Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
65451b5c
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
65451b5c
编写于
11月 02, 2017
作者:
W
wwhu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add cliy_by_norm op
上级
0a32e74d
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
217 addition
and
0 deletion
+217
-0
paddle/operators/clip_by_norm_op.cc
paddle/operators/clip_by_norm_op.cc
+90
-0
paddle/operators/clip_by_norm_op.cu
paddle/operators/clip_by_norm_op.cu
+20
-0
paddle/operators/clip_by_norm_op.h
paddle/operators/clip_by_norm_op.h
+55
-0
python/paddle/v2/framework/tests/test_clip_by_norm_op.py
python/paddle/v2/framework/tests/test_clip_by_norm_op.py
+52
-0
未找到文件。
paddle/operators/clip_by_norm_op.cc
0 → 100644
浏览文件 @
65451b5c
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/clip_by_norm_op.h"
namespace
paddle
{
namespace
operators
{
class
ClipByNormOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of ClipByNormOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of ClipByNormOp should not be null."
);
auto
max_norm
=
Attr
<
float
>
(
"max_norm"
);
PADDLE_ENFORCE_GT
(
max_norm
,
0
,
"max_norm should be greater than 0."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
ctx
->
SetOutputDim
(
"Out"
,
x_dims
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
template
<
typename
AttrType
>
class
ClipByNormOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
ClipByNormOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(Tensor)The input of clip_by_norm op."
"The number of dimensions must be between [1, 9]."
);
AddOutput
(
"Out"
,
"(Tensor)The output of clip_by_norm op with shape as input(X)"
);
AddAttr
<
AttrType
>
(
"max_norm"
,
"(float)The maximum norm value."
);
AddComment
(
R"DOC(
ClipByNorm operator limits the L2 norm of the input 'X' within 'max_norm'.
If the L2 norm of 'X' is less than or equal to 'max_norm', 'Out' will be
the same as 'X'. If the L2 norm of 'X' is greater than 'max_norm', 'X' will
be linearly scaled to make the L2 norm of 'Out' equal to 'max_norm', as
shown in the following formula:
'Out' = 'max_norm' * 'X' / norm('X'),
where norm('X') represents the L2 norm of 'X'.
)DOC"
);
}
};
class
ClipByNormOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
clip_by_norm
,
ops
::
ClipByNormOp
,
ops
::
ClipByNormOpMaker
<
float
>
);
REGISTER_OP_CPU_KERNEL
(
clip_by_norm
,
ops
::
ClipByNormKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/clip_by_norm_op.cu
0 → 100644
浏览文件 @
65451b5c
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/clip_by_norm_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
clip_by_norm
,
ops
::
ClipByNormKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/clip_by_norm_op.h
0 → 100644
浏览文件 @
65451b5c
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/platform/transform.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenScalar
=
framework
::
EigenScalar
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
Place
,
typename
T
>
class
ClipByNormKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
max_norm
=
context
.
Attr
<
T
>
(
"max_norm"
);
auto
*
input
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x
=
EigenVector
<
T
>::
Flatten
(
*
input
);
auto
out
=
EigenVector
<
T
>::
Flatten
(
*
output
);
auto
x_norm
=
x
.
square
().
sum
().
sqrt
();
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
auto
temp
=
(
x_norm
<=
max_norm
).
template
cast
<
T
>().
eval
();
auto
scaling
=
temp
+
(
static_cast
<
T
>
(
1
)
-
temp
)
*
max_norm
/
x_norm
;
Eigen
::
array
<
int
,
1
>
one_dim
{{
1
}};
Eigen
::
DSizes
<
int
,
1
>
m_dsize
(
input
->
numel
());
out
.
device
(
place
)
=
x
*
scaling
.
reshape
(
one_dim
).
broadcast
(
m_dsize
);
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/v2/framework/tests/test_clip_by_norm_op.py
0 → 100644
浏览文件 @
65451b5c
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
class
TestClipByNormOp
(
OpTest
):
def
setUp
(
self
):
self
.
max_relative_error
=
0.006
self
.
initTestCase
()
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)
input
[
np
.
abs
(
input
)
<
self
.
max_relative_error
]
=
0.5
self
.
op_type
=
"clip_by_norm"
self
.
inputs
=
{
'X'
:
input
,
}
self
.
attrs
=
{}
self
.
attrs
[
'max_norm'
]
=
self
.
max_norm
norm
=
np
.
sqrt
(
np
.
sum
(
np
.
square
(
input
)))
if
norm
>
self
.
max_norm
:
output
=
self
.
max_norm
*
input
/
norm
else
:
output
=
input
self
.
outputs
=
{
'Out'
:
output
}
def
test_check_output
(
self
):
self
.
check_output
()
def
initTestCase
(
self
):
self
.
shape
=
(
100
,)
self
.
max_norm
=
1.0
class
TestCase1
(
TestClipByNormOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
100
,)
self
.
max_norm
=
1e20
class
TestCase2
(
TestClipByNormOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
16
,
16
)
self
.
max_norm
=
0.1
class
TestCase3
(
TestClipByNormOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
4
,
8
,
16
)
self
.
max_norm
=
1.0
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录