未验证 提交 6418bc75 编写于 作者: Y yeliang2258 提交者: GitHub

add test_conv_act_mkldnn_fuse_pass (#38153)

* add test_conv_act_mkldnn_fuse_pass

* update cmakelist

* fix cmakelist

* fix timeout

* fix timeout

* fix timeout

* fix
上级 31e874b1
......@@ -80,6 +80,7 @@ if (WITH_MKLDNN AND TENSORRT_FOUND AND WITH_GPU)
set_tests_properties(test_fc_fuse_pass PROPERTIES TIMEOUT 240)
set_tests_properties(test_simplify_with_basic_ops_pass_autoscan PROPERTIES TIMEOUT 60)
set_tests_properties(test_adaptive_pool2d_convert_global_pass_autoscan PROPERTIES TIMEOUT 100)
set_tests_properties(test_conv_act_mkldnn_fuse_pass PROPERTIES TIMEOUT 120)
set_tests_properties(test_conv_eltwiseadd_bn_fuse_pass PROPERTIES TIMEOUT 120)
set_tests_properties(test_conv_elementwise_add2_act_fuse_pass PROPERTIES TIMEOUT 120)
set_tests_properties(test_conv_elementwise_add_act_fuse_pass PROPERTIES TIMEOUT 90)
......@@ -88,6 +89,7 @@ endif()
if (WITH_MKLDNN)
set_tests_properties(test_mkldnn_depthwise_conv_pass PROPERTIES TIMEOUT 120)
set_tests_properties(test_mkldnn_prelu_op PROPERTIES TIMEOUT 300)
set_tests_properties(test_conv_act_mkldnn_fuse_pass PROPERTIES TIMEOUT 120)
set_tests_properties(test_conv_transpose_eltwiseadd_bn_fuse_pass PROPERTIES TIMEOUT 250)
set_tests_properties(test_conv_transpose_bn_fuse_pass PROPERTIES TIMEOUT 300)
endif()
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import PassAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig, OpConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
import hypothesis
from hypothesis import given, settings, seed, example, assume, reproduce_failure
import hypothesis.strategies as st
class TestConvActMkldnnFusePass(PassAutoScanTest):
"""
x_var f_var(persistable)
\ /
conv2d
|
conv2d_var
|
act
|
act_var
"""
def sample_predictor_configs(self, program_config):
# MKLDNN
config = self.create_inference_config(use_gpu=False)
config.enable_mkldnn()
yield config, ["conv2d"], (1e-4, 1e-5)
def is_program_valid(self, prog_config):
paddings = prog_config.ops[0].attrs["paddings"]
strides = prog_config.ops[0].attrs["strides"]
groups = prog_config.ops[0].attrs["groups"]
padding_algorithm = prog_config.ops[0].attrs["padding_algorithm"]
dilations = prog_config.ops[0].attrs["dilations"]
data_format = prog_config.ops[0].attrs["data_format"]
filter_shape = prog_config.weights["filter"].shape
input_shape = prog_config.inputs["input_x"].shape
if data_format != "NCHW":
return False
if padding_algorithm == "VALID":
if ((input_shape[2] - (dilations[0] * (filter_shape[2] - 1) + 1)) / strides[0] + 1) <= 1 or \
((input_shape[3] - (dilations[1] * (filter_shape[3] - 1) + 1)) / strides[1] + 1) <= 1:
return False
if padding_algorithm == "EXPLICIT":
if ((input_shape[2] + paddings[0] + paddings[1] - (dilations[0] * (filter_shape[2] - 1) + 1)) / strides[0] + 1) <= 1 or \
((input_shape[3] + paddings[2] + paddings[3] - (dilations[1] * (filter_shape[3] - 1) + 1)) / strides[1] + 1) <= 1:
return False
if data_format == "NCHW":
if input_shape[1] != filter_shape[1] * groups:
return False
if filter_shape[0] % groups != 0:
return False
else:
if input_shape[3] != filter_shape[1] * groups:
return False
if filter_shape[0] % groups != 0:
return False
return True
def sample_program_config(self, draw):
# 1. Generate shape of input:X of conv2d
x_shape = draw(
st.lists(
st.integers(
min_value=1, max_value=100), min_size=4, max_size=4))
x_shape[1] = draw(st.integers(min_value=1, max_value=10))
# 2. Generate legal attr:data_format of conv2d
data_format = draw(st.sampled_from(["NCHW", "NHWC"]))
# 3. Generate legal shape of input:Y of conv2d
f_shape = draw(
st.lists(
st.integers(
min_value=1, max_value=7), min_size=4, max_size=4))
if data_format == "NCHW":
f_shape[1] = x_shape[1]
else:
f_shape[1] = x_shape[3]
# 4. Generate legal attr:strides of conv2d
strides = draw(
st.lists(
st.integers(
min_value=1, max_value=5), min_size=2, max_size=2))
# 5. Generate legal attr:padding_algorithm of conv2d
padding_algorithm = draw(st.sampled_from(["EXPLICIT", "SAME", "VALID"]))
# 6. Generate legal attr:padding of conv2d
padding = draw(
st.lists(
st.integers(
min_value=1, max_value=5), min_size=4, max_size=4))
# 7. Generate legal attr:groups of conv2d
groups = draw(st.integers(min_value=1, max_value=3))
# 8. Generate legal attr:dilations of conv2d
dilations = draw(
st.lists(
st.integers(
min_value=1, max_value=5), min_size=2, max_size=2))
# 9. Generate legal input:ResidualData of conv2d
res_shape = []
if draw(st.booleans()):
res_shape = draw(
st.lists(
st.integers(
min_value=1, max_value=100),
min_size=4,
max_size=4))
# 10. Generate legal shape of input:bias of conv2d
conv_bias_shape = []
inputs = dict()
weights = dict()
use_mkldnn = None
if draw(st.booleans()):
conv_bias_shape = [f_shape[0]]
inputs = {
"Input": ["input_x"],
"Filter": ["filter"],
"ResidualData": ["residualdata"],
"Bias": ["conv_bias"],
}
weights = {
"filter": TensorConfig(shape=f_shape),
"conv_bias": TensorConfig(shape=conv_bias_shape)
}
use_mkldnn = True
else:
inputs = {
"Input": ["input_x"],
"Filter": ["filter"],
"ResidualData": ["residualdata"]
}
weights = {"filter": TensorConfig(shape=f_shape)}
use_mkldnn = False
# 11. Generate legal act type of conv2d
act_type = draw(
st.sampled_from(["relu", "leaky_relu", "relu6", "swish"]))
conv2d_op = OpConfig(
"conv2d",
inputs=inputs,
outputs={"Output": ["conv2d_out"]},
strides=strides,
padding_algorithm=padding_algorithm,
paddings=padding,
groups=groups,
dilations=dilations,
data_format=data_format,
use_mkldnn=True)
# 11. Generate legal attr of act
act_op = None
self.passes = None
if act_type == "relu6":
self.passes = ["conv_relu6_mkldnn_fuse_pass"]
threshold = draw(st.floats(min_value=1.0, max_value=10.0))
act_op = OpConfig(
"relu6",
inputs={"X": ["conv2d_out"]},
outputs={"Out": ["relu_out"]},
threshold=threshold)
if act_type == "leaky_relu":
self.passes = ["conv_leaky_relu_mkldnn_fuse_pass"]
alpha = draw(st.floats(min_value=0.1, max_value=1.0))
act_op = OpConfig(
"leaky_relu",
inputs={"X": ["conv2d_out"]},
outputs={"Out": ["relu_out"]},
alpha=alpha)
if act_type == "relu":
self.passes = ["conv_relu_mkldnn_fuse_pass"]
act_op = OpConfig(
"relu",
inputs={"X": ["conv2d_out"]},
outputs={"Out": ["relu_out"]})
if act_type == "swish":
self.passes = ["conv_swish_mkldnn_fuse_pass"]
beta = draw(st.floats(min_value=0.1, max_value=1.0))
act_op = OpConfig(
"swish",
inputs={"X": ["conv2d_out"]},
outputs={"Out": ["swish_out"]},
beta=beta)
ops = [conv2d_op, act_op]
program_config = ProgramConfig(
ops=ops,
weights=weights,
inputs={
"input_x": TensorConfig(shape=x_shape),
"residualdata": TensorConfig(shape=res_shape)
},
outputs=ops[-1].outputs["Out"], )
return program_config
def test(self):
self.run_and_statis(quant=False, max_examples=300, passes=self.passes)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册