提交 672d56d7 编写于 作者: L lijianshe02

add server batch_norm kernel and unitest

上级 d1f8d02f
......@@ -17,6 +17,7 @@ cc_library(dropout_compute_x86 SRCS dropout_compute.cc DEPS ${lite_kernel_deps}
cc_library(concat_compute_x86 SRCS concat_compute.cc DEPS ${lite_kernel_deps} )
cc_library(conv_compute_x86 SRCS conv_compute.cc DEPS ${lite_kernel_deps} blas im2col vol2col)
cc_library(pool_compute_x86 SRCS pool_compute.cc DEPS ${lite_kernel_deps} pooling)
cc_library(batch_norm_compute_x86 SRCS batch_norm_compute.cc DEPS ${lite_kernel_deps})
lite_cc_test(test_fc_compute_x86 SRCS fc_compute_test.cc DEPS fc_compute_x86)
lite_cc_test(test_conv2d_compute_x86 SRCS conv_compute_test.cc DEPS conv_compute_x86)
......@@ -28,6 +29,7 @@ lite_cc_test(test_relu_compute_x86 SRCS relu_compute_test.cc DEPS relu_compute_x
lite_cc_test(test_mul_compute_x86 SRCS mul_compute_test.cc DEPS mul_compute_x86 operator)
lite_cc_test(test_scale_compute_x86 SRCS scale_compute_test.cc DEPS scale_compute_x86)
lite_cc_test(test_dropout_compute_x86 SRCS dropout_compute_test.cc DEPS dropout_compute_x86)
lite_cc_test(test_batch_norm_compute_x86 SRCS batch_norm_compute_test.cc DEPS batch_norm_compute_x86)
set(x86_kernels
......@@ -44,6 +46,7 @@ set(x86_kernels
concat_compute_x86
conv_compute_x86
pool_compute_x86
batch_norm_compute_x86
)
set(x86_kernels "${x86_kernels}" CACHE INTERNAL "x86 kernels")
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/x86/batch_norm_compute.h"
REGISTER_LITE_KERNEL(batch_norm, kX86, kFloat, kNCHW,
paddle::lite::kernels::x86::BatchNormCompute<float>, def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))})
.BindInput("Scale", {LiteType::GetTensorTy(TARGET(kX86))})
.BindInput("Bias", {LiteType::GetTensorTy(TARGET(kX86))})
.BindInput("Mean", {LiteType::GetTensorTy(TARGET(kX86))})
.BindInput("Variance", {LiteType::GetTensorTy(TARGET(kX86))})
.BindOutput("Y", {LiteType::GetTensorTy(TARGET(kX86))})
.BindOutput("MeanOut", {LiteType::GetTensorTy(TARGET(kX86))})
.BindOutput("VarianceOut", {LiteType::GetTensorTy(TARGET(kX86))})
.BindOutput("MeanOut", {LiteType::GetTensorTy(TARGET(kX86))})
.BindOutput("SavedMean", {LiteType::GetTensorTy(TARGET(kX86))})
.BindOutput("SavedVariance", {LiteType::GetTensorTy(TARGET(kX86))})
.Finalize();
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <random>
#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {
template <typename T>
using EigenArrayMap =
Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using ConstEigenArrayMap =
Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1>>;
template <typename T>
using ConstEigenVectorArrayMap =
Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>>;
template <typename T>
class BatchNormCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
public:
using param_t = operators::BatchNormParam;
void Run() override {
auto &param = *param_.get_mutable<operators::BatchNormParam>();
bool global_stats = param.is_test || param.use_global_stats;
const auto *x = param.x;
const auto &x_dims = x->dims();
CHECK(x_dims.size() >= 2 && x_dims.size() <= 5);
const int N = x_dims[0];
const int C = param.data_layout == DATALAYOUT(kNCHW)
? x_dims[1]
: x_dims[x_dims.size() - 1];
const int sample_size = x->dims().production() / N / C;
// alloc memory
param.y->template mutable_data<T>();
param.mean_out->template mutable_data<T>();
param.variance_out->template mutable_data<T>();
param.saved_mean->template mutable_data<T>();
param.saved_variance->template mutable_data<T>();
if (!global_stats) {
// saved_xx is use just in this batch of data
EigenVectorArrayMap<T> saved_mean_e(param.saved_mean->mutable_data<T>(),
C);
EigenVectorArrayMap<T> saved_variance_e(
param.saved_variance->mutable_data<T>(), C);
saved_mean_e.setZero();
saved_variance_e.setZero();
EigenVectorArrayMap<T> running_mean_arr(param.mean_out->mutable_data<T>(),
C);
EigenVectorArrayMap<T> running_var_arr(
param.variance_out->mutable_data<T>(), C);
if ((N * sample_size) == 1) {
LOG(WARNING) << "Only 1 element in normalization dimension, "
<< "we skip the batch norm calculation, let y = x.";
framework::TensorCopy(x->raw_tensor(), platform::CPUPlace(),
&param.y->raw_tensor());
return;
}
switch (param.data_layout) {
case DATALAYOUT(kNCHW): {
ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
for (int nc = 0; nc < N * C; ++nc) {
saved_mean_e(nc % C) += x_arr.col(nc).sum();
}
saved_mean_e /= N * sample_size;
for (int nc = 0; nc < N * C; ++nc) {
saved_variance_e(nc % C) +=
(x_arr.col(nc) - saved_mean_e(nc % C)).matrix().squaredNorm();
}
saved_variance_e /= N * sample_size;
break;
}
default:
LOG(FATAL) << "Unknown storage order: "
<< DataLayoutToStr(param.data_layout);
break;
}
running_mean_arr = running_mean_arr * param.momentum +
saved_mean_e * (1. - param.momentum);
running_var_arr = running_var_arr * param.momentum +
saved_variance_e * (1. - param.momentum);
}
// use SavedMean and SavedVariance to do normalize
Eigen::Array<T, Eigen::Dynamic, 1> inv_std(C);
if (global_stats) {
ConstEigenVectorArrayMap<T> var_arr(param.variance->data<T>(), C);
inv_std = (var_arr + param.epsilon).sqrt().inverse();
} else {
EigenVectorArrayMap<T> saved_inv_std(
param.saved_variance->mutable_data<T>(), C);
// inverse SavedVariance first, gradient will use it too.
saved_inv_std = (saved_inv_std + param.epsilon).inverse().sqrt();
inv_std = saved_inv_std;
}
ConstEigenVectorArrayMap<T> mean_arr(
global_stats ? param.mean->data<T>() : param.saved_mean->data<T>(), C);
// ((x - est_mean) * (inv_var) * scale + bias
// formula transform ====>
// (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
ConstEigenVectorArrayMap<T> scale_arr(param.scale->data<T>(), C);
ConstEigenVectorArrayMap<T> bias_arr(param.bias->data<T>(), C);
Eigen::Array<T, Eigen::Dynamic, 1> new_scale = inv_std * scale_arr;
Eigen::Array<T, Eigen::Dynamic, 1> new_bias =
bias_arr - mean_arr * inv_std * scale_arr;
switch (param.data_layout) {
case DATALAYOUT(kNCHW): {
EigenArrayMap<T> y_arr(param.y->mutable_data<T>(), sample_size, N * C);
ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
for (int nc = 0; nc < N * C; ++nc) {
y_arr.col(nc) = x_arr.col(nc) * new_scale(nc % C) + new_bias(nc % C);
}
break;
}
default:
LOG(FATAL) << "Unknown storage order: "
<< DataLayoutToStr(param.data_layout);
break;
}
}
virtual ~BatchNormCompute() = default;
};
} // namespace x86
} // namespace kernels
} // namespace lite
} // namespace paddle
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/x86/batch_norm_compute.h"
#include <gtest/gtest.h>
#include <iostream>
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {
TEST(batch_norm_x86, retrive_op) {
auto batch_norm =
KernelRegistry::Global().Create<TARGET(kX86), PRECISION(kFloat)>(
"batch_norm");
ASSERT_FALSE(batch_norm.empty());
ASSERT_TRUE(batch_norm.front());
}
TEST(batch_norm_x86, init) {
BatchNormCompute<float> batch_norm;
ASSERT_EQ(batch_norm.precision(), PRECISION(kFloat));
ASSERT_EQ(batch_norm.target(), TARGET(kX86));
}
TEST(batch_norm_x86, run_test) {
lite::Tensor x, scale, bias, mean, variance, y, mean_out, variance_out,
saved_mean, saved_variance;
constexpr int batch_size = 2;
std::vector<int64_t> x_shape{batch_size, 3, 64, 64};
x.Resize(lite::DDim(x_shape));
std::vector<int64_t> scale_shape{3};
scale.Resize(lite::DDim(scale_shape));
std::vector<int64_t> bias_shape{3};
bias.Resize(lite::DDim(bias_shape));
std::vector<int64_t> mean_shape{3};
mean.Resize(lite::DDim(mean_shape));
std::vector<int64_t> variance_shape{3};
variance.Resize(lite::DDim(variance_shape));
std::vector<int64_t> y_shape{batch_size, 3, 64, 64};
y.Resize(lite::DDim(y_shape));
std::vector<int64_t> mean_out_shape{3};
mean_out.Resize(lite::DDim(mean_out_shape));
std::vector<int64_t> variance_out_shape{3};
variance_out.Resize(lite::DDim(variance_out_shape));
std::vector<int64_t> saved_mean_shape{3};
saved_mean.Resize(lite::DDim(saved_mean_shape));
std::vector<int64_t> saved_variance_shape{3};
saved_variance.Resize(lite::DDim(saved_variance_shape));
auto x_data = x.mutable_data<float>();
auto scale_data = scale.mutable_data<float>();
auto bias_data = bias.mutable_data<float>();
auto mean_data = mean.mutable_data<float>();
auto variance_data = variance.mutable_data<float>();
y.mutable_data<float>();
mean_out.mutable_data<float>();
variance_out.mutable_data<float>();
saved_mean.mutable_data<float>();
saved_variance.mutable_data<float>();
for (int64_t i = 0; i < x.dims().production(); i++) {
x_data[i] = static_cast<float>(i);
}
for (int i = 0; i < scale.dims().production(); i++) {
scale_data[i] = static_cast<float>(i) * 0.01f + 0.03f;
}
for (int i = 0; i < bias.dims().production(); i++) {
bias_data[i] = static_cast<float>(i) * 0.065f + 0.1f;
}
for (int i = 0; i < mean.dims().production(); i++) {
mean_data[i] = static_cast<float>(i) * 0.0565f;
}
for (int i = 0; i < variance.dims().production(); i++) {
variance_data[i] = static_cast<float>(i) * 2.08f + 1.5f;
}
// BatchNormCompute batch_norm;
BatchNormCompute<float> batch_norm;
operators::BatchNormParam param;
param.x = &x;
param.is_test = false;
param.scale = &scale;
param.bias = &bias;
param.mean = &mean;
param.variance = &variance;
param.use_global_stats = false;
param.epsilon = 1e-4f;
param.momentum = 0.9f;
param.y = &y;
param.mean_out = &mean_out;
param.variance_out = &variance_out;
param.saved_mean = &saved_mean;
param.saved_variance = &saved_variance;
batch_norm.SetParam(param);
batch_norm.Run();
LOG(INFO) << "output: " << y;
LOG(INFO) << "mean_out: " << mean_out;
LOG(INFO) << "variance_out: " << mean_out;
LOG(INFO) << "saved_mean: " << saved_mean;
LOG(INFO) << "saved_variance: " << saved_variance;
/*for (int i = 0; i < y.dims().production(); i++) {
if(i < 5 || i > y.dims().production() - 5)
LOG(INFO) << y_data[i];
}*/
}
} // namespace x86
} // namespace kernels
} // namespace lite
} // namespace paddle
USE_LITE_KERNEL(batch_norm, kX86, kFloat, kNCHW, def);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册