Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
6815c8ab
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6815c8ab
编写于
8月 15, 2022
作者:
Z
zhangyikun02
提交者:
GitHub
8月 15, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add mish and mish_grad for XPU, test=kunlun (#45098)
上级
3649099f
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
290 addition
and
177 deletion
+290
-177
cmake/external/xpu.cmake
cmake/external/xpu.cmake
+2
-2
paddle/fluid/operators/activation_op_xpu.cc
paddle/fluid/operators/activation_op_xpu.cc
+44
-0
paddle/fluid/platform/device/xpu/xpu2_op_list.h
paddle/fluid/platform/device/xpu/xpu2_op_list.h
+8
-0
python/paddle/fluid/tests/unittests/xpu/test_activation_op_xpu.py
...addle/fluid/tests/unittests/xpu/test_activation_op_xpu.py
+52
-0
python/paddle/fluid/tests/unittests/xpu/test_deformable_conv_op_xpu.py
.../fluid/tests/unittests/xpu/test_deformable_conv_op_xpu.py
+184
-175
未找到文件。
cmake/external/xpu.cmake
浏览文件 @
6815c8ab
...
@@ -10,7 +10,7 @@ set(XPU_RT_LIB_NAME "libxpurt.so")
...
@@ -10,7 +10,7 @@ set(XPU_RT_LIB_NAME "libxpurt.so")
if
(
NOT DEFINED XPU_BASE_URL
)
if
(
NOT DEFINED XPU_BASE_URL
)
set
(
XPU_BASE_URL_WITHOUT_DATE
set
(
XPU_BASE_URL_WITHOUT_DATE
"https://baidu-kunlun-product.cdn.bcebos.com/KL-SDK/klsdk-dev"
)
"https://baidu-kunlun-product.cdn.bcebos.com/KL-SDK/klsdk-dev"
)
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/2022081
0
"
)
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/2022081
2
"
)
else
()
else
()
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL
}
"
)
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL
}
"
)
endif
()
endif
()
...
@@ -19,7 +19,7 @@ endif()
...
@@ -19,7 +19,7 @@ endif()
if
(
NOT DEFINED XPU_XDNN_BASE_URL
)
if
(
NOT DEFINED XPU_XDNN_BASE_URL
)
set
(
XPU_XDNN_BASE_URL_WITHOUT_DATE
set
(
XPU_XDNN_BASE_URL_WITHOUT_DATE
"https://klx-sdk-release-public.su.bcebos.com/xdnn/dev"
)
"https://klx-sdk-release-public.su.bcebos.com/xdnn/dev"
)
set
(
XPU_XDNN_BASE_URL
"
${
XPU_XDNN_BASE_URL_WITHOUT_DATE
}
/2022081
0
"
)
set
(
XPU_XDNN_BASE_URL
"
${
XPU_XDNN_BASE_URL_WITHOUT_DATE
}
/2022081
2
"
)
else
()
else
()
set
(
XPU_XDNN_BASE_URL
"
${
XPU_XDNN_BASE_URL
}
"
)
set
(
XPU_XDNN_BASE_URL
"
${
XPU_XDNN_BASE_URL
}
"
)
endif
()
endif
()
...
...
paddle/fluid/operators/activation_op_xpu.cc
浏览文件 @
6815c8ab
...
@@ -404,6 +404,49 @@ struct XPULogGradFunctor : public BaseActivationFunctor<T> {
...
@@ -404,6 +404,49 @@ struct XPULogGradFunctor : public BaseActivationFunctor<T> {
}
}
};
};
template
<
typename
T
>
struct
XPUMishFunctor
:
public
BaseActivationFunctor
<
T
>
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
const
T
*
x_data
=
x
->
data
<
T
>
();
T
*
y_data
=
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
float
threshold
=
ctx
.
Attr
<
float
>
(
"threshold"
);
auto
xpu_context
=
ctx
.
device_context
<
paddle
::
platform
::
XPUDeviceContext
>
().
x_context
();
int
r
=
xpu
::
mish
(
xpu_context
,
x_data
,
y_data
,
x
->
numel
(),
threshold
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"mish"
);
}
};
template
<
typename
T
>
struct
XPUMishGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
dOut
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dX
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
y_grad
=
dOut
->
data
<
T
>
();
T
*
x_grad
=
dX
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
float
threshold
=
ctx
.
Attr
<
float
>
(
"threshold"
);
auto
xpu_context
=
ctx
.
device_context
<
paddle
::
platform
::
XPUDeviceContext
>
().
x_context
();
int
r
=
xpu
::
mish_grad
(
xpu_context
,
reinterpret_cast
<
const
float
*>
(
x_data
),
reinterpret_cast
<
const
float
*>
(
x_data
),
// mish_grad do not need y_data
reinterpret_cast
<
const
float
*>
(
y_grad
),
reinterpret_cast
<
float
*>
(
x_grad
),
dX
->
numel
(),
threshold
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"mish_grad"
);
}
};
template
<
typename
T
>
template
<
typename
T
>
struct
XPUPowFunctor
:
public
BaseActivationFunctor
<
T
>
{
struct
XPUPowFunctor
:
public
BaseActivationFunctor
<
T
>
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
...
@@ -589,6 +632,7 @@ REGISTER_ACTIVATION_XPU_KERNEL(hard_swish,
...
@@ -589,6 +632,7 @@ REGISTER_ACTIVATION_XPU_KERNEL(hard_swish,
REGISTER_ACTIVATION_XPU_KERNEL
(
leaky_relu
,
REGISTER_ACTIVATION_XPU_KERNEL
(
leaky_relu
,
XPULeakyReluFunctor
,
XPULeakyReluFunctor
,
XPULeakyReluGradFunctor
)
XPULeakyReluGradFunctor
)
REGISTER_ACTIVATION_XPU_KERNEL
(
mish
,
XPUMishFunctor
,
XPUMishGradFunctor
)
REGISTER_ACTIVATION_XPU_KERNEL
(
reciprocal
,
REGISTER_ACTIVATION_XPU_KERNEL
(
reciprocal
,
XPUReciprocalFunctor
,
XPUReciprocalFunctor
,
XPUReciprocalGradFunctor
)
XPUReciprocalGradFunctor
)
...
...
paddle/fluid/platform/device/xpu/xpu2_op_list.h
浏览文件 @
6815c8ab
...
@@ -111,6 +111,10 @@ XPUOpMap& get_kl2_ops() {
...
@@ -111,6 +111,10 @@ XPUOpMap& get_kl2_ops() {
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"conv2d_transpose"
,
{
"conv2d_transpose"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"deformable_conv_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"deformable_conv"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"depthwise_conv2d_grad"
,
{
"depthwise_conv2d_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"depthwise_conv2d"
,
{
"depthwise_conv2d"
,
...
@@ -342,6 +346,8 @@ XPUOpMap& get_kl2_ops() {
...
@@ -342,6 +346,8 @@ XPUOpMap& get_kl2_ops() {
{
"merged_momentum"
,
{
"merged_momentum"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"mish_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"mish"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"momentum"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"momentum"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"mul"
,
{
"mul"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
...
@@ -559,6 +565,8 @@ XPUOpMap& get_kl2_ops() {
...
@@ -559,6 +565,8 @@ XPUOpMap& get_kl2_ops() {
{
"update_loss_scaling"
,
{
"update_loss_scaling"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"uniform_random"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"unsqueeze2_grad"
,
{
"unsqueeze2_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP64
,
XPUPlace
()),
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP64
,
XPUPlace
()),
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
()),
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
()),
...
...
python/paddle/fluid/tests/unittests/xpu/test_activation_op_xpu.py
浏览文件 @
6815c8ab
...
@@ -1100,5 +1100,57 @@ def ref_thresholded_relu(x, threshold=1.0):
...
@@ -1100,5 +1100,57 @@ def ref_thresholded_relu(x, threshold=1.0):
return
out
return
out
class
XPUTestMishOP
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'mish'
self
.
use_dynamic_create_class
=
False
class
XPUTestMishBase
(
TestActivationOPBase
):
def
set_case
(
self
):
self
.
op_type
=
"mish"
self
.
dtype
=
self
.
in_type
self
.
init_config
()
threshold
=
np
.
random
.
uniform
(
0
,
1
)
out
=
ref_mish
(
self
.
x
,
threshold
)
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
outputs
=
{
'Out'
:
out
}
self
.
attrs
=
{
'use_xpu'
:
True
,
'threshold'
:
threshold
}
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
self
.
dtype
)
class
XPUTestMish2
(
XPUTestMishBase
):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
2
,
2
,
[
1024
,
8
]).
astype
(
self
.
dtype
)
class
XPUTestMish3
(
XPUTestMishBase
):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
2
,
2
,
[
4
,
512
,
15
,
15
]).
astype
(
self
.
dtype
)
class
XPUTestMish4
(
XPUTestMishBase
):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
2
,
2
,
[
4
,
256
,
22
,
22
]).
astype
(
self
.
dtype
)
support_types
=
get_xpu_op_support_types
(
'mish'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestMishOP
,
stype
)
def
ref_mish
(
x
,
threshold
=
20
):
sp
=
np
.
select
([
x
<=
threshold
,
x
>
threshold
],
[
np
.
log
(
1
+
np
.
exp
(
x
)),
x
])
out
=
x
*
np
.
tanh
(
sp
)
return
out
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_deformable_conv_op_xpu.py
浏览文件 @
6815c8ab
...
@@ -24,6 +24,7 @@ import paddle.fluid as fluid
...
@@ -24,6 +24,7 @@ import paddle.fluid as fluid
from
op_test_xpu
import
OpTest
,
XPUOpTest
from
op_test_xpu
import
OpTest
,
XPUOpTest
import
paddle
import
paddle
from
paddle.fluid
import
Program
,
program_guard
from
paddle.fluid
import
Program
,
program_guard
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
def
dmc_bilinear
(
data_im
,
height
,
width
,
h
,
w
):
def
dmc_bilinear
(
data_im
,
height
,
width
,
h
,
w
):
...
@@ -111,181 +112,189 @@ def dconv_im2col_gemm(input, offset, mask, filter, group, conv_param):
...
@@ -111,181 +112,189 @@ def dconv_im2col_gemm(input, offset, mask, filter, group, conv_param):
return
out
return
out
class
TestModulatedDeformableConvOp
(
XPUOpTest
):
class
XPUTestModulatedDeformableConvOp
(
XPUOpTestWrapper
):
def
setUp
(
self
):
def
__init__
(
self
):
self
.
op_type
=
"deformable_conv"
self
.
op_name
=
'deformable_conv'
self
.
dtype
=
np
.
float32
self
.
use_dynamic_create_class
=
False
self
.
init_group
()
self
.
init_dilation
()
class
TestModulatedDeformableConvOp
(
XPUOpTest
):
self
.
init_test_case
()
def
setUp
(
self
):
conv_param
=
{
self
.
op_type
=
"deformable_conv"
'stride'
:
self
.
stride
,
self
.
dtype
=
self
.
in_type
'pad'
:
self
.
pad
,
self
.
place
=
paddle
.
XPUPlace
(
0
)
'dilation'
:
self
.
dilations
self
.
init_group
()
}
self
.
init_dilation
()
self
.
init_test_case
()
input
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
)
offset
=
10
*
np
.
random
.
random
(
self
.
offset_size
).
astype
(
self
.
dtype
)
conv_param
=
{
mask
=
10
*
np
.
random
.
random
(
self
.
mask_size
).
astype
(
self
.
dtype
)
'stride'
:
self
.
stride
,
filter
=
np
.
random
.
random
(
self
.
filter_size
).
astype
(
self
.
dtype
)
'pad'
:
self
.
pad
,
output
=
dconv_im2col_gemm
(
input
,
offset
,
mask
,
filter
,
self
.
groups
,
'dilation'
:
self
.
dilations
conv_param
)
}
output
=
output
.
astype
(
self
.
dtype
)
input
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
)
self
.
inputs
=
{
offset
=
10
*
np
.
random
.
random
(
self
.
offset_size
).
astype
(
self
.
dtype
)
'Input'
:
OpTest
.
np_dtype_to_fluid_dtype
(
input
),
mask
=
10
*
np
.
random
.
random
(
self
.
mask_size
).
astype
(
self
.
dtype
)
'Offset'
:
OpTest
.
np_dtype_to_fluid_dtype
(
offset
),
filter
=
np
.
random
.
random
(
self
.
filter_size
).
astype
(
self
.
dtype
)
'Mask'
:
OpTest
.
np_dtype_to_fluid_dtype
(
mask
),
output
=
dconv_im2col_gemm
(
input
,
offset
,
mask
,
filter
,
self
.
groups
,
'Filter'
:
OpTest
.
np_dtype_to_fluid_dtype
(
filter
)
conv_param
)
}
output
=
output
.
astype
(
self
.
dtype
)
self
.
attrs
=
{
'strides'
:
self
.
stride
,
self
.
inputs
=
{
'paddings'
:
self
.
pad
,
'Input'
:
OpTest
.
np_dtype_to_fluid_dtype
(
input
),
'groups'
:
self
.
groups
,
'Offset'
:
OpTest
.
np_dtype_to_fluid_dtype
(
offset
),
'deformable_groups'
:
self
.
deformable_groups
,
'Mask'
:
OpTest
.
np_dtype_to_fluid_dtype
(
mask
),
'im2col_step'
:
self
.
im2col_step
,
'Filter'
:
OpTest
.
np_dtype_to_fluid_dtype
(
filter
)
'dilations'
:
self
.
dilations
,
}
}
self
.
attrs
=
{
self
.
outputs
=
{
'Output'
:
output
}
'strides'
:
self
.
stride
,
'paddings'
:
self
.
pad
,
def
has_cuda
(
self
):
'groups'
:
self
.
groups
,
return
core
.
is_compiled_with_cuda
()
and
(
self
.
use_cudnn
'deformable_groups'
:
self
.
deformable_groups
,
or
self
.
use_cuda
)
'im2col_step'
:
self
.
im2col_step
,
'dilations'
:
self
.
dilations
,
def
test_check_output
(
self
):
}
if
core
.
is_compiled_with_xpu
():
self
.
outputs
=
{
'Output'
:
output
}
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
place
)
if
core
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
def
test_check_grad
(
self
):
self
.
check_output_with_place
(
self
.
place
)
if
core
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
def
test_check_grad
(
self
):
place
=
paddle
.
XPUPlace
(
0
)
if
core
.
is_compiled_with_xpu
():
self
.
check_grad_with_place
(
place
,
paddle
.
enable_static
()
{
'Input'
,
'Offset'
,
'Mask'
,
'Filter'
},
self
.
check_grad_with_place
(
'Output'
,
self
.
place
,
{
'Input'
,
'Offset'
,
'Mask'
,
'Filter'
},
max_relative_error
=
0.06
)
'Output'
,
max_relative_error
=
0.06
)
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
def
init_test_case
(
self
):
self
.
stride
=
[
1
,
1
]
self
.
pad
=
[
1
,
1
]
self
.
dilations
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
8
,
4
,
4
]
# NCHW
self
.
dilations
=
[
1
,
1
]
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
self
.
input_size
=
[
2
,
8
,
4
,
4
]
# NCHW
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
self
.
filter_size
=
[
8
,
f_c
,
3
,
3
]
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
im2col_step
=
1
self
.
filter_size
=
[
8
,
f_c
,
3
,
3
]
self
.
deformable_groups
=
1
self
.
im2col_step
=
1
offset_c
=
2
*
self
.
deformable_groups
*
self
.
filter_size
[
self
.
deformable_groups
=
1
2
]
*
self
.
filter_size
[
3
]
offset_c
=
2
*
self
.
deformable_groups
*
self
.
filter_size
[
mask_c
=
self
.
deformable_groups
*
self
.
filter_size
[
2
]
*
self
.
filter_size
[
3
]
2
]
*
self
.
filter_size
[
3
]
mask_c
=
self
.
deformable_groups
*
self
.
filter_size
[
self
.
offset_size
=
[
2
]
*
self
.
filter_size
[
3
]
self
.
input_size
[
0
],
offset_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
self
.
offset_size
=
[
]
self
.
input_size
[
0
],
offset_c
,
self
.
input_size
[
2
],
self
.
mask_size
=
[
self
.
input_size
[
3
]
self
.
input_size
[
0
],
mask_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
]
]
self
.
mask_size
=
[
self
.
input_size
[
0
],
mask_c
,
self
.
input_size
[
2
],
def
init_dilation
(
self
):
self
.
input_size
[
3
]
self
.
dilations
=
[
1
,
1
]
]
def
init_group
(
self
):
def
init_dilation
(
self
):
self
.
groups
=
1
self
.
dilations
=
[
1
,
1
]
def
init_group
(
self
):
class
TestWithDilation
(
TestModulatedDeformableConvOp
):
self
.
groups
=
1
def
init_test_case
(
self
):
class
TestWithDilation
(
TestModulatedDeformableConvOp
):
self
.
pad
=
[
2
,
2
]
self
.
stride
=
[
1
,
1
]
def
init_test_case
(
self
):
self
.
input_size
=
[
4
,
3
,
4
,
4
]
# NCHW
self
.
pad
=
[
2
,
2
]
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
self
.
stride
=
[
1
,
1
]
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
input_size
=
[
4
,
3
,
4
,
4
]
# NCHW
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
self
.
im2col_step
=
1
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
deformable_groups
=
1
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
offset_c
=
2
*
self
.
deformable_groups
*
self
.
filter_size
[
self
.
im2col_step
=
1
2
]
*
self
.
filter_size
[
3
]
self
.
deformable_groups
=
1
mask_c
=
self
.
deformable_groups
*
self
.
filter_size
[
offset_c
=
2
*
self
.
deformable_groups
*
self
.
filter_size
[
2
]
*
self
.
filter_size
[
3
]
2
]
*
self
.
filter_size
[
3
]
self
.
offset_size
=
[
mask_c
=
self
.
deformable_groups
*
self
.
filter_size
[
self
.
input_size
[
0
],
offset_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
2
]
*
self
.
filter_size
[
3
]
]
self
.
offset_size
=
[
self
.
mask_size
=
[
self
.
input_size
[
0
],
offset_c
,
self
.
input_size
[
2
],
self
.
input_size
[
0
],
mask_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
self
.
input_size
[
3
]
]
]
self
.
mask_size
=
[
def
init_dilation
(
self
):
self
.
input_size
[
0
],
mask_c
,
self
.
input_size
[
2
],
self
.
dilations
=
[
2
,
2
]
self
.
input_size
[
3
]
]
class
TestWith3x3
(
TestModulatedDeformableConvOp
):
def
init_dilation
(
self
):
self
.
dilations
=
[
2
,
2
]
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
class
TestWith3x3
(
TestModulatedDeformableConvOp
):
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
def
init_test_case
(
self
):
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
self
.
pad
=
[
1
,
1
]
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
stride
=
[
1
,
1
]
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
im2col_step
=
1
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
self
.
deformable_groups
=
1
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
offset_c
=
2
*
self
.
deformable_groups
*
self
.
filter_size
[
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
2
]
*
self
.
filter_size
[
3
]
self
.
im2col_step
=
1
mask_c
=
self
.
deformable_groups
*
self
.
filter_size
[
self
.
deformable_groups
=
1
2
]
*
self
.
filter_size
[
3
]
offset_c
=
2
*
self
.
deformable_groups
*
self
.
filter_size
[
self
.
offset_size
=
[
2
]
*
self
.
filter_size
[
3
]
self
.
input_size
[
0
],
offset_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
mask_c
=
self
.
deformable_groups
*
self
.
filter_size
[
]
2
]
*
self
.
filter_size
[
3
]
self
.
mask_size
=
[
self
.
offset_size
=
[
self
.
input_size
[
0
],
mask_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
self
.
input_size
[
0
],
offset_c
,
self
.
input_size
[
2
],
]
self
.
input_size
[
3
]
]
self
.
mask_size
=
[
class
TestModulatedDeformableConvInvalidInput
(
unittest
.
TestCase
):
self
.
input_size
[
0
],
mask_c
,
self
.
input_size
[
2
],
self
.
input_size
[
3
]
def
test_error
(
self
):
]
def
test_invalid_input
():
class
TestModulatedDeformableConvInvalidInput
(
unittest
.
TestCase
):
paddle
.
enable_static
()
input
=
[
1
,
3
,
32
,
32
]
def
test_error
(
self
):
offset
=
fluid
.
data
(
name
=
'offset'
,
shape
=
[
None
,
3
,
32
,
32
],
def
test_invalid_input
():
dtype
=
'float32'
)
paddle
.
enable_static
()
mask
=
fluid
.
data
(
name
=
'mask'
,
input
=
[
1
,
3
,
32
,
32
]
shape
=
[
None
,
3
,
32
,
32
],
offset
=
fluid
.
data
(
name
=
'offset'
,
dtype
=
'float32'
)
shape
=
[
None
,
3
,
32
,
32
],
loss
=
fluid
.
layers
.
deformable_conv
(
input
,
dtype
=
'float32'
)
offset
,
mask
=
fluid
.
data
(
name
=
'mask'
,
mask
,
shape
=
[
None
,
3
,
32
,
32
],
num_filters
=
4
,
dtype
=
'float32'
)
filter_size
=
1
)
loss
=
fluid
.
layers
.
deformable_conv
(
input
,
offset
,
self
.
assertRaises
(
TypeError
,
test_invalid_input
)
mask
,
num_filters
=
4
,
def
test_invalid_offset
():
filter_size
=
1
)
paddle
.
enable_static
()
input
=
fluid
.
data
(
name
=
'input'
,
self
.
assertRaises
(
TypeError
,
test_invalid_input
)
shape
=
[
None
,
3
,
32
,
32
],
dtype
=
'int32'
)
def
test_invalid_offset
():
offset
=
fluid
.
data
(
name
=
'offset'
,
paddle
.
enable_static
()
shape
=
[
None
,
3
,
32
,
32
],
input
=
fluid
.
data
(
name
=
'input'
,
dtype
=
'float32'
)
shape
=
[
None
,
3
,
32
,
32
],
mask
=
fluid
.
data
(
name
=
'mask'
,
dtype
=
'int32'
)
shape
=
[
None
,
3
,
32
,
32
],
offset
=
fluid
.
data
(
name
=
'offset'
,
dtype
=
'float32'
)
shape
=
[
None
,
3
,
32
,
32
],
loss
=
fluid
.
layers
.
deformable_conv
(
input
,
dtype
=
'float32'
)
offset
,
mask
=
fluid
.
data
(
name
=
'mask'
,
mask
,
shape
=
[
None
,
3
,
32
,
32
],
num_filters
=
4
,
dtype
=
'float32'
)
filter_size
=
1
)
loss
=
fluid
.
layers
.
deformable_conv
(
input
,
offset
,
self
.
assertRaises
(
TypeError
,
test_invalid_offset
)
mask
,
num_filters
=
4
,
filter_size
=
1
)
self
.
assertRaises
(
TypeError
,
test_invalid_offset
)
support_types
=
get_xpu_op_support_types
(
'deformable_conv'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestModulatedDeformableConvOp
,
stype
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录