Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
63ec4ba0
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
63ec4ba0
编写于
2月 12, 2018
作者:
T
Travis CI
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Deploy to GitHub Pages:
91aac572
上级
90c06ac6
变更
2
展开全部
隐藏空白更改
内联
并排
Showing
2 changed file
with
12 addition
and
12 deletion
+12
-12
develop/api_doc/searchindex.js
develop/api_doc/searchindex.js
+1
-1
develop/api_doc/v2/fluid/layers.html
develop/api_doc/v2/fluid/layers.html
+11
-11
未找到文件。
develop/api_doc/searchindex.js
浏览文件 @
63ec4ba0
此差异已折叠。
点击以展开。
develop/api_doc/v2/fluid/layers.html
浏览文件 @
63ec4ba0
...
...
@@ -1547,7 +1547,7 @@ Default: ‘sigmoid’</li>
<h3>
cos_sim
<a
class=
"headerlink"
href=
"#cos-sim"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
cos_sim
</code><span
class=
"sig-paren"
>
(
</span><em>
X
</em>
,
<em>
Y
</em>
,
<em>
**kwargs
</em>
<span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
cos_sim
</code><span
class=
"sig-paren"
>
(
</span><em>
X
</em>
,
<em>
Y
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
This function performs the cosine similarity between two tensors
X and Y and returns that as the output.
</p>
</dd></dl>
...
...
@@ -1557,7 +1557,7 @@ X and Y and returns that as the output.</p>
<h3>
cross_entropy
<a
class=
"headerlink"
href=
"#cross-entropy"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
cross_entropy
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
label
</em>
,
<em>
**kwargs
</em><span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
cross_entropy
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
label
</em>
,
<em>
soft_label=False
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p><strong>
Cross Entropy Layer
</strong></p>
<p>
This layer computes the cross entropy between
<cite>
input
</cite>
and
<cite>
label
</cite>
. It
supports both standard cross-entropy and soft-label cross-entropy loss
...
...
@@ -1606,7 +1606,7 @@ a softmax operator.</li>
tensor
<
int64
>
with shape [N x 1]. When
<cite>
soft_label
</cite>
is set to
<cite>
True
</cite>
,
<cite>
label
</cite>
is a
tensor
<
float/double
>
with shape [N x D].
</li>
<li><strong>
soft_label
</strong>
(
bool, via
<cite>
**kwargs
</cite
>
)
–
a flag indicating whether to
<li><strong>
soft_label
</strong>
(
<em>
bool
</em
>
)
–
a flag indicating whether to
interpretate the given labels as soft
labels, default
<cite>
False
</cite>
.
</li>
</ul>
...
...
@@ -1640,7 +1640,7 @@ labels, default <cite>False</cite>.</li>
<h3>
square_error_cost
<a
class=
"headerlink"
href=
"#square-error-cost"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
square_error_cost
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
label
</em>
,
<em>
**kwargs
</em>
<span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
square_error_cost
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
label
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p><strong>
Square error cost layer
</strong></p>
<p>
This layer accepts input predictions and target label and returns the
squared error cost.
</p>
...
...
@@ -1686,7 +1686,7 @@ squared error cost.</p>
<h3>
accuracy
<a
class=
"headerlink"
href=
"#accuracy"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
accuracy
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
label
</em>
,
<em>
k=1
</em>
,
<em>
correct=None
</em>
,
<em>
total=None
</em>
,
<em>
**kwargs
</em>
<span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
accuracy
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
label
</em>
,
<em>
k=1
</em>
,
<em>
correct=None
</em>
,
<em>
total=None
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
This function computes the accuracy using the input and label.
The output is the top_k inputs and their indices.
</p>
</dd></dl>
...
...
@@ -1696,7 +1696,7 @@ The output is the top_k inputs and their indices.</p>
<h3>
chunk_eval
<a
class=
"headerlink"
href=
"#chunk-eval"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
chunk_eval
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
label
</em>
,
<em>
chunk_scheme
</em>
,
<em>
num_chunk_types
</em>
,
<em>
excluded_chunk_types=None
</em>
,
<em>
**kwargs
</em>
<span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
chunk_eval
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
label
</em>
,
<em>
chunk_scheme
</em>
,
<em>
num_chunk_types
</em>
,
<em>
excluded_chunk_types=None
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
This function computes and outputs the precision, recall and
F1-score of chunk detection.
</p>
</dd></dl>
...
...
@@ -1814,7 +1814,7 @@ groups mismatch.</p>
<h3>
sequence_pool
<a
class=
"headerlink"
href=
"#sequence-pool"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
sequence_pool
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
pool_type
</em>
,
<em>
**kwargs
</em>
<span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
sequence_pool
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
pool_type
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
This function add the operator for sequence pooling.
It pools features of all time-steps of each instance, and is applied
on top of the input using pool_type mentioned in the parameters.
</p>
...
...
@@ -2389,7 +2389,7 @@ will be named automatically.</li>
<h3>
sequence_first_step
<a
class=
"headerlink"
href=
"#sequence-first-step"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
sequence_first_step
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
**kwargs
</em>
<span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
sequence_first_step
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
This funciton get the first step of sequence.
</p>
<div
class=
"highlight-text"
><div
class=
"highlight"
><pre><span></span>
x is a 1-level LoDTensor:
x.lod = [[0, 2, 5, 7]]
...
...
@@ -2425,7 +2425,7 @@ then output is a Tensor:
<h3>
sequence_last_step
<a
class=
"headerlink"
href=
"#sequence-last-step"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
sequence_last_step
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
**kwargs
</em>
<span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
sequence_last_step
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
This funciton get the last step of sequence.
</p>
<div
class=
"highlight-text"
><div
class=
"highlight"
><pre><span></span>
x is a 1-level LoDTensor:
x.lod = [[0, 2, 5, 7]]
...
...
@@ -2461,7 +2461,7 @@ then output is a Tensor:
<h3>
dropout
<a
class=
"headerlink"
href=
"#dropout"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
dropout
</code><span
class=
"sig-paren"
>
(
</span><em>
x
</em>
,
<em>
dropout_prob
</em>
,
<em>
is_test=False
</em>
,
<em>
seed=None
</em>
,
<em>
**kwargs
</em>
<span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
dropout
</code><span
class=
"sig-paren"
>
(
</span><em>
x
</em>
,
<em>
dropout_prob
</em>
,
<em>
is_test=False
</em>
,
<em>
seed=None
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
Computes dropout.
</p>
<p>
Drop or keep each element of
<cite>
x
</cite>
independently. Dropout is a regularization
technique for reducing overfitting by preventing neuron co-adaption during
...
...
@@ -2798,7 +2798,7 @@ will be named automatically.</li>
<h3>
warpctc
<a
class=
"headerlink"
href=
"#warpctc"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
warpctc
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
label
</em>
,
<em>
blank=0
</em>
,
<em>
norm_by_times=False
</em>
,
<em>
**kwargs
</em>
<span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
warpctc
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
label
</em>
,
<em>
blank=0
</em>
,
<em>
norm_by_times=False
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
An operator integrating the open source Warp-CTC library
(
<a
class=
"reference external"
href=
"https://github.com/baidu-research/warp-ctc"
>
https://github.com/baidu-research/warp-ctc
</a>
)
to compute Connectionist Temporal Classification (CTC) loss.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录