Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
66476fc7
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
66476fc7
编写于
10月 26, 2017
作者:
S
Siddharth Goyal
提交者:
GitHub
10月 26, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add proximal adagrad optimizer (#5128)
上级
8e3ecf5d
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
237 addition
and
0 deletion
+237
-0
paddle/operators/proximal_adagrad_op.cc
paddle/operators/proximal_adagrad_op.cc
+113
-0
paddle/operators/proximal_adagrad_op.cu
paddle/operators/proximal_adagrad_op.cu
+20
-0
paddle/operators/proximal_adagrad_op.h
paddle/operators/proximal_adagrad_op.h
+68
-0
python/paddle/v2/framework/tests/test_proximal_adagrad_op.py
python/paddle/v2/framework/tests/test_proximal_adagrad_op.py
+36
-0
未找到文件。
paddle/operators/proximal_adagrad_op.cc
0 → 100644
浏览文件 @
66476fc7
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/proximal_adagrad_op.h"
namespace
paddle
{
namespace
operators
{
class
ProximalAdagradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Param"
),
"Input(Param) of ProximalAdagradOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Moment"
),
"Input(Moment) of ProximalAdagradOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Grad"
),
"Input(Grad) of ProximalAdagradOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LearningRate"
),
"Input(LearningRate) of ProximalAdagradOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output(ParamOut) of ProximalAdagradOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"MomentOut"
),
"Output(MomentOut) of ProximalAdagradOp should not be null."
);
auto
param_dim
=
ctx
->
GetInputDim
(
"Param"
);
PADDLE_ENFORCE_EQ
(
param_dim
,
ctx
->
GetInputDim
(
"Grad"
),
"Param and Grad of ProximalAdagrad Op must have same dimension."
);
PADDLE_ENFORCE_EQ
(
param_dim
,
ctx
->
GetInputDim
(
"Moment"
),
"Param and Moment of ProximalAdagrad Op must have same dimension."
);
auto
lr_dim
=
ctx
->
GetInputDim
(
"LearningRate"
);
PADDLE_ENFORCE_EQ
(
framework
::
product
(
lr_dim
),
1
,
"Learning Rate should be a scalar."
);
ctx
->
SetOutputDim
(
"ParamOut"
,
param_dim
);
ctx
->
SetOutputDim
(
"MomentOut"
,
param_dim
);
}
};
class
ProximalAdagradOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
ProximalAdagradOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Param"
,
"(Tensor, default Tensor<float>) "
"Input parameter that has to be updated."
);
AddInput
(
"Moment"
,
"(Tensor, default Tensor<float>) "
"Moment parameter that has to be updated."
);
AddInput
(
"Grad"
,
"(Tensor, default Tensor<float>) "
"Input gradient of the parameter."
);
AddInput
(
"LearningRate"
,
"(Tensor, default Tensor<float>) "
"The learning rate should be a tensor of size 1."
);
AddOutput
(
"ParamOut"
,
"(Tensor) Output updated parameter value."
);
AddOutput
(
"MomentOut"
,
"(Tensor) Output updated moment value."
);
AddAttr
<
float
>
(
"l1"
,
"(float, default 0.0) "
"L1 regularization strength."
)
.
SetDefault
(
0.0
f
);
AddAttr
<
float
>
(
"l2"
,
"(float, default 0.0)"
"L2 regularization strength."
)
.
SetDefault
(
0.0
f
);
AddComment
(
R"DOC(
Optimizer that implements the proximal adagrad algorithm.
moment = moment + grad * grad
prox_param = param - learning_rate * grad * (1 / sqrt(moment))
param = sign(prox_param) / (1 + learning_rate * l2) *
max { |prox_param| - learning_rate * l1 , 0 }
The paper that proposed Proximal GD:
(http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting.pdf)
Here, we use the adagrad learning rate as specified here:
(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
proximal_adagrad
,
ops
::
ProximalAdagradOp
,
ops
::
ProximalAdagradOpMaker
);
REGISTER_OP_CPU_KERNEL
(
proximal_adagrad
,
ops
::
ProximalAdagradOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/proximal_adagrad_op.cu
0 → 100644
浏览文件 @
66476fc7
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
You may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/proximal_adagrad_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
proximal_adagrad
,
ops
::
ProximalAdagradOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/proximal_adagrad_op.h
0 → 100644
浏览文件 @
66476fc7
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
Place
,
typename
T
>
class
ProximalAdagradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
param_out
=
ctx
.
Output
<
Tensor
>
(
"ParamOut"
);
auto
*
moment_out
=
ctx
.
Output
<
Tensor
>
(
"MomentOut"
);
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
moment_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
l1
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"l1"
));
auto
l2
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"l2"
));
auto
grad
=
ctx
.
Input
<
Tensor
>
(
"Grad"
);
auto
p
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"Param"
));
auto
m
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"Moment"
));
auto
g
=
EigenVector
<
T
>::
Flatten
(
*
grad
);
auto
lr
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"LearningRate"
));
auto
p_out
=
EigenVector
<
T
>::
Flatten
(
*
param_out
);
auto
m_out
=
EigenVector
<
T
>::
Flatten
(
*
moment_out
);
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
Eigen
::
DSizes
<
int
,
1
>
grad_dsize
(
grad
->
numel
());
m_out
.
device
(
place
)
=
m
+
g
*
g
;
auto
prox_param
=
p
-
lr
.
broadcast
(
grad_dsize
)
*
g
/
m_out
.
sqrt
();
if
(
l1
>
static_cast
<
T
>
(
0
))
{
p_out
.
device
(
place
)
=
prox_param
.
sign
()
*
(((
prox_param
.
abs
()
-
(
lr
*
l1
).
broadcast
(
grad_dsize
))
.
cwiseMax
(
static_cast
<
T
>
(
0.0
)))
/
(
static_cast
<
T
>
(
1.0
)
+
(
lr
*
l2
).
broadcast
(
grad_dsize
)));
}
else
{
p_out
.
device
(
place
)
=
prox_param
/
(
static_cast
<
T
>
(
1.0
)
+
(
lr
*
l2
).
broadcast
(
grad_dsize
));
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/v2/framework/tests/test_proximal_adagrad_op.py
0 → 100644
浏览文件 @
66476fc7
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
class
TestProximalAdagradOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"proximal_adagrad"
w
=
np
.
random
.
random
((
102
,
105
)).
astype
(
"float32"
)
m
=
np
.
random
.
random
((
102
,
105
)).
astype
(
"float32"
)
g
=
np
.
random
.
random
((
102
,
105
)).
astype
(
"float32"
)
lr
=
np
.
array
([
0.1
]).
astype
(
"float32"
)
l1
=
0.1
l2
=
0.2
self
.
inputs
=
{
'Param'
:
w
,
'Grad'
:
g
,
'Moment'
:
m
,
'LearningRate'
:
lr
}
self
.
attrs
=
{
'l1'
:
l1
,
'l2'
:
l2
}
param_out
=
0.0
moment_out
=
m
+
g
*
g
prox_param
=
w
-
lr
*
g
/
np
.
sqrt
(
moment_out
)
if
l1
>
0.0
:
x
=
np
.
abs
(
prox_param
)
-
lr
*
l1
x
[
x
<
0
]
=
0
param_out
=
np
.
sign
(
prox_param
)
*
(
x
/
(
1.0
+
lr
*
l2
))
else
:
param_out
=
prox_param
/
(
1.0
+
lr
*
l2
)
self
.
outputs
=
{
'ParamOut'
:
param_out
,
'MomentOut'
:
moment_out
}
def
test_check_output
(
self
):
self
.
check_output
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录