
nctx
);
multi_device
s
_pass
->
SetNotOwned
<
platform
::
NCCLContextMap
>
(
"nccl_ctxs"
,
nctx
);
#endif
graph
=
multi_device_pass
->
Apply
(
std
::
move
(
graph
));
graph
=
multi_device
s
_pass
->
Apply
(
std
::
move
(
graph
));
// Apply a graph print pass to record a graph with device info.
if
(
!
strategy
.
debug_graphviz_path_
.
empty
())
{
auto
multi_device_print_pass
=
ir
::
PassRegistry
::
Instance
().
Get
(
"multi_device_print_pass"
);
multi_device_print_pass
->
SetNotOwned
<
const
std
::
string
>
(
auto
multi_device
s
_print_pass
=
ir
::
PassRegistry
::
Instance
().
Get
(
"multi_device
s
_print_pass"
);
multi_device
s
_print_pass
->
SetNotOwned
<
const
std
::
string
>
(
"debug_graphviz_path"
,
&
strategy
.
debug_graphviz_path_
);
multi_device_print_pass
->
Set
<
details
::
GraphvizSSAGraphPrinter
>
(
multi_device
s
_print_pass
->
Set
<
details
::
GraphvizSSAGraphPrinter
>
(
"graph_printer"
,
new
details
::
GraphvizSSAGraphPrinter
);
graph
=
multi_device_print_pass
->
Apply
(
std
::
move
(
graph
));
graph
=
multi_device
s
_print_pass
->
Apply
(
std
::
move
(
graph
));
}
// Verify that the graph is correct for multi-device executor.
auto
multi_device_check_pass
=
ir
::
PassRegistry
::
Instance
().
Get
(
"multi_device_check_pass"
);
graph
=
multi_device_check_pass
->
Apply
(
std
::
move
(
graph
));
auto
multi_device
s
_check_pass
=
ir
::
PassRegistry
::
Instance
().
Get
(
"multi_device
s
_check_pass"
);
graph
=
multi_device
s
_check_pass
->
Apply
(
std
::
move
(
graph
));
return
graph
;
}
...
...
@@ -354,6 +354,6 @@ ParallelExecutor::~ParallelExecutor() {
}
// namespace paddle
USE_PASS
(
graph_viz_pass
);
USE_PASS
(
multi_device_pass
);
USE_PASS
(
multi_device_check_pass
);
USE_PASS
(
multi_device_print_pass
);
USE_PASS
(
multi_device
s
_pass
);
USE_PASS
(
multi_device
s
_check_pass
);
USE_PASS
(
multi_device
s
_print_pass
);
paddle/fluid/framework/parallel_executor.h
浏览文件 @
68b22140
...
...
@@ -19,7 +19,7 @@ limitations under the License. */
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/details/multi_devices_graph_
builder
.h"
#include "paddle/fluid/framework/details/multi_devices_graph_
pass
.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/program_desc.h"
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
68b22140
...
...
@@ -235,7 +235,12 @@ else()
endif
()
op_library
(
cross_entropy_op DEPS cross_entropy
)
op_library
(
softmax_with_cross_entropy_op DEPS cross_entropy softmax
)
if
(
WITH_GPU
)
op_library
(
softmax_with_cross_entropy_op DEPS cross_entropy softmax cub
)
else
()
op_library
(
softmax_with_cross_entropy_op DEPS cross_entropy softmax
)
endif
()
op_library
(
softmax_op DEPS softmax
)
op_library
(
sequence_softmax_op DEPS softmax
)
if
(
WITH_GPU AND TENSORRT_FOUND
)
...
...
@@ -273,9 +278,9 @@ op_library(squeeze_op DEPS reshape_op)
op_library
(
extract_rows_op DEPS memory
)
op_library
(
flatten_op DEPS reshape_op
)
if
(
WITH_GPU
)
op_library
(
conv_op DEPS vol2col depthwise_conv im2col
)
op_library
(
layer_norm_op DEPS cub
)
else
()
op_library
(
conv_op DEPS vol2col im2col
)
endif
()
...
...
paddle/fluid/operators/crop_op.cc
浏览文件 @
68b22140
/* Copyright (c) 201
6
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -188,6 +188,7 @@ namespace ops = paddle::operators;
REGISTER_OPERATOR
(
crop
,
ops
::
CropOp
,
ops
::
CropOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
crop_grad
,
ops
::
CropOpGrad
);
REGISTER_OP_CPU_KERNEL
(
crop
,
ops
::
CropKernel
<
float
>
);
REGISTER_OP_CPU_KERNEL
(
crop
,
ops
::
CropKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
crop_grad
,
ops
::
CropGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
paddle/fluid/operators/crop_op.cu
浏览文件 @
68b22140
/* Copyright (c) 201
6
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include "paddle/fluid/operators/crop_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
crop
,
ops
::
CropKernel
<
float
>
);
REGISTER_OP_CUDA_KERNEL
(
crop
,
ops
::
CropKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
REGISTER_OP_CUDA_KERNEL
(
crop_grad
,
ops
::
CropGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
paddle/fluid/operators/crop_op.h
浏览文件 @
68b22140
/* Copyright (c) 201
6
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -58,32 +58,74 @@ static std::vector<int> GetOffsets(const framework::ExecutionContext& ctx) {
return
res
;
}
template
<
typename
T
>
template
<
typename
DeviceContext
,
typename
T
,
size_t
D
>
void
CropFunction
(
const
framework
::
ExecutionContext
&
context
)
{
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
out_dims
=
out
->
dims
();
if
(
out_dims
[
0
]
==
-
1
)
{
out_dims
[
0
]
=
x
->
dims
()[
0
];
}
out
->
mutable_data
<
T
>
(
out_dims
,
context
.
GetPlace
());
auto
x_stride
=
framework
::
stride
(
x
->
dims
());
auto
out_stride
=
framework
::
stride
(
out
->
dims
());
auto
offsets
=
GetOffsets
(
context
);
int64_t
offset
=
0
;
for
(
size_t
i
=
0
;
i
<
offsets
.
size
();
++
i
)
{
offset
+=
(
x_stride
[
i
]
*
offsets
[
i
]);
}
auto
x_tensor
=
EigenTensor
<
T
,
D
>::
From
(
*
x
);
auto
out_tensor
=
EigenTensor
<
T
,
D
>::
From
(
*
out
);
Eigen
::
array
<
int
,
D
>
e_offsets
;
Eigen
::
array
<
int
,
D
>
e_shape
;
for
(
size_t
i
=
0
;
i
<
D
;
++
i
)
{
e_offsets
[
i
]
=
offsets
[
i
];
e_shape
[
i
]
=
out
->
dims
()[
i
];
}
auto
&
place
=
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
out_tensor
.
device
(
place
)
=
x_tensor
.
slice
(
e_offsets
,
e_shape
);
}
template
<
typename
DeviceContext
,
typename
T
>
class
CropKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
const
T
*
x_data
=
x
->
data
<
T
>
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x_stride
=
framework
::
stride
(
x
->
dims
());
auto
out_stride
=
framework
::
stride
(
out
->
dims
());
auto
offsets
=
GetOffsets
(
context
);
int64_t
offset
=
0
;
for
(
size_t
i
=
0
;
i
<
offsets
.
size
();
++
i
)
{
offset
+=
(
x_stride
[
i
]
*
offsets
[
i
]);
int
rank
=
context
.
Input
<
Tensor
>
(
"X"
)
->
dims
().
size
();
switch
(
rank
)
{
case
1
:
CropFunction
<
DeviceContext
,
T
,
1
>
(
context
);
break
;
case
2
:
CropFunction
<
DeviceContext
,
T
,
2
>
(
context
);
break
;
case
3
:
CropFunction
<
DeviceContext
,
T
,
3
>
(
context
);
break
;
case
4
:
CropFunction
<
DeviceContext
,
T
,
4
>
(
context
);
break
;
case
5
:
CropFunction
<
DeviceContext
,
T
,
5
>
(
context
);
break
;
case
6
:
CropFunction
<
DeviceContext
,
T
,
6
>
(
context
);
break
;
default:
PADDLE_THROW
(
"CropOp only support tensors with no more than 6 dimensions."
);
}
StridedMemcpy
<
T
>
(
context
.
device_context
(),
x_data
+
offset
,
x_stride
,
out
->
dims
(),
out_stride
,
out_data
);
}
};
template
<
typename
DeviceContext
,
typename
T
,
size_t
D
>
void
CropGradFunction
(
const
framework
::
ExecutionContext
&
context
)
{
auto
*
d_x
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
if
(
d_x
!=
nullptr
)
{
auto
*
d_out
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
d_x
->
mutable_data
<
T
>
(
x
->
dims
(),
context
.
GetPlace
());
auto
offsets
=
GetOffsets
(
context
);
Eigen
::
array
<
std
::
pair
<
int
,
int
>
,
D
>
paddings
;
for
(
size_t
i
=
0
;
i
<
D
;
++
i
)
{
...
...
paddle/fluid/operators/detection/mine_hard_examples_op.cc
浏览文件 @
68b22140
...
...
@@ -227,6 +227,9 @@ class MineHardExamplesOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_GT
(
neg_pos_ratio
,
0.0
f
,
"neg_pos_ratio must greater than zero in max_negative mode"
);
PADDLE_ENFORCE_LT
(
neg_dist_threshold
,
1.0
f
,
"neg_dist_threshold must less than one in max_negative mode"
);
PADDLE_ENFORCE_GT
(
neg_dist_threshold
,
0.0
f
,
"neg_dist_threshold must greater than zero in max_negative mode"
);
...
...
paddle/fluid/operators/distributed/request_handler_impl.cc
浏览文件 @
68b22140
...
...
@@ -41,6 +41,7 @@ bool RequestSendHandler::Handle(const std::string& varname,
// Async
if
(
!
sync_mode_
)
{
rpc_server_
->
Profiler
().
OneStep
();
try
{
executor_
->
RunPreparedContext
((
*
grad_to_prepared_ctx_
)[
varname
].
get
(),
scope
);
...
...
paddle/fluid/operators/distributed/rpc_server.cc
浏览文件 @
68b22140
...
...
@@ -18,11 +18,44 @@
#include <string>
#include "paddle/fluid/operators/distributed/rpc_server.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_int32
(
rpc_server_profile_period
,
0
,
"the period of listen_and_serv to do profile"
);
DEFINE_string
(
rpc_server_profile_path
,
"/dev/null"
,
"the profile log file path"
);
namespace
paddle
{
namespace
operators
{
namespace
distributed
{
RPCServerProfiler
::
RPCServerProfiler
(
int
profile_period
,
const
std
::
string
&
profile_log_path
)
:
profile_period_
(
profile_period
),
profile_log_path_
(
profile_log_path
)
{
step_
=
0
;
}
void
RPCServerProfiler
::
OneStep
()
{
PADDLE_ENFORCE_LE
(
step_
,
profile_period_
,
"step_ should not be larger then "
"profile_period_"
);
if
(
profile_period_
<=
0
)
{
return
;
}
if
(
step_
==
0
)
{
auto
pf_state
=
paddle
::
platform
::
ProfilerState
::
kCPU
;
paddle
::
platform
::
EnableProfiler
(
pf_state
);
}
if
(
step_
==
profile_period_
)
{
paddle
::
platform
::
DisableProfiler
(
paddle
::
platform
::
EventSortingKey
::
kTotal
,
profile_log_path_
);
step_
=
0
;
}
else
{
step_
++
;
}
}
void
RPCServer
::
ShutDown
()
{
LOG
(
INFO
)
<<
"RPCServer ShutDown "
;
ShutDownImpl
();
...
...
paddle/fluid/operators/distributed/rpc_server.h
浏览文件 @
68b22140
...
...
@@ -19,16 +19,33 @@
#include <thread> // NOLINT
#include <utility>
#include <vector>
#include "paddle/fluid/operators/distributed/request_handler.h"
DECLARE_int32
(
rpc_server_profile_period
);
DECLARE_string
(
rpc_server_profile_path
);
namespace
paddle
{
namespace
operators
{
namespace
distributed
{
class
RPCServerProfiler
{
public:
RPCServerProfiler
(
int
profile_period
,
const
std
::
string
&
profile_log_path
);
void
OneStep
();
private:
const
int
profile_period_
;
std
::
string
profile_log_path_
;
int
step_
;
};
class
RPCServer
{
public:
explicit
RPCServer
(
const
std
::
string
&
address
,
int
client_num
)
:
cur_cond_
(
0
),
profiler_
(
FLAGS_rpc_server_profile_period
,
FLAGS_rpc_server_profile_path
),
bind_address_
(
address
),
exit_flag_
(
false
),
selected_port_
(
0
),
...
...
@@ -67,6 +84,7 @@ class RPCServer {
void
Complete
();
void
ResetBarrierCounter
();
RPCServerProfiler
&
Profiler
()
{
return
profiler_
;
}
protected:
virtual
void
ShutDownImpl
()
=
0
;
...
...
@@ -79,6 +97,7 @@ class RPCServer {
std
::
unordered_map
<
std
::
string
,
int
>
rpc_cond_map_
;
std
::
atomic
<
int
>
cur_cond_
;
std
::
condition_variable
rpc_cond_
;
RPCServerProfiler
profiler_
;
protected:
std
::
string
bind_address_
;
...
...
paddle/fluid/operators/elementwise_add_op.cu
浏览文件 @
68b22140
...
...
@@ -16,6 +16,60 @@ limitations under the License. */
#include "paddle/fluid/operators/elementwise_add_op.h"
#include "paddle/fluid/platform/float16.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
__global__
void
ElementwiseAddCUDAKernel
(
const
T
*
x
,
const
T
*
y
,
T
*
z
,
int
n
,
int
post
,
int
size
)
{
int
idx_x
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
idx_x
<
size
)
{
int
idx_y
=
idx_x
/
post
-
(
idx_x
/
(
n
*
post
))
*
n
;
z
[
idx_x
]
=
x
[
idx_x
]
+
y
[
idx_y
];
}
}
template
<
typename
T
>
class
ElementwiseAddKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
using
Tensor
=
framework
::
Tensor
;
const
auto
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
z
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
z_data
=
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
device
=
*
(
ctx
.
cuda_device_context
().
eigen_device
());
const
framework
::
DDim
&
x_dim
=
x
->
dims
();
framework
::
DDim
y_dim
=
y
->
dims
();
int
size
=
x
->
numel
();
if
(
x_dim
==
y_dim
)
{
auto
dim
=
framework
::
make_ddim
({
size
});
auto
z_eigen
=
framework
::
EigenTensor
<
T
,
1
>::
From
(
*
z
,
dim
);
auto
x_eigen
=
framework
::
EigenTensor
<
T
,
1
>::
From
(
*
x
,
dim
);
auto
y_eigen
=
framework
::
EigenTensor
<
T
,
1
>::
From
(
*
y
,
dim
);
z_eigen
.
device
(
device
)
=
x_eigen
+
y_eigen
;
}
else
{
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
axis
=
(
axis
==
-
1
?
x_dim
.
size
()
-
y_dim
.
size
()
:
axis
);
y_dim
=
trim_trailing_singular_dims
(
y_dim
);
axis
=
(
y_dim
.
size
()
==
0
)
?
x_dim
.
size
()
:
axis
;
int
pre
,
n
,
post
;
get_mid_dims
(
x_dim
,
y_dim
,
axis
,
&
pre
,
&
n
,
&
post
);
int
threads
=
512
;
int
grids
=
(
size
+
threads
-
1
)
/
threads
;
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
ElementwiseAddCUDAKernel
<
T
><<<
grids
,
threads
,
0
,
stream
>>>
(
x
->
data
<
T
>
(),
y
->
data
<
T
>
(),
z_data
,
n
,
post
,
size
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
...
...
paddle/fluid/operators/elementwise_add_op.h
浏览文件 @
68b22140
...
...
@@ -144,16 +144,41 @@ class ElementwiseAddGradKernel : public framework::OpKernel<T> {
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
// skip out, x, y
auto
*
out
=
dout
;
auto
*
x
=
dout
,
*
y
=
dout
;
if
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
())
&&
dx
!=
nullptr
&&
dy
!=
nullptr
&&
(
dx
->
dims
()
==
dy
->
dims
()))
{
elementwise_add_grad
<
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
out
,
dout
,
dx
,
dy
);
if
(
dx
!=
nullptr
)
{
// In fact, we can just share memory, but it may cause a bug of memory
// optimizer
// dx->ShareDataWith(*dout);
framework
::
TensorCopy
(
*
dout
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
DeviceContext
>(),
dx
);
}
if
(
dy
==
nullptr
)
return
;
const
framework
::
DDim
&
x_dim
=
dout
->
dims
();
framework
::
DDim
y_dim
=
dy
->
dims
();
if
(
x_dim
==
y_dim
)
{
// dy->ShareDataWith(*dout);
framework
::
TensorCopy
(
*
dout
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
DeviceContext
>(),
dy
);
}
else
{
default_elementwise_add_grad
<
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
out
,
dout
,
dx
,
dy
);
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Perform reduction to dout to calculate dy
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
axis
=
(
axis
==
-
1
?
x_dim
.
size
()
-
y_dim
.
size
()
:
axis
);
y_dim
=
trim_trailing_singular_dims
(
y_dim
);
axis
=
(
y_dim
.
size
()
==
0
)
?
x_dim
.
size
()
:
axis
;
auto
&
device
=
*
(
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
());
int
pre
,
n
,
post
;
get_mid_dims
(
x_dim
,
y_dim
,
axis
,
&
pre
,
&
n
,
&
post
);
auto
eigen_dout
=
framework
::
EigenTensor
<
T
,
3
>::
From
(
*
dout
,
framework
::
make_ddim
({
pre
,
n
,
post
}));
auto
eigen_dy
=
framework
::
EigenTensor
<
T
,
1
>::
From
(
*
dy
,
framework
::
make_ddim
({
n
}));
eigen_dy
.
device
(
device
)
=
eigen_dout
.
sum
(
framework
::
EigenDim
<
2
>::
From
(
framework
::
make_ddim
({
0
,
2
})));
}
}
};
...
...
paddle/fluid/operators/layer_norm_op.cu
浏览文件 @
68b22140
/* Copyright (c) 201
6
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -12,8 +12,512 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cub/cub.cuh>
#include "paddle/fluid/operators/layer_norm_op.h"
namespace
paddle
{
namespace
operators
{
inline
static
int
GetDesiredBlockDim
(
int
block_dim
)
{
const
int
kMaxBlockDim
=
512
;
return
block_dim
>=
kMaxBlockDim
?
kMaxBlockDim
:
(
1
<<
(
static_cast
<
int
>
(
std
::
log2f
(
block_dim
))));
}
#define FIXED_BLOCK_DIM_CASE_BASE(log2_block_dim, ...) \
case (1 << (log2_block_dim)): { \
constexpr auto kBlockDim = (1 << (log2_block_dim)); \
__VA_ARGS__; \
} break
#define FIXED_BLOCK_DIM_CASE(...) \
FIXED_BLOCK_DIM_CASE_BASE(9, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_CASE_BASE(8, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_CASE_BASE(7, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_CASE_BASE(6, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_CASE_BASE(5, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_CASE_BASE(4, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_CASE_BASE(3, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_CASE_BASE(2, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_CASE_BASE(1, ##__VA_ARGS__)
static
__device__
__forceinline__
float
real_sqrt
(
float
x
)
{
return
sqrtf
(
x
);
}
static
__device__
__forceinline__
double
real_sqrt
(
double
x
)
{
return
sqrt
(
x
);
}
template
<
typename
T
>
struct
PairForLayerNorm
{
__device__
__forceinline__
PairForLayerNorm
()
{}
__device__
__forceinline__
PairForLayerNorm
(
const
T
&
first
,
const
T
&
second
)
:
first_
(
first
),
second_
(
second
)
{}
T
first_
;
T
second_
;
};
template
<
typename
T
>
struct
PairForLayerNormAddFunctor
{
__device__
__forceinline__
PairForLayerNorm
<
T
>
operator
()(
const
PairForLayerNorm
<
T
>
&
p1
,
const
PairForLayerNorm
<
T
>
&
p2
)
{
return
PairForLayerNorm
<
T
>
(
p1
.
first_
+
p2
.
first_
,
p1
.
second_
+
p2
.
second_
);
}
};
template
<
typename
T
,
int
BlockDim
>
__global__
void
LayerNormForward
(
const
T
*
x
,
const
T
*
scale
,
const
T
*
bias
,
T
*
y
,
T
*
mean
,
T
*
var
,
float
epsilon
,
int
feature_size
)
{
using
BlockReduce
=
cub
::
BlockReduce
<
PairForLayerNorm
<
T
>
,
BlockDim
>
;
__shared__
typename
BlockReduce
::
TempStorage
temp_storage
;
int
beg_idx
=
blockIdx
.
x
*
feature_size
+
threadIdx
.
x
;
int
end_idx
=
(
blockIdx
.
x
+
1
)
*
feature_size
;
// Step 1: Reduce to calculate mean and var
T
mean_val
=
static_cast
<
T
>
(
0
);
T
var_val
=
static_cast
<
T
>
(
0
);
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
BlockDim
)
{
T
tmp
=
x
[
i
];
mean_val
+=
tmp
;
var_val
+=
(
tmp
*
tmp
);
}
auto
pair
=
BlockReduce
(
temp_storage
)
.
Reduce
(
PairForLayerNorm
<
T
>
(
mean_val
,
var_val
),
PairForLayerNormAddFunctor
<
T
>
());
if
(
threadIdx
.
x
==
0
)
{
auto
tmp
=
pair
.
first_
/
feature_size
;
mean
[
blockIdx
.
x
]
=
tmp
;
var
[
blockIdx
.
x
]
=
pair
.
second_
/
feature_size
-
tmp
*
tmp
;
}
__syncthreads
();
mean_val
=
mean
[
blockIdx
.
x
];
var_val
=
static_cast
<
T
>
(
real_sqrt
(
var
[
blockIdx
.
x
]
+
epsilon
));
// Step 2: Calculate y
if
(
scale
!=
nullptr
)
{
if
(
bias
!=
nullptr
)
{
for
(
int
i
=
beg_idx
,
j
=
threadIdx
.
x
;
i
<
end_idx
;
i
+=
BlockDim
,
j
+=
BlockDim
)
{
y
[
i
]
=
scale
[
j
]
*
(
x
[
i
]
-
mean_val
)
/
var_val
+
bias
[
j
];
}
}
else
{
for
(
int
i
=
beg_idx
,
j
=
threadIdx
.
x
;
i
<
end_idx
;
i
+=
BlockDim
,
j
+=
BlockDim
)
{
y
[
i
]
=
scale
[
j
]
*
(
x
[
i
]
-
mean_val
)
/
var_val
;
}
}
}
else
{
// scale == nullptr
if
(
bias
!=
nullptr
)
{
for
(
int
i
=
beg_idx
,
j
=
threadIdx
.
x
;
i
<
end_idx
;
i
+=
BlockDim
,
j
+=
BlockDim
)
{
y
[
i
]
=
(
x
[
i
]
-
mean_val
)
/
var_val
+
bias
[
j
];
}
}
else
{
for
(
int
i
=
beg_idx
,
j
=
threadIdx
.
x
;
i
<
end_idx
;
i
+=
BlockDim
,
j
+=
BlockDim
)
{
y
[
i
]
=
(
x
[
i
]
-
mean_val
)
/
var_val
;
}
}
}
}
// Make sure that d_scale != nullptr && d_bias != nullptr
// Since d_scale != nullptr, scale would not be nullptr
template
<
typename
T
,
int
BlockDim
,
bool
HasDx
>
__global__
void
LayerNormBackwardGradientAll
(
const
T
*
x
,
const
T
*
d_y
,
T
*
d_scale
,
T
*
d_bias
,
T
*
d_x
,
const
T
*
mean
,
const
T
*
var
,
const
T
*
scale
,
float
epsilon
,
int
batch_size
,
int
feature_size
)
{
using
BlockReduce
=
cub
::
BlockReduce
<
PairForLayerNorm
<
T
>
,
BlockDim
>
;
__shared__
typename
BlockReduce
::
TempStorage
temp_storage
;
int
beg_idx
=
threadIdx
.
x
*
feature_size
+
blockIdx
.
x
;
int
end_idx
=
batch_size
*
feature_size
+
blockIdx
.
x
;
int
stride
=
BlockDim
*
feature_size
;
T
d_scale_partial
=
0
,
d_bias_partial
=
0
;
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
stride
)
{
int
row_idx
=
i
/
feature_size
;
auto
var_val
=
static_cast
<
T
>
(
real_sqrt
(
var
[
row_idx
]
+
epsilon
));
d_scale_partial
+=
d_y
[
i
]
*
(
x
[
i
]
-
mean
[
row_idx
])
/
var_val
;
d_bias_partial
+=
d_y
[
i
];
if
(
HasDx
)
{
d_x
[
i
]
=
d_y
[
i
]
*
scale
[
blockIdx
.
x
]
/
var_val
;
}
}
auto
pair
=
BlockReduce
(
temp_storage
)
.
Reduce
(
PairForLayerNorm
<
T
>
(
d_scale_partial
,
d_bias_partial
),
PairForLayerNormAddFunctor
<
T
>
());
if
(
threadIdx
.
x
==
0
)
{
d_scale
[
blockIdx
.
x
]
=
pair
.
first_
;
d_bias
[
blockIdx
.
x
]
=
pair
.
second_
;
}
}
// Make sure that there is only one true expression: d_scale != nullptr
// or d_bias != nullptr
// Notice: scale may be nullptr
template
<
typename
T
,
int
BlockDim
,
bool
HasDx
,
bool
HasDScale
>
__global__
void
LayerNormBackwardGradientScaleOrBias
(
const
T
*
x
,
const
T
*
d_y
,
T
*
d_scale
,
T
*
d_bias
,
T
*
d_x
,
const
T
*
mean
,
const
T
*
var
,
const
T
*
scale
,
float
epsilon
,
int
batch_size
,
int
feature_size
)
{
using
BlockReduce
=
cub
::
BlockReduce
<
T
,
BlockDim
>
;
__shared__
typename
BlockReduce
::
TempStorage
temp_storage
;
int
beg_idx
=
threadIdx
.
x
*
feature_size
+
blockIdx
.
x
;
int
end_idx
=
batch_size
*
feature_size
+
blockIdx
.
x
;
int
stride
=
BlockDim
*
feature_size
;
T
d_scale_or_d_bias_partial
=
0
;
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
stride
)
{
int
row_idx
=
i
/
feature_size
;
auto
var_val
=
static_cast
<
T
>
(
real_sqrt
(
var
[
row_idx
]
+
epsilon
));
if
(
HasDScale
)
{
d_scale_or_d_bias_partial
+=
d_y
[
i
]
*
(
x
[
i
]
-
mean
[
row_idx
])
/
var_val
;
}
else
{
// d_bias != nullptr
d_scale_or_d_bias_partial
+=
d_y
[
i
];
}
if
(
HasDx
)
{
if
(
scale
!=
nullptr
)
{
d_x
[
i
]
=
d_y
[
i
]
*
scale
[
blockIdx
.
x
]
/
var_val
;
}
else
{
d_x
[
i
]
=
d_y
[
i
]
/
var_val
;
}
}
}
d_scale_or_d_bias_partial
=
BlockReduce
(
temp_storage
).
Reduce
(
d_scale_or_d_bias_partial
,
cub
::
Sum
());
if
(
threadIdx
.
x
==
0
)
{
if
(
HasDScale
)
{
d_scale
[
blockIdx
.
x
]
=
d_scale_or_d_bias_partial
;
}
else
{
d_bias
[
blockIdx
.
x
]
=
d_scale_or_d_bias_partial
;
}
}
}
template
<
typename
T
,
int
BlockDim
>
__global__
void
LayerNormBackwardPostProcessToCalculateDX
(
const
T
*
x
,
T
*
d_x
,
const
T
*
mean
,
const
T
*
var
,
float
epsilon
,
int
feature_size
)
{
using
BlockReduce
=
cub
::
BlockReduce
<
PairForLayerNorm
<
T
>
,
BlockDim
>
;
__shared__
typename
BlockReduce
::
TempStorage
temp_storage
;
__shared__
T
d_x_reduce_tmp
[
2
];
int
beg_idx
=
blockIdx
.
x
*
feature_size
+
threadIdx
.
x
;
int
end_idx
=
(
blockIdx
.
x
+
1
)
*
feature_size
;
T
block_mean
=
mean
[
blockIdx
.
x
];
T
block_var
=
var
[
blockIdx
.
x
];
T
d_x_mean_partial
=
0
,
d_x_var_partial
=
0
;
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
BlockDim
)
{
d_x_mean_partial
+=
d_x
[
i
];
d_x_var_partial
+=
d_x
[
i
]
*
(
x
[
i
]
-
block_mean
);
}
auto
pair
=
BlockReduce
(
temp_storage
)
.
Reduce
(
PairForLayerNorm
<
T
>
(
d_x_mean_partial
,
d_x_var_partial
),
PairForLayerNormAddFunctor
<
T
>
());
if
(
threadIdx
.
x
==
0
)
{
d_x_reduce_tmp
[
0
]
=
pair
.
first_
/
feature_size
;
d_x_reduce_tmp
[
1
]
=
pair
.
second_
/
(
feature_size
*
(
block_var
+
epsilon
));
}
__syncthreads
();
d_x_mean_partial
=
d_x_reduce_tmp
[
0
];
d_x_var_partial
=
d_x_reduce_tmp
[
1
];
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
BlockDim
)
{
d_x
[
i
]
-=
d_x_mean_partial
;
d_x
[
i
]
-=
(
x
[
i
]
-
block_mean
)
*
d_x_var_partial
;
}
}
// Here, we only calculate d_x
template
<
typename
T
,
int
BlockDim
>
__global__
void
LayerNormBackwardGradientOnlyDX
(
const
T
*
x
,
const
T
*
d_y
,
T
*
d_x
,
const
T
*
mean
,
const
T
*
var
,
const
T
*
scale
,
float
epsilon
,
int
feature_size
)
{
using
BlockReduce
=
cub
::
BlockReduce
<
PairForLayerNorm
<
T
>
,
BlockDim
>
;
__shared__
typename
BlockReduce
::
TempStorage
temp_storage
;
__shared__
T
d_x_reduce_tmp
[
2
];
int
beg_idx
=
blockIdx
.
x
*
feature_size
+
threadIdx
.
x
;
int
end_idx
=
(
blockIdx
.
x
+
1
)
*
feature_size
;
T
block_mean
=
mean
[
blockIdx
.
x
],
block_var
=
var
[
blockIdx
.
x
];
T
d_x_mean_partial
=
0
,
d_x_var_partial
=
0
;
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
BlockDim
)
{
auto
var_val
=
static_cast
<
T
>
(
real_sqrt
(
block_var
+
epsilon
));
if
(
scale
!=
nullptr
)
{
int
col_idx
=
i
%
feature_size
;
d_x
[
i
]
=
d_y
[
i
]
*
scale
[
col_idx
]
/
var_val
;
}
else
{
d_x
[
i
]
=
d_y
[
i
]
/
var_val
;
}
d_x_mean_partial
+=
d_x
[
i
];
d_x_var_partial
+=
d_x
[
i
]
*
(
x
[
i
]
-
block_mean
);
}
auto
pair
=
BlockReduce
(
temp_storage
)
.
Reduce
(
PairForLayerNorm
<
T
>
(
d_x_mean_partial
,
d_x_var_partial
),
PairForLayerNormAddFunctor
<
T
>
());
if
(
threadIdx
.
x
==
0
)
{
d_x_reduce_tmp
[
0
]
=
pair
.
first_
/
feature_size
;
d_x_reduce_tmp
[
1
]
=
pair
.
second_
/
(
feature_size
*
(
block_var
+
epsilon
));
}
__syncthreads
();
d_x_mean_partial
=
d_x_reduce_tmp
[
0
];
d_x_var_partial
=
d_x_reduce_tmp
[
1
];
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
BlockDim
)
{
d_x
[
i
]
-=
d_x_mean_partial
;
d_x
[
i
]
-=
(
x
[
i
]
-
block_mean
)
*
d_x_var_partial
;
}
}
template
<
typename
T
>
__global__
void
LayerNormBackwardWhenBatchSizeIsOne
(
const
T
*
x
,
const
T
*
d_y
,
T
*
d_x
,
T
*
d_scale
,
T
*
d_bias
,
const
T
*
mean
,
const
T
*
var
,
const
T
*
scale
,
float
epsilon
,
int
feature_size
)
{
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
idx
<
feature_size
)
{
auto
var_val
=
static_cast
<
T
>
(
real_sqrt
(
var
[
idx
]
+
epsilon
));
if
(
d_x
!=
nullptr
)
{
if
(
d_scale
==
nullptr
)
{
d_x
[
idx
]
=
d_y
[
idx
]
/
var_val
;
}
else
{
d_x
[
idx
]
=
d_y
[
idx
]
*
scale
[
idx
]
/
var_val
;
}
}
if
(
d_scale
!=
nullptr
)
{
d_scale
[
idx
]
=
d_y
[
idx
]
*
(
x
[
idx
]
-
mean
[
idx
])
/
var_val
;
}
if
(
d_bias
!=
nullptr
)
d_bias
[
idx
]
=
d_y
[
idx
];
}
}
template
<
typename
T
>
static
void
LayerNormBackward
(
const
T
*
x
,
const
T
*
d_y
,
const
T
*
scale
,
const
T
*
mean
,
const
T
*
var
,
T
*
d_x
,
T
*
d_scale
,
T
*
d_bias
,
float
epsilon
,
int
batch_size
,
int
feature_size
,
cudaStream_t
stream
)
{
const
int
kMaxBlockDim
=
512
;
int
gradient_flag
=
((
d_x
!=
nullptr
?
1
:
0
)
<<
2
)
|
((
d_scale
!=
nullptr
?
1
:
0
)
<<
1
)
|
((
d_bias
!=
nullptr
?
1
:
0
));
if
(
gradient_flag
==
0
)
return
;
if
(
batch_size
==
1
)
{
LayerNormBackwardWhenBatchSizeIsOne
<
T
><<<
(
feature_size
+
kMaxBlockDim
-
1
)
/
kMaxBlockDim
,
kMaxBlockDim
,
0
,
stream
>>>
(
x
,
d_y
,
d_x
,
d_scale
,
d_bias
,
mean
,
var
,
scale
,
epsilon
,
feature_size
);
if
(
d_x
!=
nullptr
)
{
switch
(
GetDesiredBlockDim
(
feature_size
))
{
FIXED_BLOCK_DIM_CASE
(
LayerNormBackwardPostProcessToCalculateDX
<
T
,
kBlockDim
><<<
1
,
kBlockDim
,
0
,
stream
>>>
(
x
,
d_x
,
mean
,
var
,
epsilon
,
feature_size
));
}
}
return
;
}
auto
block_dim
=
GetDesiredBlockDim
(
batch_size
);
switch
(
gradient_flag
)
{
case
1
:
// d_x == nulptr, d_scale == nullptr, d_bias != nullptr
switch
(
block_dim
)
{
FIXED_BLOCK_DIM_CASE
(
LayerNormBackwardGradientScaleOrBias
<
T
,
kBlockDim
,
false
,
false
><<<
feature_size
,
kBlockDim
,
0
,
stream
>>>
(
x
,
d_y
,
d_scale
,
d_bias
,
d_x
,
mean
,
var
,
scale
,
epsilon
,
batch_size
,
feature_size
));
}
break
;
case
2
:
// d_x == nullptr, d_scale != nullptr, d_bias == nullptr
switch
(
block_dim
)
{
FIXED_BLOCK_DIM_CASE
(
LayerNormBackwardGradientScaleOrBias
<
T
,
kBlockDim
,
false
,
true
><<<
feature_size
,
kBlockDim
,
0
,
stream
>>>
(
x
,
d_y
,
d_scale
,
d_bias
,
d_x
,
mean
,
var
,
scale
,
epsilon
,
batch_size
,
feature_size
));
}
break
;
case
3
:
// d_x == nullptr, d_scale != nulptr, d_bias != nullptr
switch
(
block_dim
)
{
FIXED_BLOCK_DIM_CASE
(
LayerNormBackwardGradientAll
<
T
,
kBlockDim
,
false
><<<
feature_size
,
kBlockDim
,
0
,
stream
>>>
(
x
,
d_y
,
d_scale
,
d_bias
,
d_x
,
mean
,
var
,
scale
,
epsilon
,
batch_size
,
feature_size
));
}
break
;
case
4
:
// d_x != nullptr, d_scale == nullptr, d_bias == nullptr
switch
(
GetDesiredBlockDim
(
feature_size
))
{
FIXED_BLOCK_DIM_CASE
(
LayerNormBackwardGradientOnlyDX
<
T
,
kBlockDim
><<<
batch_size
,
kBlockDim
,
0
,
stream
>>>
(
x
,
d_y
,
d_x
,
mean
,
var
,
scale
,
epsilon
,
feature_size
));
}
break
;
case
5
:
// d_x != nulptr, d_scale == nullptr, d_bias != nullptr
switch
(
block_dim
)
{
FIXED_BLOCK_DIM_CASE
(
LayerNormBackwardGradientScaleOrBias
<
T
,
kBlockDim
,
true
,
false
><<<
feature_size
,
kBlockDim
,
0
,
stream
>>>
(
x
,
d_y
,
d_scale
,
d_bias
,
d_x
,
mean
,
var
,
scale
,
epsilon
,
batch_size
,
feature_size
));
}
switch
(
GetDesiredBlockDim
(
feature_size
))
{
FIXED_BLOCK_DIM_CASE
(
LayerNormBackwardPostProcessToCalculateDX
<
T
,
kBlockDim
><<<
batch_size
,
kBlockDim
,
0
,
stream
>>>
(
x
,
d_x
,
mean
,
var
,
epsilon
,
feature_size
));
}
break
;
case
6
:
// d_x != nullptr, d_scale != nullptr, d_bias == nullptr
switch
(
block_dim
)
{
FIXED_BLOCK_DIM_CASE
(
LayerNormBackwardGradientScaleOrBias
<
T
,
kBlockDim
,
true
,
true
><<<
feature_size
,
kBlockDim
,
0
,
stream
>>>
(
x
,
d_y
,
d_scale
,
d_bias
,
d_x
,
mean
,
var
,
scale
,
epsilon
,
batch_size
,
feature_size
));
}
switch
(
GetDesiredBlockDim
(
feature_size
))
{
FIXED_BLOCK_DIM_CASE
(
LayerNormBackwardPostProcessToCalculateDX
<
T
,
kBlockDim
><<<
batch_size
,
kBlockDim
,
0
,
stream
>>>
(
x
,
d_x
,
mean
,
var
,
epsilon
,
feature_size
));
}
break
;
case
7
:
// d_x != nullptr, d_scale != nullptr, d_bias != nullptr
switch
(
block_dim
)
{
FIXED_BLOCK_DIM_CASE
(
LayerNormBackwardGradientAll
<
T
,
kBlockDim
,
true
><<<
feature_size
,
kBlockDim
,
0
,
stream
>>>
(
x
,
d_y
,
d_scale
,
d_bias
,
d_x
,
mean
,
var
,
scale
,
epsilon
,
batch_size
,
feature_size
));
}
switch
(
GetDesiredBlockDim
(
feature_size
))
{
FIXED_BLOCK_DIM_CASE
(
LayerNormBackwardPostProcessToCalculateDX
<
T
,
kBlockDim
><<<
batch_size
,
kBlockDim
,
0
,
stream
>>>
(
x
,
d_x
,
mean
,
var
,
epsilon
,
feature_size
));
}
break
;
default:
break
;
}
}
template
<
typename
T
>
class
LayerNormKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
mean
=
ctx
.
Output
<
Tensor
>
(
"Mean"
);
auto
*
var
=
ctx
.
Output
<
Tensor
>
(
"Variance"
);
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
const
auto
x_dims
=
x
->
dims
();
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
y_data
=
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
mean_data
=
mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
var_data
=
var
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
scale_data
=
(
scale
==
nullptr
?
nullptr
:
scale
->
data
<
T
>
());
auto
*
bias_data
=
(
bias
==
nullptr
?
nullptr
:
bias
->
data
<
T
>
());
auto
matrix_dim
=
framework
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
batch_size
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
feature_size
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
switch
(
GetDesiredBlockDim
(
feature_size
))
{
FIXED_BLOCK_DIM_CASE
(
LayerNormForward
<
T
,
kBlockDim
><<<
batch_size
,
kBlockDim
,
0
,
stream
>>>
(
x_data
,
scale_data
,
bias_data
,
y_data
,
mean_data
,
var_data
,
epsilon
,
feature_size
));
default:
PADDLE_THROW
(
"Product from begin_norm_axis to end must be larger than 1"
);
break
;
}
}
};
template
<
typename
T
>
class
LayerNormGradKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
// d_x, d_scale, d_bias may be nullptr
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
auto
*
var
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
*
d_y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
d_y_data
=
d_y
->
data
<
T
>
();
auto
*
mean_data
=
mean
->
data
<
T
>
();
auto
*
var_data
=
var
->
data
<
T
>
();
auto
*
scale_data
=
(
scale
==
nullptr
?
nullptr
:
scale
->
data
<
T
>
());
auto
*
d_scale_data
=
(
d_scale
==
nullptr
?
nullptr
:
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
auto
*
d_bias_data
=
(
d_bias
==
nullptr
?
nullptr
:
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
auto
*
d_x_data
=
(
d_x
==
nullptr
?
nullptr
:
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
const
auto
&
x_dims
=
x
->
dims
();
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
auto
matrix_dim
=
framework
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
batch_size
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
feature_size
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
LayerNormBackward
<
T
>
(
x_data
,
d_y_data
,
scale_data
,
mean_data
,
var_data
,
d_x_data
,
d_scale_data
,
d_bias_data
,
epsilon
,
batch_size
,
feature_size
,
stream
);
}
};
#undef FIXED_BLOCK_DIM_CASE_BASE
#undef FIXED_BLOCK_DIM_CASE
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
layer_norm
,
...
...
paddle/fluid/operators/listen_and_serv_op.cc
浏览文件 @
68b22140
...
...
@@ -25,10 +25,6 @@ limitations under the License. */
#include "paddle/fluid/operators/distributed/request_handler_impl.h"
#include "paddle/fluid/operators/listen_and_serv_op.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_int32
(
listen_and_serv_profile_period
,
0
,
"the period of listen_and_serv to do profile"
);
namespace
paddle
{
namespace
operators
{
...
...
@@ -108,6 +104,7 @@ void ListenAndServOp::RunSyncLoop(
framework
::
Scope
*
recv_scope
,
const
std
::
vector
<
int
>
&
prefetch_block_id_list
,
const
int
checkpoint_point_block_id
)
const
{
VLOG
(
2
)
<<
"RunSyncLoop"
;
size_t
num_blocks
=
program
->
Size
();
auto
optimize_blocks
=
Attr
<
std
::
vector
<
framework
::
BlockDesc
*>>
(
kOptimizeBlocks
);
...
...
@@ -128,17 +125,8 @@ void ListenAndServOp::RunSyncLoop(
rpc_service_
->
ResetBarrierCounter
();
int32_t
profile_step
=
0
;
while
(
true
)
{
PADDLE_ENFORCE_LE
(
profile_step
,
FLAGS_listen_and_serv_profile_period
,
"profile_step should not be larger then "
"FLAGS_listen_and_serv_profile_period"
);
if
(
FLAGS_listen_and_serv_profile_period
>
0
)
{
if
(
profile_step
==
0
)
{
auto
pf_state
=
paddle
::
platform
::
ProfilerState
::
kCPU
;
paddle
::
platform
::
EnableProfiler
(
pf_state
);
}
}
rpc_service_
->
Profiler
().
OneStep
();
// Get from multiple trainers, we don't care about the order in which
// the gradients arrives, just add suffix 0~n and merge the gradient.
rpc_service_
->
SetCond
(
distributed
::
kRequestSend
);
...
...
@@ -180,21 +168,13 @@ void ListenAndServOp::RunSyncLoop(
// reset received sparse vars to avoid reuse it in the next mini-batch
dynamic_cast
<
distributed
::
RequestSendHandler
*>
(
request_send_handler_
.
get
())
->
ResetSparseVarRecorder
();
if
(
FLAGS_listen_and_serv_profile_period
>
0
)
{
if
(
profile_step
==
FLAGS_listen_and_serv_profile_period
)
{
paddle
::
platform
::
DisableProfiler
(
paddle
::
platform
::
EventSortingKey
::
kTotal
,
"/dev/null"
);
profile_step
=
0
;
}
else
{
profile_step
++
;
}
}
}
// while(true)
}
void
ListenAndServOp
::
RunAsyncLoop
(
framework
::
Executor
*
executor
,
framework
::
ProgramDesc
*
program
,
framework
::
Scope
*
recv_scope
)
const
{
VLOG
(
2
)
<<
"RunAsyncLoop"
;
// grad name to block id
std
::
unordered_map
<
std
::
string
,
int32_t
>
grad_to_block_id
;
std
::
unordered_map
<
int32_t
,
std
::
string
>
id_to_grad
;
...
...
paddle/fluid/platform/cpu_info.cc
浏览文件 @
68b22140
...
...
@@ -13,8 +13,11 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/cpu_info.h"
#ifdef PADDLE_WITH_XBYAK
#include "xbyak/xbyak.h"
#include "xbyak/xbyak_util.h"
#endif
#ifdef __APPLE__
#include <sys/sysctl.h>
...
...
paddle/fluid/platform/device_tracer.cc
浏览文件 @
68b22140
...
...
@@ -189,6 +189,8 @@ void CUPTIAPI bufferCompleted(CUcontext ctx, uint32_t streamId, uint8_t *buffer,
}
}
// namespace
#endif // PADDLE_WITH_CUPTI
class
DeviceTracerImpl
:
public
DeviceTracer
{
public:
DeviceTracerImpl
()
:
enabled_
(
false
)
{}
...
...
@@ -244,6 +246,8 @@ class DeviceTracerImpl : public DeviceTracer {
if
(
enabled_
)
{
return
;
}
#ifdef PADDLE_WITH_CUPTI
EnableActivity
();
// Register callbacks for buffer requests and completed by CUPTI.
...
...
@@ -262,6 +266,7 @@ class DeviceTracerImpl : public DeviceTracer {
dynload
::
cuptiEnableCallback
(
1
,
subscriber_
,
CUPTI_CB_DOMAIN_DRIVER_API
,
CUPTI_DRIVER_TRACE_CBID_cuLaunchKernel
));
CUPTI_CALL
(
dynload
::
cuptiGetTimestamp
(
&
start_ns_
));
#endif // PADDLE_WITH_CUPTI
enabled_
=
true
;
}
...
...
@@ -313,16 +318,21 @@ class DeviceTracerImpl : public DeviceTracer {
}
void
Disable
()
{
#ifdef PADDLE_WITH_CUPTI
// flush might cause additional calls to DeviceTracker.
dynload
::
cuptiActivityFlushAll
(
CUPTI_ACTIVITY_FLAG_FLUSH_FORCED
);
#endif // PADDLE_WITH_CUPTI
std
::
lock_guard
<
std
::
mutex
>
l
(
trace_mu_
);
#ifdef PADDLE_WITH_CUPTI
DisableActivity
();
dynload
::
cuptiUnsubscribe
(
subscriber_
);
CUPTI_CALL
(
dynload
::
cuptiGetTimestamp
(
&
end_ns_
));
#endif // PADDLE_WITH_CUPTI
enabled_
=
false
;
}
private:
#ifdef PADDLE_WITH_CUPTI
static
void
CUPTIAPI
ApiCallback
(
void
*
userdata
,
CUpti_CallbackDomain
domain
,
CUpti_CallbackId
cbid
,
const
void
*
cbdata
)
{
auto
*
cbInfo
=
reinterpret_cast
<
const
CUpti_CallbackData
*>
(
cbdata
);
...
...
@@ -340,7 +350,8 @@ class DeviceTracerImpl : public DeviceTracer {
VLOG
(
1
)
<<
"Unhandled API Callback for "
<<
domain
<<
" "
<<
cbid
;
}
}
CUpti_SubscriberHandle
subscriber_
;
#endif // PADDLE_WITH_CUPTI
std
::
mutex
trace_mu_
;
bool
enabled_
;
uint64_t
start_ns_
;
...
...
@@ -349,45 +360,9 @@ class DeviceTracerImpl : public DeviceTracer {
std
::
vector
<
MemRecord
>
mem_records_
;
std
::
vector
<
CPURecord
>
cpu_records_
;
std
::
unordered_map
<
uint32_t
,
std
::
string
>
correlations_
;
CUpti_SubscriberHandle
subscriber_
;
};
#endif // PADDLE_WITH_CUPTI
class
DeviceTracerDummy
:
public
DeviceTracer
{
public:
DeviceTracerDummy
()
{}
void
AddAnnotation
(
uint64_t
id
,
const
std
::
string
&
anno
)
{}
void
AddCPURecords
(
const
std
::
string
&
anno
,
uint64_t
start_ns
,
uint64_t
end_ns
,
int64_t
device_id
,
int64_t
thread_id
)
{}
void
AddMemRecords
(
const
std
::
string
&
name
,
uint64_t
start_ns
,
uint64_t
end_ns
,
int64_t
device_id
,
int64_t
stream_id
,
uint32_t
correlation_id
,
uint64_t
bytes
)
{}
void
AddKernelRecords
(
uint64_t
start
,
uint64_t
end
,
int64_t
device_id
,
int64_t
stream_id
,
uint32_t
correlation_id
)
{}
bool
IsEnabled
()
{
return
false
;
}
void
Enable
()
{}
proto
::
Profile
GenProfile
(
const
std
::
string
&
profile_path
)
{
return
proto
::
Profile
();
}
void
Disable
()
{}
};
void
CreateTracer
(
DeviceTracer
**
t
)
{
#ifdef PADDLE_WITH_CUPTI
*
t
=
new
DeviceTracerImpl
();
#else
*
t
=
new
DeviceTracerDummy
();
#endif // PADDLE_WITH_CUPTI
}
void
CreateTracer
(
DeviceTracer
**
t
)
{
*
t
=
new
DeviceTracerImpl
();
}
DeviceTracer
*
GetDeviceTracer
()
{
std
::
call_once
(
tracer_once_flag
,
CreateTracer
,
&
tracer
);
...
...
paddle/fluid/platform/device_tracer.h
浏览文件 @
68b22140
...
...
@@ -13,6 +13,9 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <sys/time.h>
#include <time.h>
#include <chrono> // NOLINT
#include <string>
#include "paddle/fluid/platform/dynload/cupti.h"
...
...
@@ -25,6 +28,12 @@ namespace platform {
// WARN: Under Development. Don't depend on it yet.
//////////////////////
inline
uint64_t
PosixInNsec
()
{
struct
timeval
tv
;
gettimeofday
(
&
tv
,
nullptr
);
return
1000
*
(
static_cast
<
uint64_t
>
(
tv
.
tv_sec
)
*
1000000
+
tv
.
tv_usec
);
}
// DeviceTracer performs the following tasks:
// 1. Register cuda callbacks for various events: kernel, memcpy, etc.
// 2. Collect cuda statistics: start/end ts, memory, etc.
...
...
paddle/fluid/platform/profiler.cc
浏览文件 @
68b22140
...
...
@@ -15,7 +15,6 @@ limitations under the License. */
#include "paddle/fluid/platform/profiler.h"
#include <sys/time.h>
#include <time.h>
#include <algorithm>
#include <iomanip>
#include <limits>
...
...
@@ -97,12 +96,6 @@ inline uint64_t GetTimeInNsec() {
.
count
();
}
inline
uint64_t
PosixInNsec
()
{
struct
timeval
tv
;
gettimeofday
(
&
tv
,
nullptr
);
return
1000
*
(
static_cast
<
uint64_t
>
(
tv
.
tv_sec
)
*
1000000
+
tv
.
tv_usec
);
}
Event
::
Event
(
EventType
type
,
std
::
string
name
,
uint32_t
thread_id
,
const
DeviceContext
*
dev_ctx
)
:
type_
(
type
),
name_
(
name
),
thread_id_
(
thread_id
),
has_cuda_
(
false
)
{
...
...
python/paddle/dataset/wmt14.py
浏览文件 @
68b22140
...
...
@@ -38,8 +38,7 @@ URL_DEV_TEST = ('http://www-lium.univ-lemans.fr/~schwenk/'
MD5_DEV_TEST
=
'7d7897317ddd8ba0ae5c5fa7248d3ff5'
# this is a small set of data for test. The original data is too large and
# will be add later.
URL_TRAIN
=
(
'http://paddlepaddle.cdn.bcebos.com/demo/'
'wmt_shrinked_data/wmt14.tgz'
)
URL_TRAIN
=
(
'http://paddlemodels.bj.bcebos.com/wmt/wmt14.tgz'
)
MD5_TRAIN
=
'0791583d57d5beb693b9414c5b36798c'
# BLEU of this trained model is 26.92
URL_MODEL
=
'http://paddlemodels.bj.bcebos.com/wmt%2Fwmt14.tgz'
...
...
python/paddle/fluid/__init__.py
浏览文件 @
68b22140
...
...
@@ -128,7 +128,8 @@ def __bootstrap__():
]
if
core
.
is_compiled_with_dist
():
read_env_flags
.
append
(
'rpc_deadline'
)
read_env_flags
.
append
(
'listen_and_serv_profile_period'
)
read_env_flags
.
append
(
'rpc_server_profile_period'
)
read_env_flags
.
append
(
'rpc_server_profile_path'
)
if
core
.
is_compiled_with_cuda
():
read_env_flags
+=
[
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
68b22140
...
...
@@ -166,7 +166,7 @@ def rpn_target_assign(loc,
})
# 4. Reshape and gather the target entry
scores
=
nn
.
reshape
(
x
=
scores
,
shape
=
(
-
1
,
1
))
scores
=
nn
.
reshape
(
x
=
scores
,
shape
=
(
-
1
,
2
))
loc
=
nn
.
reshape
(
x
=
loc
,
shape
=
(
-
1
,
4
))
target_label
=
nn
.
reshape
(
x
=
target_label
,
shape
=
(
-
1
,
1
))
target_bbox
=
nn
.
reshape
(
x
=
target_bbox
,
shape
=
(
-
1
,
4
))
...
...
@@ -724,7 +724,7 @@ def ssd_loss(location,
},
attrs
=
{
'neg_pos_ratio'
:
neg_pos_ratio
,
'neg_dist_threshold'
:
neg_
pos_ratio
,
'neg_dist_threshold'
:
neg_
overlap
,
'mining_type'
:
mining_type
,
'sample_size'
:
sample_size
,
})
...
...
python/paddle/fluid/profiler.py
浏览文件 @
68b22140
...
...
@@ -219,7 +219,7 @@ def stop_profiler(sorted_key=None, profile_path='/tmp/profile'):
def
profiler
(
state
,
sorted_key
=
None
,
profile_path
=
'/tmp/profile'
):
"""The profiler interface.
Different from cuda_profiler, this profiler can be used to profile both CPU
and GPU program. By defa
lu
t, it records the CPU and GPU operator kernels,
and GPU program. By defa
ul
t, it records the CPU and GPU operator kernels,
if you want to profile other program, you can refer the profiling tutorial
to add more records in C++ code.
...
...
@@ -232,7 +232,7 @@ def profiler(state, sorted_key=None, profile_path='/tmp/profile'):
state (string) : The profiling state, which should be 'CPU' or 'GPU',
telling the profiler to use CPU timer or GPU timer for profiling.
Although users may have already specified the execution place
(CPUPlace/CUDAPlace) in the begining, for flexibility the profiler
(CPUPlace/CUDAPlace) in the begin
n
ing, for flexibility the profiler
would not inherit this place.
sorted_key (string) : If None, the profiling results will be printed
in the order of first end time of events. Otherwise, the profiling
...
...
python/paddle/fluid/tests/unittests/dist_mnist.py
0 → 100644
浏览文件 @
68b22140
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
argparse
import
time
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
os
import
signal
from
functools
import
reduce
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
DTYPE
=
"float32"
paddle
.
dataset
.
mnist
.
fetch
()
# Fix seed for test
fluid
.
default_startup_program
().
random_seed
=
1
fluid
.
default_main_program
().
random_seed
=
1
def
cnn_model
(
data
):
conv_pool_1
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
data
,
filter_size
=
5
,
num_filters
=
20
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
()))
conv_pool_2
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
num_filters
=
50
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
()))
SIZE
=
10
input_shape
=
conv_pool_2
.
shape
param_shape
=
[
reduce
(
lambda
a
,
b
:
a
*
b
,
input_shape
[
1
:],
1
)]
+
[
SIZE
]
scale
=
(
2.0
/
(
param_shape
[
0
]
**
2
*
SIZE
))
**
0.5
predict
=
fluid
.
layers
.
fc
(
input
=
conv_pool_2
,
size
=
SIZE
,
act
=
"softmax"
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
scale
,
seed
=
1
)))
return
predict
class
TestDistMnist2x2
(
TestDistRunnerBase
):
def
get_model
(
self
,
batch_size
=
2
):
# Input data
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
DTYPE
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
# Train program
predict
=
cnn_model
(
images
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
# Evaluator
batch_size_tensor
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
batch_acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
,
total
=
batch_size_tensor
)
inference_program
=
fluid
.
default_main_program
().
clone
()
# Optimization
opt
=
fluid
.
optimizer
.
AdamOptimizer
(
learning_rate
=
0.001
,
beta1
=
0.9
,
beta2
=
0.999
)
# Reader
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
batch_size
)
opt
.
minimize
(
avg_cost
)
return
inference_program
,
avg_cost
,
train_reader
,
test_reader
,
batch_acc
,
predict
if
__name__
==
"__main__"
:
runtime_main
(
TestDistMnist2x2
)
python/paddle/fluid/tests/unittests/dist_se_resnext.py
浏览文件 @
68b22140
...
...
@@ -27,6 +27,7 @@ from multiprocessing import Process
import
os
import
sys
import
signal
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
# Fix seed for test
fluid
.
default_startup_program
().
random_seed
=
1
...
...
@@ -196,161 +197,52 @@ class SE_ResNeXt():
return
scale
def
get_model
(
batch_size
):
# Input data
image
=
fluid
.
layers
.
data
(
name
=
"data"
,
shape
=
[
3
,
224
,
224
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
"int64"
,
shape
=
[
1
],
dtype
=
'int64'
)
class
DistSeResneXt2x2
(
TestDistRunnerBase
):
def
get_model
(
self
,
batch_size
=
2
):
# Input data
image
=
fluid
.
layers
.
data
(
name
=
"data"
,
shape
=
[
3
,
224
,
224
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
"int64"
,
shape
=
[
1
],
dtype
=
'int64'
)
# Train program
model
=
SE_ResNeXt
(
layers
=
50
)
out
=
model
.
net
(
input
=
image
,
class_dim
=
102
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
# Train program
model
=
SE_ResNeXt
(
layers
=
50
)
out
=
model
.
net
(
input
=
image
,
class_dim
=
102
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
# Evaluator
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
# Evaluator
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
# Optimization
total_images
=
6149
# flowers
epochs
=
[
30
,
60
,
90
]
step
=
int
(
total_images
/
batch_size
+
1
)
# Optimization
total_images
=
6149
# flowers
epochs
=
[
30
,
60
,
90
]
step
=
int
(
total_images
/
batch_size
+
1
)
bd
=
[
step
*
e
for
e
in
epochs
]
base_lr
=
0.1
lr
=
[]
lr
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
bd
=
[
step
*
e
for
e
in
epochs
]
base_lr
=
0.1
lr
=
[]
lr
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
optimizer
=
fluid
.
optimizer
.
Momentum
(
# FIXME(typhoonzero): add back LR decay once ParallelExecutor fixed.
#learning_rate=fluid.layers.piecewise_decay(
# boundaries=bd, values=lr),
learning_rate
=
base_lr
,
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
optimizer
.
minimize
(
avg_cost
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
# FIXME(typhoonzero): add back LR decay once ParallelExecutor fixed.
#learning_rate=fluid.layers.piecewise_decay(
# boundaries=bd, values=lr),
learning_rate
=
base_lr
,
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
optimizer
.
minimize
(
avg_cost
)
# Reader
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
flowers
.
train
(),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
flowers
.
test
(
use_xmap
=
False
),
batch_size
=
batch_size
)
# Reader
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
flowers
.
train
(),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
flowers
.
test
(
use_xmap
=
False
),
batch_size
=
batch_size
)
return
test_program
,
avg_cost
,
train_reader
,
test_reader
,
acc_top1
,
out
def
get_transpiler
(
trainer_id
,
main_program
,
pserver_endpoints
,
trainers
):
t
=
fluid
.
DistributeTranspiler
()
t
.
transpile
(
trainer_id
=
trainer_id
,
program
=
main_program
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
)
return
t
class
DistSeResneXt2x2
:
def
run_pserver
(
self
,
pserver_endpoints
,
trainers
,
current_endpoint
,
trainer_id
):
get_model
(
batch_size
=
2
)
t
=
get_transpiler
(
trainer_id
,
fluid
.
default_main_program
(),
pserver_endpoints
,
trainers
)
pserver_prog
=
t
.
get_pserver_program
(
current_endpoint
)
startup_prog
=
t
.
get_startup_program
(
current_endpoint
,
pserver_prog
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
exe
.
run
(
pserver_prog
)
def
_wait_ps_ready
(
self
,
pid
):
retry_times
=
20
while
True
:
assert
retry_times
>=
0
,
"wait ps ready failed"
time
.
sleep
(
3
)
print
(
"waiting ps ready: "
,
pid
)
try
:
# the listen_and_serv_op would touch a file which contains the listen port
# on the /tmp directory until it was ready to process all the RPC call.
os
.
stat
(
"/tmp/paddle.%d.port"
%
pid
)
return
except
os
.
error
:
retry_times
-=
1
def
run_trainer
(
self
,
place
,
endpoints
,
trainer_id
,
trainers
,
is_dist
=
True
):
test_program
,
avg_cost
,
train_reader
,
test_reader
,
batch_acc
,
predict
=
get_model
(
batch_size
=
2
)
if
is_dist
:
t
=
get_transpiler
(
trainer_id
,
fluid
.
default_main_program
(),
endpoints
,
trainers
)
trainer_prog
=
t
.
get_trainer_program
()
else
:
trainer_prog
=
fluid
.
default_main_program
()
startup_exe
=
fluid
.
Executor
(
place
)
startup_exe
.
run
(
fluid
.
default_startup_program
())
strategy
=
fluid
.
ExecutionStrategy
()
strategy
.
num_threads
=
1
strategy
.
allow_op_delay
=
False
exe
=
fluid
.
ParallelExecutor
(
True
,
loss_name
=
avg_cost
.
name
,
exec_strategy
=
strategy
)
feed_var_list
=
[
var
for
var
in
trainer_prog
.
global_block
().
vars
.
values
()
if
var
.
is_data
]
feeder
=
fluid
.
DataFeeder
(
feed_var_list
,
place
)
reader_generator
=
test_reader
()
data
=
next
(
reader_generator
)
first_loss
,
=
exe
.
run
(
fetch_list
=
[
avg_cost
.
name
],
feed
=
feeder
.
feed
(
data
))
print
(
first_loss
)
for
i
in
six
.
moves
.
xrange
(
5
):
data
=
next
(
reader_generator
)
loss
,
=
exe
.
run
(
fetch_list
=
[
avg_cost
.
name
],
feed
=
feeder
.
feed
(
data
))
data
=
next
(
reader_generator
)
last_loss
,
=
exe
.
run
(
fetch_list
=
[
avg_cost
.
name
],
feed
=
feeder
.
feed
(
data
))
print
(
last_loss
)
def
main
(
role
=
"pserver"
,
endpoints
=
"127.0.0.1:9123"
,
trainer_id
=
0
,
current_endpoint
=
"127.0.0.1:9123"
,
trainers
=
1
,
is_dist
=
True
):
model
=
DistSeResneXt2x2
()
if
role
==
"pserver"
:
model
.
run_pserver
(
endpoints
,
trainers
,
current_endpoint
,
trainer_id
)
else
:
p
=
fluid
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
model
.
run_trainer
(
p
,
endpoints
,
trainer_id
,
trainers
,
is_dist
)
return
test_program
,
avg_cost
,
train_reader
,
test_reader
,
acc_top1
,
out
if
__name__
==
"__main__"
:
if
len
(
sys
.
argv
)
!=
7
:
print
(
"Usage: python dist_se_resnext.py [pserver/trainer] [endpoints] [trainer_id] [current_endpoint] [trainers] [is_dist]"
)
role
=
sys
.
argv
[
1
]
endpoints
=
sys
.
argv
[
2
]
trainer_id
=
int
(
sys
.
argv
[
3
])
current_endpoint
=
sys
.
argv
[
4
]
trainers
=
int
(
sys
.
argv
[
5
])
is_dist
=
True
if
sys
.
argv
[
6
]
==
"TRUE"
else
False
main
(
role
=
role
,
endpoints
=
endpoints
,
trainer_id
=
trainer_id
,
current_endpoint
=
current_endpoint
,
trainers
=
trainers
,
is_dist
=
is_dist
)
runtime_main
(
DistSeResneXt2x2
)
python/paddle/fluid/tests/unittests/dist_word2vec.py
0 → 100644
浏览文件 @
68b22140
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
argparse
import
time
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
os
import
signal
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
IS_SPARSE
=
True
EMBED_SIZE
=
32
HIDDEN_SIZE
=
256
N
=
5
# Fix seed for test
fluid
.
default_startup_program
().
random_seed
=
1
fluid
.
default_main_program
().
random_seed
=
1
class
TestDistWord2vec2x2
(
TestDistRunnerBase
):
def
get_model
(
self
,
batch_size
=
2
):
BATCH_SIZE
=
batch_size
def
__network__
(
words
):
embed_first
=
fluid
.
layers
.
embedding
(
input
=
words
[
0
],
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'shared_w'
,
initializer
=
fluid
.
initializer
.
Constant
()))
embed_second
=
fluid
.
layers
.
embedding
(
input
=
words
[
1
],
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'shared_w'
,
initializer
=
fluid
.
initializer
.
Constant
()))
embed_third
=
fluid
.
layers
.
embedding
(
input
=
words
[
2
],
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'shared_w'
,
initializer
=
fluid
.
initializer
.
Constant
()))
embed_forth
=
fluid
.
layers
.
embedding
(
input
=
words
[
3
],
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'shared_w'
,
initializer
=
fluid
.
initializer
.
Constant
()))
concat_embed
=
fluid
.
layers
.
concat
(
input
=
[
embed_first
,
embed_second
,
embed_third
,
embed_forth
],
axis
=
1
)
hidden1
=
fluid
.
layers
.
fc
(
input
=
concat_embed
,
size
=
HIDDEN_SIZE
,
act
=
'sigmoid'
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
()))
predict_word
=
fluid
.
layers
.
fc
(
input
=
hidden1
,
size
=
dict_size
,
act
=
'softmax'
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
()))
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict_word
,
label
=
words
[
4
])
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
return
avg_cost
,
predict_word
word_dict
=
paddle
.
dataset
.
imikolov
.
build_dict
()
dict_size
=
len
(
word_dict
)
first_word
=
fluid
.
layers
.
data
(
name
=
'firstw'
,
shape
=
[
1
],
dtype
=
'int64'
)
second_word
=
fluid
.
layers
.
data
(
name
=
'secondw'
,
shape
=
[
1
],
dtype
=
'int64'
)
third_word
=
fluid
.
layers
.
data
(
name
=
'thirdw'
,
shape
=
[
1
],
dtype
=
'int64'
)
forth_word
=
fluid
.
layers
.
data
(
name
=
'forthw'
,
shape
=
[
1
],
dtype
=
'int64'
)
next_word
=
fluid
.
layers
.
data
(
name
=
'nextw'
,
shape
=
[
1
],
dtype
=
'int64'
)
avg_cost
,
predict_word
=
__network__
(
[
first_word
,
second_word
,
third_word
,
forth_word
,
next_word
])
inference_program
=
paddle
.
fluid
.
default_main_program
().
clone
()
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
sgd_optimizer
.
minimize
(
avg_cost
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
imikolov
.
train
(
word_dict
,
N
),
BATCH_SIZE
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
imikolov
.
test
(
word_dict
,
N
),
BATCH_SIZE
)
return
inference_program
,
avg_cost
,
train_reader
,
test_reader
,
None
,
predict_word
if
__name__
==
"__main__"
:
runtime_main
(
TestDistWord2vec2x2
)
python/paddle/fluid/tests/unittests/test_dist_base.py
浏览文件 @
68b22140
...
...
@@ -19,6 +19,109 @@ import sys
import
six
import
signal
import
subprocess
import
six
class
TestDistRunnerBase
(
object
):
def
get_model
(
self
,
batch_size
=
2
):
raise
NotImplementedError
(
"get_model should be implemented by child classes."
)
def
get_transpiler
(
self
,
trainer_id
,
main_program
,
pserver_endpoints
,
trainers
):
# NOTE: import fluid until runtime, or else forking processes will cause error.
import
paddle
import
paddle.fluid
as
fluid
t
=
fluid
.
DistributeTranspiler
()
t
.
transpile
(
trainer_id
=
trainer_id
,
program
=
main_program
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
)
return
t
def
run_pserver
(
self
,
pserver_endpoints
,
trainers
,
current_endpoint
,
trainer_id
):
import
paddle
import
paddle.fluid
as
fluid
self
.
get_model
(
batch_size
=
2
)
t
=
self
.
get_transpiler
(
trainer_id
,
fluid
.
default_main_program
(),
pserver_endpoints
,
trainers
)
pserver_prog
=
t
.
get_pserver_program
(
current_endpoint
)
startup_prog
=
t
.
get_startup_program
(
current_endpoint
,
pserver_prog
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
exe
.
run
(
pserver_prog
)
def
run_trainer
(
self
,
place
,
endpoints
,
trainer_id
,
trainers
,
is_dist
=
True
):
import
paddle
import
paddle.fluid
as
fluid
test_program
,
avg_cost
,
train_reader
,
test_reader
,
batch_acc
,
predict
=
\
self
.
get_model
(
batch_size
=
2
)
if
is_dist
:
t
=
self
.
get_transpiler
(
trainer_id
,
fluid
.
default_main_program
(),
endpoints
,
trainers
)
trainer_prog
=
t
.
get_trainer_program
()
else
:
trainer_prog
=
fluid
.
default_main_program
()
startup_exe
=
fluid
.
Executor
(
place
)
startup_exe
.
run
(
fluid
.
default_startup_program
())
strategy
=
fluid
.
ExecutionStrategy
()
strategy
.
num_threads
=
1
strategy
.
allow_op_delay
=
False
exe
=
fluid
.
ParallelExecutor
(
True
,
loss_name
=
avg_cost
.
name
,
exec_strategy
=
strategy
)
feed_var_list
=
[
var
for
var
in
trainer_prog
.
global_block
().
vars
.
values
()
if
var
.
is_data
]
feeder
=
fluid
.
DataFeeder
(
feed_var_list
,
place
)
reader_generator
=
test_reader
()
data
=
next
(
reader_generator
)
first_loss
,
=
exe
.
run
(
fetch_list
=
[
avg_cost
.
name
],
feed
=
feeder
.
feed
(
data
))
print
(
first_loss
)
for
i
in
six
.
moves
.
xrange
(
5
):
data
=
next
(
reader_generator
)
loss
,
=
exe
.
run
(
fetch_list
=
[
avg_cost
.
name
],
feed
=
feeder
.
feed
(
data
))
data
=
next
(
reader_generator
)
last_loss
,
=
exe
.
run
(
fetch_list
=
[
avg_cost
.
name
],
feed
=
feeder
.
feed
(
data
))
print
(
last_loss
)
def
runtime_main
(
test_class
):
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
if
len
(
sys
.
argv
)
!=
7
:
print
(
"Usage: python dist_se_resnext.py [pserver/trainer] [endpoints] [trainer_id] [current_endpoint] [trainers] [is_dist]"
)
role
=
sys
.
argv
[
1
]
endpoints
=
sys
.
argv
[
2
]
trainer_id
=
int
(
sys
.
argv
[
3
])
current_endpoint
=
sys
.
argv
[
4
]
trainers
=
int
(
sys
.
argv
[
5
])
is_dist
=
True
if
sys
.
argv
[
6
]
==
"TRUE"
else
False
model
=
test_class
()
if
role
==
"pserver"
:
model
.
run_pserver
(
endpoints
,
trainers
,
current_endpoint
,
trainer_id
)
else
:
p
=
fluid
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
model
.
run_trainer
(
p
,
endpoints
,
trainer_id
,
trainers
,
is_dist
)
import
paddle.fluid.compat
as
cpt
...
...
@@ -130,12 +233,10 @@ class TestDistBase(unittest.TestCase):
local_first_loss
=
eval
(
local_lines
[
0
])[
0
]
local_last_loss
=
eval
(
local_lines
[
1
])[
0
]
self
.
assertAlmostEqual
(
local_first_loss
,
dist_first_loss
,
delta
=
delta
)
self
.
assertAlmostEqual
(
local_last_loss
,
dist_last_loss
,
delta
=
delta
)
# check tr0_out
# FIXME: ensure the server process is killed
# replace with ps0.terminate()
# FIXME: use terminate() instead of sigkill.
os
.
kill
(
ps0
.
pid
,
signal
.
SIGKILL
)
os
.
kill
(
ps1
.
pid
,
signal
.
SIGKILL
)
FNULL
.
close
()
self
.
assertAlmostEqual
(
local_first_loss
,
dist_first_loss
,
delta
=
delta
)
self
.
assertAlmostEqual
(
local_last_loss
,
dist_last_loss
,
delta
=
delta
)
python/paddle/fluid/tests/unittests/test_dist_mnist.py
浏览文件 @
68b22140
...
...
@@ -11,200 +11,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
argparse
import
time
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
os
import
signal
from
functools
import
reduce
SEED
=
1
DTYPE
=
"float32"
paddle
.
dataset
.
mnist
.
fetch
()
# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED
def
cnn_model
(
data
):
conv_pool_1
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
data
,
filter_size
=
5
,
num_filters
=
20
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
conv_pool_2
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
num_filters
=
50
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
# TODO(dzhwinter) : refine the initializer and random seed settting
SIZE
=
10
input_shape
=
conv_pool_2
.
shape
param_shape
=
[
reduce
(
lambda
a
,
b
:
a
*
b
,
input_shape
[
1
:],
1
)]
+
[
SIZE
]
scale
=
(
2.0
/
(
param_shape
[
0
]
**
2
*
SIZE
))
**
0.5
predict
=
fluid
.
layers
.
fc
(
input
=
conv_pool_2
,
size
=
SIZE
,
act
=
"softmax"
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
scale
)))
return
predict
def
get_model
(
batch_size
):
# Input data
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
DTYPE
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
# Train program
predict
=
cnn_model
(
images
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
# Evaluator
batch_size_tensor
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
batch_acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
,
total
=
batch_size_tensor
)
inference_program
=
fluid
.
default_main_program
().
clone
()
# Optimization
opt
=
fluid
.
optimizer
.
AdamOptimizer
(
learning_rate
=
0.001
,
beta1
=
0.9
,
beta2
=
0.999
)
# Reader
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
batch_size
)
opt
.
minimize
(
avg_cost
)
return
inference_program
,
avg_cost
,
train_reader
,
test_reader
,
batch_acc
,
predict
def
get_transpiler
(
trainer_id
,
main_program
,
pserver_endpoints
,
trainers
):
t
=
fluid
.
DistributeTranspiler
()
t
.
transpile
(
trainer_id
=
trainer_id
,
program
=
main_program
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
)
return
t
def
run_pserver
(
pserver_endpoints
,
trainers
,
current_endpoint
):
get_model
(
batch_size
=
20
)
t
=
get_transpiler
(
0
,
fluid
.
default_main_program
(),
pserver_endpoints
,
trainers
)
pserver_prog
=
t
.
get_pserver_program
(
current_endpoint
)
startup_prog
=
t
.
get_startup_program
(
current_endpoint
,
pserver_prog
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
exe
.
run
(
pserver_prog
)
class
TestDistMnist
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
_trainers
=
1
self
.
_pservers
=
1
self
.
_ps_endpoints
=
"127.0.0.1:9123"
def
start_pserver
(
self
,
endpoint
):
p
=
Process
(
target
=
run_pserver
,
args
=
(
self
.
_ps_endpoints
,
self
.
_trainers
,
endpoint
))
p
.
start
()
return
p
.
pid
def
_wait_ps_ready
(
self
,
pid
):
retry_times
=
5
while
True
:
assert
retry_times
>=
0
,
"wait ps ready failed"
time
.
sleep
(
1
)
try
:
# the listen_and_serv_op would touch a file which contains the listen port
# on the /tmp directory until it was ready to process all the RPC call.
os
.
stat
(
"/tmp/paddle.%d.port"
%
pid
)
return
except
os
.
error
:
retry_times
-=
1
def
stop_pserver
(
self
,
pid
):
os
.
kill
(
pid
,
signal
.
SIGTERM
)
def
test_with_place
(
self
):
p
=
fluid
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
pserver_pid
=
self
.
start_pserver
(
self
.
_ps_endpoints
)
self
.
_wait_ps_ready
(
pserver_pid
)
self
.
run_trainer
(
p
,
0
)
self
.
stop_pserver
(
pserver_pid
)
def
run_trainer
(
self
,
place
,
trainer_id
):
test_program
,
avg_cost
,
train_reader
,
test_reader
,
batch_acc
,
predict
=
get_model
(
batch_size
=
20
)
t
=
get_transpiler
(
trainer_id
,
fluid
.
default_main_program
(),
self
.
_ps_endpoints
,
self
.
_trainers
)
trainer_prog
=
t
.
get_trainer_program
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
feed_var_list
=
[
var
for
var
in
trainer_prog
.
global_block
().
vars
.
values
()
if
var
.
is_data
]
from
test_dist_base
import
TestDistBase
feeder
=
fluid
.
DataFeeder
(
feed_var_list
,
place
)
for
pass_id
in
range
(
10
):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
exe
.
run
(
trainer_prog
,
feed
=
feeder
.
feed
(
data
))
if
(
batch_id
+
1
)
%
10
==
0
:
acc_set
=
[]
avg_loss_set
=
[]
for
test_data
in
test_reader
():
acc_np
,
avg_loss_np
=
exe
.
run
(
program
=
test_program
,
feed
=
feeder
.
feed
(
test_data
),
fetch_list
=
[
batch_acc
,
avg_cost
])
acc_set
.
append
(
float
(
acc_np
))
avg_loss_set
.
append
(
float
(
avg_loss_np
))
# get test acc and loss
acc_val
=
np
.
array
(
acc_set
).
mean
()
avg_loss_val
=
np
.
array
(
avg_loss_set
).
mean
()
if
float
(
acc_val
)
>
0.8
:
# Smaller value to increase CI speed
return
else
:
print
(
'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'
.
format
(
pass_id
,
batch_id
+
1
,
float
(
avg_loss_val
),
float
(
acc_val
)))
if
math
.
isnan
(
float
(
avg_loss_val
)):
assert
(
"got Nan loss, training failed."
)
class
TestDistSeResneXt2x2
(
TestDistBase
):
def
test_se_resnext
(
self
):
self
.
check_with_place
(
"dist_mnist.py"
,
delta
=
1e-7
)
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
浏览文件 @
68b22140
...
...
@@ -17,7 +17,7 @@ from test_dist_base import TestDistBase
class
TestDistSeResneXt2x2
(
TestDistBase
):
def
test_se_resnext
(
self
):
self
.
check_with_place
(
"dist_se_resnext.py"
)
self
.
check_with_place
(
"dist_se_resnext.py"
,
delta
=
1e-7
)
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/test_dist_word2vec.py
浏览文件 @
68b22140
...
...
@@ -11,192 +11,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
argparse
import
time
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
os
import
signal
IS_SPARSE
=
True
EMBED_SIZE
=
32
HIDDEN_SIZE
=
256
N
=
5
BATCH_SIZE
=
32
ExecutionStrategy
=
core
.
ParallelExecutor
.
ExecutionStrategy
def
get_model
():
def
__network__
(
words
):
embed_first
=
fluid
.
layers
.
embedding
(
input
=
words
[
0
],
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
'shared_w'
)
embed_second
=
fluid
.
layers
.
embedding
(
input
=
words
[
1
],
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
'shared_w'
)
embed_third
=
fluid
.
layers
.
embedding
(
input
=
words
[
2
],
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
'shared_w'
)
embed_forth
=
fluid
.
layers
.
embedding
(
input
=
words
[
3
],
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
'shared_w'
)
concat_embed
=
fluid
.
layers
.
concat
(
input
=
[
embed_first
,
embed_second
,
embed_third
,
embed_forth
],
axis
=
1
)
hidden1
=
fluid
.
layers
.
fc
(
input
=
concat_embed
,
size
=
HIDDEN_SIZE
,
act
=
'sigmoid'
)
predict_word
=
fluid
.
layers
.
fc
(
input
=
hidden1
,
size
=
dict_size
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict_word
,
label
=
words
[
4
])
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
return
avg_cost
,
predict_word
word_dict
=
paddle
.
dataset
.
imikolov
.
build_dict
()
dict_size
=
len
(
word_dict
)
first_word
=
fluid
.
layers
.
data
(
name
=
'firstw'
,
shape
=
[
1
],
dtype
=
'int64'
)
second_word
=
fluid
.
layers
.
data
(
name
=
'secondw'
,
shape
=
[
1
],
dtype
=
'int64'
)
third_word
=
fluid
.
layers
.
data
(
name
=
'thirdw'
,
shape
=
[
1
],
dtype
=
'int64'
)
forth_word
=
fluid
.
layers
.
data
(
name
=
'forthw'
,
shape
=
[
1
],
dtype
=
'int64'
)
next_word
=
fluid
.
layers
.
data
(
name
=
'nextw'
,
shape
=
[
1
],
dtype
=
'int64'
)
avg_cost
,
predict_word
=
__network__
(
[
first_word
,
second_word
,
third_word
,
forth_word
,
next_word
])
inference_program
=
paddle
.
fluid
.
default_main_program
().
clone
()
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
sgd_optimizer
.
minimize
(
avg_cost
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
imikolov
.
train
(
word_dict
,
N
),
BATCH_SIZE
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
imikolov
.
test
(
word_dict
,
N
),
BATCH_SIZE
)
return
inference_program
,
avg_cost
,
train_reader
,
test_reader
,
predict_word
def
get_transpiler
(
trainer_id
,
main_program
,
pserver_endpoints
,
trainers
):
t
=
fluid
.
DistributeTranspiler
()
t
.
transpile
(
trainer_id
=
trainer_id
,
program
=
main_program
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
)
return
t
def
run_pserver
(
pserver_endpoints
,
trainers
,
current_endpoint
):
get_model
()
t
=
get_transpiler
(
0
,
fluid
.
default_main_program
(),
pserver_endpoints
,
trainers
)
pserver_prog
=
t
.
get_pserver_program
(
current_endpoint
)
startup_prog
=
t
.
get_startup_program
(
current_endpoint
,
pserver_prog
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
exe
.
run
(
pserver_prog
)
class
TestDistMnist
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
_trainers
=
1
self
.
_pservers
=
1
self
.
_ps_endpoints
=
"127.0.0.1:9123"
def
start_pserver
(
self
,
endpoint
):
p
=
Process
(
target
=
run_pserver
,
args
=
(
self
.
_ps_endpoints
,
self
.
_trainers
,
endpoint
))
p
.
start
()
return
p
.
pid
def
_wait_ps_ready
(
self
,
pid
):
retry_times
=
5
while
True
:
assert
retry_times
>=
0
,
"wait ps ready failed"
time
.
sleep
(
1
)
try
:
# the listen_and_serv_op would touch a file which contains the listen port
# on the /tmp directory until it was ready to process all the RPC call.
os
.
stat
(
"/tmp/paddle.%d.port"
%
pid
)
return
except
os
.
error
:
retry_times
-=
1
def
stop_pserver
(
self
,
pid
):
os
.
kill
(
pid
,
signal
.
SIGKILL
)
def
test_with_place
(
self
):
p
=
fluid
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
pserver_pid
=
self
.
start_pserver
(
self
.
_ps_endpoints
)
self
.
_wait_ps_ready
(
pserver_pid
)
self
.
run_trainer
(
p
,
0
)
self
.
stop_pserver
(
pserver_pid
)
def
run_trainer
(
self
,
place
,
trainer_id
):
test_program
,
avg_cost
,
train_reader
,
test_reader
,
predict
=
get_model
()
t
=
get_transpiler
(
trainer_id
,
fluid
.
default_main_program
(),
self
.
_ps_endpoints
,
self
.
_trainers
)
trainer_prog
=
t
.
get_trainer_program
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
use_gpu
=
True
if
core
.
is_compiled_with_cuda
()
else
False
exec_strategy
=
ExecutionStrategy
()
exec_strategy
.
use_cuda
=
use_gpu
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
use_gpu
,
main_program
=
trainer_prog
,
loss_name
=
avg_cost
.
name
,
exec_strategy
=
exec_strategy
)
from
test_dist_base
import
TestDistBase
feed_var_list
=
[
var
for
var
in
trainer_prog
.
global_block
().
vars
.
values
()
if
var
.
is_data
]
feeder
=
fluid
.
DataFeeder
(
feed_var_list
,
place
)
for
pass_id
in
range
(
10
):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
avg_loss_np
=
train_exe
.
run
(
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
.
name
])
loss
=
np
.
array
(
avg_loss_np
).
mean
()
if
float
(
loss
)
<
5.0
:
return
if
math
.
isnan
(
loss
):
assert
(
"Got Nan loss, training failed"
)
class
TestDistSeResneXt2x2
(
TestDistBase
):
def
test_se_resnext
(
self
):
self
.
check_with_place
(
"dist_word2vec.py"
,
delta
=
1e-7
)
if
__name__
==
"__main__"
:
...
...
python/paddle/v2/dataset/wmt14.py
浏览文件 @
68b22140
...
...
@@ -15,7 +15,7 @@
WMT14 dataset.
The original WMT14 dataset is too large and a small set of data for set is
provided. This module will download dataset from
http://paddle
paddle.cdn.bcebos.com/demo/wmt_shrinked_data
/wmt14.tgz and
http://paddle
models.bj.bcebos.com/wmt
/wmt14.tgz and
parse training set and test set into paddle reader creators.
"""
...
...
@@ -37,8 +37,7 @@ URL_DEV_TEST = ('http://www-lium.univ-lemans.fr/~schwenk/'
MD5_DEV_TEST
=
'7d7897317ddd8ba0ae5c5fa7248d3ff5'
# this is a small set of data for test. The original data is too large and
# will be add later.
URL_TRAIN
=
(
'http://paddlepaddle.cdn.bcebos.com/demo/'
'wmt_shrinked_data/wmt14.tgz'
)
URL_TRAIN
=
(
'http://paddlemodels.bj.bcebos.com/wmt/wmt14.tgz'
)
MD5_TRAIN
=
'0791583d57d5beb693b9414c5b36798c'
# BLEU of this trained model is 26.92
URL_MODEL
=
'http://paddlemodels.bj.bcebos.com/wmt%2Fwmt14.tgz'
...
...
tools/diff_api.py
浏览文件 @
68b22140
...
...
@@ -20,9 +20,7 @@ for each_diff in result:
if
each_diff
[
0
]
in
[
'-'
,
'?'
]:
# delete or change API is not allowed
error
=
True
elif
each_diff
[
0
]
==
'+'
:
# only new layers is allowed.
if
not
each_diff
.
startswith
(
'+ paddle.fluid.layers.'
):
error
=
True
error
=
True
if
each_diff
[
0
]
!=
' '
:
print
(
each_diff
)
...
...
tools/manylinux1/Dockerfile.x64
浏览文件 @
68b22140
...
...
@@ -40,11 +40,13 @@ RUN wget -O /root/requirements.txt https://raw.githubusercontent.com/PaddlePaddl
RUN LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs4/lib:${LD_LIBRARY_PATH} /opt/python/cp27-cp27mu/bin/pip install -r /root/requirements.txt && \
LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs2/lib:${LD_LIBRARY_PATH} /opt/python/cp27-cp27m/bin/pip install -r /root/requirements.txt && \
LD_LIBRARY_PATH=/opt/_internal/cpython-3.5.1/lib/:${LD_LIBRARY_PATH} /opt/_internal/cpython-3.5.1/bin/pip3 install -r /root/requirements.txt && \
go get github.com/Masterminds/glide && \
rm -rf /root/requirements.txt
RUN LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs4/lib:${LD_LIBRARY_PATH} /opt/python/cp27-cp27mu/bin/pip install pre-commit 'ipython==5.3.0' opencv-python && \
LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs2/lib:${LD_LIBRARY_PATH} /opt/python/cp27-cp27m/bin/pip install pre-commit 'ipython==5.3.0' opencv-python
LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs2/lib:${LD_LIBRARY_PATH} /opt/python/cp27-cp27m/bin/pip install pre-commit 'ipython==5.3.0' opencv-python && \
LD_LIBRARY_PATH=/opt/_internal/cpython-3.5.1/lib/:${LD_LIBRARY_PATH} /opt/_internal/cpython-3.5.1/bin/pip3 install pre-commit 'ipython==5.3.0' opencv-python
RUN wget -O /opt/swig-2.0.12.tar.gz https://cytranet.dl.sourceforge.net/project/swig/swig/swig-2.0.12/swig-2.0.12.tar.gz && \
cd /opt && tar xzf swig-2.0.12.tar.gz && cd /opt/swig-2.0.12 && ./configure && make && make install && cd /opt && rm swig-2.0.12.tar.gz
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录