Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
64eaeba1
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
64eaeba1
编写于
10月 23, 2017
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
enable mkldnn_batch_norm layer
上级
02fdf241
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
462 addition
and
0 deletion
+462
-0
paddle/gserver/layers/MKLDNNBatchNormLayer.cpp
paddle/gserver/layers/MKLDNNBatchNormLayer.cpp
+326
-0
paddle/gserver/layers/MKLDNNBatchNormLayer.h
paddle/gserver/layers/MKLDNNBatchNormLayer.h
+136
-0
未找到文件。
paddle/gserver/layers/MKLDNNBatchNormLayer.cpp
0 → 100644
浏览文件 @
64eaeba1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNBatchNormLayer.h"
using
namespace
mkldnn
;
// NOLINT
typedef
memory
::
format
format
;
namespace
paddle
{
REGISTER_LAYER
(
mkldnn_batch_norm
,
MKLDNNBatchNormLayer
);
const
real
MKLDNNBatchNormLayer
::
EPS
=
1E-5
;
bool
MKLDNNBatchNormLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
if
(
!
MKLDNNLayer
::
init
(
layerMap
,
parameterMap
))
{
return
false
;
}
// first one is input layer
// the other two are created in config_parser.py saving moving mean and var
CHECK_EQ
(
inputLayers_
.
size
(),
3U
);
CHECK_EQ
(
inputLayers_
.
size
(),
parameters_
.
size
());
CHECK_EQ
(
inputLayers_
.
size
(),
size_t
(
config_
.
inputs_size
()));
const
ImageConfig
&
conf
=
config_
.
inputs
(
0
).
image_conf
();
ic_
=
conf
.
channels
();
ih_
=
inputLayers_
[
0
]
->
getOutput
().
getFrameHeight
();
iw_
=
inputLayers_
[
0
]
->
getOutput
().
getFrameWidth
();
if
(
iw_
==
0
&&
ih_
==
0
)
{
iw_
=
conf
.
img_size
();
ih_
=
conf
.
has_img_size_y
()
?
conf
.
img_size_y
()
:
conf
.
img_size
();
}
oc_
=
ic_
;
oh_
=
ih_
;
ow_
=
iw_
;
if
(
config_
.
has_use_global_stats
())
{
useGlobalStats_
=
config_
.
use_global_stats
();
}
movingAvgFraction_
=
config_
.
moving_average_fraction
();
VLOG
(
MKLDNN_BASE
)
<<
"--- "
<<
(
useGlobalStats_
?
"use"
:
"do not use"
)
<<
" --- global stats"
;
VLOG
(
MKLDNN_BASE
)
<<
"Moving average fraction: "
<<
movingAvgFraction_
;
initWeight
();
movingMean_
.
reset
(
new
Weight
(
oc_
,
1
,
parameters_
[
1
],
0
));
movingVar_
.
reset
(
new
Weight
(
oc_
,
1
,
parameters_
[
2
],
0
));
return
true
;
}
void
MKLDNNBatchNormLayer
::
initWeight
()
{
weight_
.
reset
(
new
Weight
(
1
,
oc_
,
parameters_
[
0
]));
if
(
biasParameter_
.
get
()
!=
NULL
)
{
biases_
=
std
::
unique_ptr
<
Weight
>
(
new
Weight
(
1
,
oc_
,
biasParameter_
));
}
CHECK_EQ
(
weight_
!=
nullptr
,
biases_
!=
nullptr
)
<<
"only support have both weight and bias, or neither"
;
if
(
weight_
&&
weight_
->
getW
())
{
CHECK
(
biases_
&&
biases_
->
getW
());
valueScaleShift_
=
Matrix
::
create
(
2
,
oc_
,
false
,
false
);
valueScaleShift_
->
zeroMem
();
VectorPtr
scale
(
new
CpuVector
(
oc_
,
valueScaleShift_
->
getMemoryHandle
(),
0
));
VectorPtr
shift
(
new
CpuVector
(
oc_
,
valueScaleShift_
->
getMemoryHandle
(),
oc_
));
const
VectorPtr
&
wgt
=
parameters_
[
0
]
->
getBuf
(
PARAMETER_VALUE
);
const
VectorPtr
&
bias
=
biasParameter_
->
getBuf
(
PARAMETER_VALUE
);
scale
->
copyFrom
(
*
wgt
);
shift
->
copyFrom
(
*
bias
);
wgt
->
setData
(
valueScaleShift_
->
getData
());
bias
->
setData
(
valueScaleShift_
->
getData
()
+
oc_
);
}
if
(
weight_
&&
weight_
->
getWGrad
())
{
CHECK
(
biases_
&&
biases_
->
getWGrad
());
gradScaleShift_
=
Matrix
::
create
(
2
,
oc_
,
false
,
false
);
gradScaleShift_
->
zeroMem
();
const
VectorPtr
&
wgt
=
parameters_
[
0
]
->
getBuf
(
PARAMETER_GRADIENT
);
const
VectorPtr
&
bias
=
biasParameter_
->
getBuf
(
PARAMETER_GRADIENT
);
wgt
->
setData
(
gradScaleShift_
->
getData
());
bias
->
setData
(
gradScaleShift_
->
getData
()
+
oc_
);
}
}
void
MKLDNNBatchNormLayer
::
convertWeightsFromPaddle
()
{
if
(
hasInitedWgt_
)
{
return
;
}
// prepare mean and var if necessary
if
(
useGlobalStats_
)
{
CHECK
(
mean_
);
CHECK
(
var_
);
mean_
->
copyFrom
(
*
(
movingMean_
->
getW
()));
var_
->
copyFrom
(
*
(
movingVar_
->
getW
()));
}
hasInitedWgt_
=
true
;
}
void
MKLDNNBatchNormLayer
::
calMovingMeanAndVar
()
{
// calculating and saving moving mean and variance
CHECK_EQ
(
useGlobalStats_
,
false
);
MatrixPtr
movingMean
=
movingMean_
->
getW
();
MatrixPtr
movingVar
=
movingVar_
->
getW
();
if
(
FLAGS_trainer_count
>
1
)
{
auto
mvMean
=
std
::
dynamic_pointer_cast
<
SharedCpuMatrix
>
(
movingMean
);
auto
mvVar
=
std
::
dynamic_pointer_cast
<
SharedCpuMatrix
>
(
movingVar
);
CHECK
(
mvMean
&&
mvVar
);
mvMean
->
add
(
*
mean_
,
movingAvgFraction_
,
1.0
-
movingAvgFraction_
);
mvVar
->
add
(
*
var_
,
movingAvgFraction_
,
1.0
-
movingAvgFraction_
);
}
else
{
movingMean
->
add
(
*
mean_
,
movingAvgFraction_
,
1.0
-
movingAvgFraction_
);
// here var is v^2
movingVar
->
add
(
*
var_
,
movingAvgFraction_
,
1.0
-
movingAvgFraction_
);
}
}
void
MKLDNNBatchNormLayer
::
reshape
(
int
&
bs
,
int
&
ic
,
int
&
ih
,
int
&
iw
,
int
oc
,
int
&
oh
,
int
&
ow
)
{
reshapeInput
(
bs
,
ih
,
iw
);
oh
=
ih
;
ow
=
ow
;
// ic_ and oc can not be changed
CHECK_EQ
(
inputElemenCnt_
/
bs
/
ih
/
iw
,
(
size_t
)
ic
)
<<
"Input channel can not be changed"
;
reshapeOutput
(
oh
,
ow
);
resizeOutput
(
bs
,
oc
*
oh
*
ow
);
printSizeInfo
();
}
void
MKLDNNBatchNormLayer
::
resetFwd
(
std
::
vector
<
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
// in training always calculate mean and var, so useGlobalStats must be false
// in test depends on useGlobalStats
if
(
passType_
!=
PASS_TEST
&&
useGlobalStats_
==
true
)
{
LOG
(
WARNING
)
<<
"use_global_stats is invalid setting in training phase"
;
useGlobalStats_
=
false
;
}
resetFwdBuffers
(
in
,
wgt
,
out
);
resetFwdPD
(
fwdPD_
,
in
,
wgt
,
out
);
resetFwdPipeline
(
pipeline
,
fwdPD_
,
in
,
wgt
,
out
);
}
void
MKLDNNBatchNormLayer
::
resetBwd
(
std
::
vector
<
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
std
::
shared_ptr
<
bn_bwd
::
primitive_desc
>
pd
;
resetBwdBuffers
(
in
,
wgt
,
out
);
resetBwdPD
(
pd
,
in
,
wgt
,
out
);
resetBwdPipeline
(
pipeline
,
pd
,
in
,
wgt
,
out
);
}
void
MKLDNNBatchNormLayer
::
forward
(
PassType
passType
)
{
MKLDNNLayer
::
forward
(
passType
);
// calculating and saving moving mean and variance
if
(
passType_
!=
PASS_TEST
)
{
calMovingMeanAndVar
();
}
}
void
MKLDNNBatchNormLayer
::
updateWeights
(
const
UpdateCallback
&
callback
)
{
weight_
->
getParameterPtr
()
->
incUpdate
(
callback
);
if
(
biases_
&&
biases_
->
getWGrad
())
{
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
void
MKLDNNBatchNormLayer
::
resetFwdBuffers
(
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
out
)
{
resetInValue
(
in
);
memory
::
dims
outDims
=
memory
::
dims
{
bs_
,
oc_
,
oh_
,
ow_
};
CHECK
(
in
);
auto
outPD
=
MKLDNNMatrix
::
createPrimitiveDesc
(
outDims
,
in
->
getFormat
(),
engine_
);
resetOutValue
(
out
,
outPD
);
if
(
valueScaleShift_
)
{
auto
pd
=
MKLDNNMatrix
::
createPrimitiveDesc
({
2
,
oc_
},
format
::
nc
,
engine_
);
resetWithMatrix
(
wgt
,
valueScaleShift_
,
pd
);
}
if
(
passType_
!=
PASS_TEST
||
useGlobalStats_
)
{
auto
pd
=
MKLDNNMatrix
::
createPrimitiveDesc
({
oc_
},
format
::
x
,
engine_
);
mean_
=
MKLDNNMatrix
::
create
(
pd
);
var_
=
MKLDNNMatrix
::
create
(
pd
);
}
}
void
MKLDNNBatchNormLayer
::
resetFwdPD
(
std
::
shared_ptr
<
bn_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
in
,
MKLDNNMatrixPtr
wgt
,
MKLDNNMatrixPtr
out
)
{
flags_
=
0u
;
prop_kind
pk
=
passType_
==
PASS_TEST
?
prop_kind
::
forward_scoring
:
prop_kind
::
forward_training
;
if
(
useGlobalStats_
)
{
flags_
=
(
flags_
|
batch_normalization_flag
::
use_global_stats
);
}
if
(
wgt
)
{
flags_
=
(
flags_
|
batch_normalization_flag
::
use_scale_shift
);
}
auto
fwdDesc
=
bn_fwd
::
desc
(
pk
,
in
->
getMemoryDesc
(),
EPS
,
flags_
);
pd
.
reset
(
new
bn_fwd
::
primitive_desc
(
fwdDesc
,
engine_
));
// TODO(TJ): use check macro
CHECK
(
out
);
CHECK
(
out
->
getPrimitiveDesc
()
==
pd
->
dst_primitive_desc
());
if
(
wgt
)
{
CHECK
(
wgt
->
getPrimitiveDesc
()
==
pd
->
weights_primitive_desc
());
}
if
(
passType_
!=
PASS_TEST
||
useGlobalStats_
)
{
CHECK
(
mean_
);
CHECK
(
mean_
->
getPrimitiveDesc
()
==
pd
->
mean_primitive_desc
());
CHECK
(
var_
);
CHECK
(
var_
->
getPrimitiveDesc
()
==
pd
->
variance_primitive_desc
());
}
}
void
MKLDNNBatchNormLayer
::
resetFwdPipeline
(
std
::
vector
<
primitive
>&
pipeline
,
std
::
shared_ptr
<
bn_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
out
)
{
if
(
passType_
==
PASS_TEST
)
{
if
(
useGlobalStats_
)
{
fwd_
.
reset
(
wgt
!=
nullptr
?
new
bn_fwd
(
*
pd
,
*
in
,
(
const
primitive
::
at
)(
*
mean_
),
(
const
primitive
::
at
)(
*
var_
),
*
wgt
,
*
out
)
:
new
bn_fwd
(
*
pd
,
*
in
,
(
const
primitive
::
at
)(
*
mean_
),
(
const
primitive
::
at
)(
*
var_
),
*
out
));
}
else
{
fwd_
.
reset
(
wgt
!=
nullptr
?
new
bn_fwd
(
*
pd
,
*
in
,
*
wgt
,
*
out
)
:
new
bn_fwd
(
*
pd
,
*
in
,
*
out
));
}
}
else
{
CHECK_EQ
(
useGlobalStats_
,
false
)
<<
"useGlobalStats should be false in training"
;
fwd_
.
reset
(
wgt
!=
nullptr
?
new
bn_fwd
(
*
pd
,
*
in
,
*
wgt
,
*
out
,
*
mean_
,
*
var_
)
:
new
bn_fwd
(
*
pd
,
*
in
,
*
out
,
*
mean_
,
*
var_
));
}
pipeline
.
push_back
(
*
fwd_
);
}
void
MKLDNNBatchNormLayer
::
resetBwdBuffers
(
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
out
)
{
CHECK
(
inVal_
&&
outVal_
);
resetOutGrad
(
out
,
outVal_
->
getPrimitiveDesc
());
resetInGrad
(
in
,
inVal_
->
getPrimitiveDesc
());
if
(
gradScaleShift_
)
{
CHECK
(
wgtVal_
);
resetWithMatrix
(
wgt
,
gradScaleShift_
,
wgtVal_
->
getPrimitiveDesc
());
}
}
void
MKLDNNBatchNormLayer
::
resetBwdPD
(
std
::
shared_ptr
<
bn_bwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
out
)
{
pd
=
nullptr
;
if
(
in
==
nullptr
)
{
return
;
}
CHECK
(
out
);
CHECK
(
out
->
getPrimitiveDesc
()
==
in
->
getPrimitiveDesc
());
auto
md
=
in
->
getMemoryDesc
();
auto
bwdDesc
=
bn_bwd
::
desc
(
prop_kind
::
backward
,
md
,
md
,
EPS
,
flags_
);
pd
.
reset
(
new
bn_bwd
::
primitive_desc
(
bwdDesc
,
engine_
,
*
fwdPD_
));
// TODO(TJ): use check macro
CHECK
(
wgt
);
CHECK
(
wgt
->
getPrimitiveDesc
()
==
pd
->
diff_weights_primitive_desc
());
CHECK
(
pd
->
weights_primitive_desc
()
==
fwdPD_
->
weights_primitive_desc
());
CHECK
(
mean_
);
CHECK
(
mean_
->
getPrimitiveDesc
()
==
pd
->
mean_primitive_desc
());
CHECK
(
var_
);
CHECK
(
var_
->
getPrimitiveDesc
()
==
pd
->
variance_primitive_desc
());
}
void
MKLDNNBatchNormLayer
::
resetBwdPipeline
(
std
::
vector
<
primitive
>&
pipeline
,
std
::
shared_ptr
<
bn_bwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
out
)
{
if
(
pd
==
nullptr
)
{
return
;
}
CHECK
(
inVal_
);
bwdData_
.
reset
(
wgt
&&
wgtVal_
?
new
bn_bwd
(
*
pd
,
*
inVal_
,
*
mean_
,
*
var_
,
*
out
,
*
wgtVal_
,
*
in
,
*
wgt
)
:
new
bn_bwd
(
*
pd
,
*
inVal_
,
*
mean_
,
*
var_
,
*
out
,
*
in
));
pipeline
.
push_back
(
*
bwdData_
);
}
}
// namespace paddle
paddle/gserver/layers/MKLDNNBatchNormLayer.h
0 → 100644
浏览文件 @
64eaeba1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "MKLDNNLayer.h"
#include "mkldnn.hpp"
namespace
paddle
{
typedef
mkldnn
::
batch_normalization_forward
bn_fwd
;
typedef
mkldnn
::
batch_normalization_backward
bn_bwd
;
/**
* @brief A subclass of MKLDNNLayer BatchNorm layer.
*
* The config file api is mkldnn_batch_norm
*/
class
MKLDNNBatchNormLayer
:
public
MKLDNNLayer
{
protected:
// save forward primitive_desc, which can be used backward
std
::
shared_ptr
<
bn_fwd
::
primitive_desc
>
fwdPD_
;
// Epsilon value used in the batch normalization formula.
static
const
real
EPS
;
// weight and bias in paddle
std
::
unique_ptr
<
Weight
>
weight_
;
std
::
unique_ptr
<
Weight
>
biases_
;
// mkldnn use a large buffer store both scale and shift
// which are weight and bias in paddle corresponding.
MatrixPtr
valueScaleShift_
;
MatrixPtr
gradScaleShift_
;
// Moving average of mean.
std
::
unique_ptr
<
Weight
>
movingMean_
;
// Moving average of variance.
std
::
unique_ptr
<
Weight
>
movingVar_
;
// if useGlobalStats_ is true, will use the loaded mean and variance.
// otherwise, calculate mean and variance in every mini-batch.
bool
useGlobalStats_
;
// used in MKLDNN primitive desc
unsigned
flags_
;
// use to compute moving mean and variance.
real
movingAvgFraction_
;
// whether the weight has been init
bool
hasInitedWgt_
;
// local mean and variance
MKLDNNMatrixPtr
mean_
;
// output of mkldnn: m
MKLDNNMatrixPtr
var_
;
// output of mkldnn: v^2
public:
explicit
MKLDNNBatchNormLayer
(
const
LayerConfig
&
config
)
:
MKLDNNLayer
(
config
),
useGlobalStats_
(
true
),
hasInitedWgt_
(
false
)
{}
~
MKLDNNBatchNormLayer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forward
(
PassType
passType
)
override
;
void
reshape
(
int
&
bs
,
int
&
ic
,
int
&
ih
,
int
&
iw
,
int
oc
,
int
&
oh
,
int
&
ow
)
override
;
void
resetFwd
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
override
;
void
resetBwd
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
override
;
void
updateWeights
(
const
UpdateCallback
&
callback
)
override
;
void
convertWeightsFromPaddle
()
override
;
protected:
void
initWeight
();
/**
* cal moving mean and variance.
* moving = moving * AvgFraction + local * (1 - AvgFraction)
*/
void
calMovingMeanAndVar
();
/**
* Forward functions: reset buffers(input, weight, output),
* reset primitive descriptor,
* reset pipeline.
*/
void
resetFwdBuffers
(
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
out
);
void
resetFwdPD
(
std
::
shared_ptr
<
bn_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
in
,
MKLDNNMatrixPtr
wgt
,
MKLDNNMatrixPtr
out
);
void
resetFwdPipeline
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
std
::
shared_ptr
<
bn_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
out
);
/**
* Backward functions: reset buffers(input, weight, output),
* reset primitive descriptor,
* reset pipeline.
*/
void
resetBwdBuffers
(
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
out
);
void
resetBwdPD
(
std
::
shared_ptr
<
bn_bwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
out
);
void
resetBwdPipeline
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
std
::
shared_ptr
<
bn_bwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
out
);
};
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录