提交 6177cb51 编写于 作者: T tensor-tang

Merge remote-tracking branch 'upstream/develop' into context

......@@ -20,8 +20,10 @@ set(PADDLE_BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR})
include(system)
project(paddle CXX C Go)
message(STATUS "CXX compiler: " ${CMAKE_CXX_COMPILER} ", version: " ${CMAKE_CXX_COMPILER_VERSION})
message(STATUS "C compiler: " ${CMAKE_C_COMPILER} ", version: " ${CMAKE_C_COMPILER_VERSION})
message(STATUS "CXX compiler: ${CMAKE_CXX_COMPILER}, version: "
"${CMAKE_CXX_COMPILER_ID} ${CMAKE_CXX_COMPILER_VERSION}")
message(STATUS "C compiler: ${CMAKE_C_COMPILER}, version: "
"${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
find_package(Sphinx)
if(NOT CMAKE_CROSSCOMPILING)
......
......@@ -19,7 +19,7 @@ ExternalProject_Add(
if (${CMAKE_VERSION} VERSION_LESS "3.3.0")
set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/eigen3_dummy.c)
file(WRITE ${dummyfile} "const char * dummy_eigen3 = \"${dummyfile}\";")
file(WRITE ${dummyfile} "const char *dummy_eigen3 = \"${dummyfile}\";")
add_library(eigen3 STATIC ${dummyfile})
else()
add_library(eigen3 INTERFACE)
......
......@@ -30,23 +30,21 @@ IF(NOT ${CBLAS_FOUND})
CACHE FILEPATH "openblas library." FORCE)
SET(OPENBLAS_CC "${CMAKE_C_COMPILER} -Wno-unused-but-set-variable -Wno-unused-variable")
SET(OPENBLAS_COMMIT "v0.2.20")
IF(CMAKE_CROSSCOMPILING)
SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER})
GET_FILENAME_COMPONENT(CROSS_SUFFIX ${CMAKE_C_COMPILER} DIRECTORY)
SET(CROSS_SUFFIX ${CROSS_SUFFIX}/)
IF(ANDROID)
# arm_soft_fp_abi branch of OpenBLAS to support softfp
# https://github.com/xianyi/OpenBLAS/tree/arm_soft_fp_abi
SET(OPENBLAS_COMMIT "b5c96fcfcdc82945502a2303116a64d89985daf5")
IF(ANDROID_ABI MATCHES "^armeabi(-v7a)?$")
# use softfp
SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 ARM_SOFTFP_ABI=1 USE_THREAD=0)
ELSEIF(ANDROID_ABI STREQUAL "arm64-v8a")
SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV8 BINARY=64 USE_THREAD=0)
ENDIF()
ELSEIF(IOS)
IF(CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
SET(OPENBLAS_COMMIT "b5c96fcfcdc82945502a2303116a64d89985daf5")
SET(OPENBLAS_CC "${OPENBLAS_CC} ${CMAKE_C_FLAGS} -isysroot ${CMAKE_OSX_SYSROOT}")
SET(OPENBLAS_CC "${OPENBLAS_CC} -arch arm64")
SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV8 BINARY=64 USE_THREAD=0 CROSS_SUFFIX=${CROSS_SUFFIX})
......@@ -56,14 +54,12 @@ IF(NOT ${CBLAS_FOUND})
ENDIF()
ELSEIF(RPI)
# use hardfp
SET(OPENBLAS_COMMIT "v0.2.20")
SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 USE_THREAD=0)
ENDIF()
ELSE()
IF(APPLE)
SET(OPENBLAS_CC "${CMAKE_C_COMPILER} -isysroot ${CMAKE_OSX_SYSROOT}")
ENDIF()
SET(OPENBLAS_COMMIT "v0.2.20")
SET(OPTIONAL_ARGS "")
IF(CMAKE_SYSTEM_PROCESSOR MATCHES "^x86(_64)?$")
SET(OPTIONAL_ARGS DYNAMIC_ARCH=1 NUM_THREADS=64)
......@@ -113,7 +109,7 @@ INCLUDE_DIRECTORIES(${CBLAS_INC_DIR})
# FIXME(gangliao): generate cblas target to track all high performance
# linear algebra libraries for cc_library(xxx SRCS xxx.c DEPS cblas)
SET(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/cblas_dummy.c)
FILE(WRITE ${dummyfile} "const char * dummy = \"${dummyfile}\";")
FILE(WRITE ${dummyfile} "const char *dummy_cblas = \"${dummyfile}\";")
ADD_LIBRARY(cblas STATIC ${dummyfile})
TARGET_LINK_LIBRARIES(cblas ${CBLAS_LIBRARIES})
......
......@@ -120,7 +120,7 @@ function(merge_static_libs TARGET_NAME)
DEPENDS ${libs})
# Generate dummy staic lib
file(WRITE ${target_SRCS} "const char *dummy = \"${target_SRCS}\";")
file(WRITE ${target_SRCS} "const char *dummy_${TARGET_NAME} = \"${target_SRCS}\";")
add_library(${TARGET_NAME} STATIC ${target_SRCS})
target_link_libraries(${TARGET_NAME} ${libs_deps})
......@@ -160,7 +160,7 @@ function(merge_static_libs TARGET_NAME)
DEPENDS ${libs} ${target_OBJS})
# Generate dummy staic lib
file(WRITE ${target_SRCS} "const char *dummy = \"${target_SRCS}\";")
file(WRITE ${target_SRCS} "const char *dummy_${TARGET_NAME} = \"${target_SRCS}\";")
add_library(${TARGET_NAME} STATIC ${target_SRCS})
target_link_libraries(${TARGET_NAME} ${libs_deps})
......@@ -324,7 +324,7 @@ function(go_library TARGET_NAME)
)
# Add dummy code to support `make target_name` under Terminal Command
file(WRITE ${dummyfile} "const char * dummy = \"${dummyfile}\";")
file(WRITE ${dummyfile} "const char *dummy_${TARGET_NAME} = \"${dummyfile}\";")
if (go_library_SHARED OR go_library_shared)
add_library(${TARGET_NAME} SHARED ${dummyfile})
else()
......
......@@ -307,6 +307,12 @@ sequence_expand
:noindex:
gru_unit
--------
.. autofunction:: paddle.v2.fluid.layers.gru_unit
:noindex:
lstm_unit
---------
.. autofunction:: paddle.v2.fluid.layers.lstm_unit
......
# Design Doc: Concurrent Programming with Fluid
With PaddlePaddle Fluid, users describe a program other than a model. The program is a [`ProgramDesc`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto) protobuf message. TensorFlow/MxNet/Caffe2 applications generate protobuf messages too, but their protobuf messages represent the model, a graph of operators, but not the program that trains/uses the model.
Many know that when we program TensorFlow, we can specify the device on which each operator runs. This allows us to create a concurrent/parallel AI application. An interesting questions is **how does a `ProgramDesc` represents a concurrent program?**
The answer relies on the fact that a `ProgramDesc` is similar to an abstract syntax tree (AST) that describes a program. So users just program a concurrent program that they do with any concurrent programming language, e.g., [Go](https://golang.org).
## An Analogy
The following table compares concepts in Fluid and Go
| Go | Fluid |
|----|-------|
|user-defined functions | [layers](https://github.com/PaddlePaddle/Paddle/tree/develop/python/paddle/v2/fluid) |
| control-flow and built-in functions | [intrinsics/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators) |
| goroutines, channels | [class ThreadPool](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/framework/thread_pool.h) |
| runtime | [class Executor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.h) |
## An Example Concurrent Program
To review all above concepts in an example, let us take a simple program and writes its distributed version.
Suppose that we want to parallelize a naive Fluid program (written in Go and calling Fluid's Go binding) that multiplies two tensors.
```go
import "fluid"
func paddlepaddle() {
X = fluid.read(...)
W = fluid.Tensor(...)
Y = fluid.mult(X, W)
}
```
Please be aware that the Fluid's Go binding provides the default `main` function, which calls the `paddlepaddle` function, which, in this case, is defined in above program and creates the following `ProgramDesc` message.
```protobuf
message ProgramDesc {
block[0] = Block {
vars = [X, W, Y],
ops = [
read(output = X)
assign(input = ..., output = W)
mult(input = {X, W}, output = Y)
],
}
}
```
Then, the default `main` function calls `fluid.run()`, which creates an instance of the [`class Executor`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.h) and calls `Executor.Run(block[0])`, where `block[0]` is the first and only block defined in above `ProgramDesc` message.
The default `main` function is defined as follows:
```go
func main() {
paddlepaddle()
fluid.run()
}
```
## The Concurrent Version
By parallelizing the above program, we could support very big tensor X by splitting into small pieces {x_1, x_2, ...} and sent each piece to worker process/node for parallel multiplication.
In this case, we can write a transpiler that takes a `ProgramDesc` message that represents the above example program and outputs two `ProgramDesc` messages, one for running on the master process/node, and the other one for worker processes/nodes.
### The Master Program
The master program could look like the following:
```protobuf
message ProgramDesc {
block[0] = Block {
vars = [X, L, Y],
ops = [
read(output = X)
kube_get_workers_addrs(output = L)
Y = tensor_array(len(L))
parallel_for(input = X, output = Y,
attrs = {L, block_id(1)}) # referring to block 1
]
}
block[1] = Block {
parent = 0,
vars = [x, y, index],
ops = [
slice(input = [X, index], output = x) # index is initialized by parallel_for
send(input = x, attrs = L[index])
recv(outputs = y, attrs = L[index])
assign(input = y, output = Y[index])
]
}
}
```
The equivalent Fluid program (calling the Go binding) is:
```go
func main() { //// block 0
X = fluid.read(...)
L = fluid.k8s.get_worker_addrs()
Y = fluid.tensor_array(len(L))
fluid.parallel_for(X, L,
func(index int) { //// block 1
x = X[index]
fluid.send(L[index], x)
y = fluid.recv(L[index])
Y[index] = y
})
}
```
An explanation of the above program:
- `fluid.k8s` is a package that provides access to Kubernetes API.
- `fluid.k8s.get_worker_addrs` returns the list of IP and ports of all pods of the current job except for the current one (the master pod).
- `fluid.tensor_array` creates a [tensor array](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor_array.h). `fluid.parallel_for` creates a `ParallelFor` intrinsic, which, when executed,
1. creates `len(L)` scopes, each for the concurrent running of the sub-block (block 1 in this case), and initializes a variable named "index" in the scope to an integer value in the range `[0, len(L)-1]`, and
2. creates `len(L)` threads by calling into the `ThreadPool` singleton, each thread
1. creates an Executor instance, and
2. calls `Executor.Run(block)`, where `block` is block 1 as explained above.
1. Please be aware that block 1 is a sub-block of block 0, so ops in block 1 could refer to variables defined in block 0.
### The Worker Program
The worker program looks like
```go
func main() {
W = Tensor(...)
x = fluid.listen_and_do(
fluid.k8s.self_addr(),
func(input Tensor) {
output = fluid.mult(input, W)
})
}
```
where
- `fluid.listen_and_do` creates a `ListenAndDo` intrinsic, which, when executed,
1. listens on the current pod's IP address, as returned by `fliud.k8s.self_addr()`,
2. once a connection is established,
1. creates a scope of two parameters, "input" and "output",
2. reads a [Fluid variable](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h) and saves it into "input",
3. creates an Executor instance and calls `Executor.Run(block)`, where the block is generated by running the lambda specified as the second parameter of `fluid.listen_and_do`.
## Summarization
From the above example, we see that:
1. Fluid enables the imperative programming paradigm by:
1. letting users describe a program, but not a model (a sequence of layers, or a graph of operators), and
2. call the `fluid.run` function that runs the program implicitly.
1. The program is described as a `ProgramDesc` protobuf message.
2. Function `Executor.Run` takes a block, instead of a `ProgramDesc`, as its parameter.
3. `fluid.run` calls `Executor.Run` to run the first block in the `ProgramDesc` message.
4. `Executor.Run`'s implementation is extremely simple -- it doesn't plan the execution nor create threads; instead, it runs on the current thread and execute intrinsics/operators' `Run` method sequentially as they appear in the `Block.ops` array.
5. Intrinsics/operators' `Run` method might create threads. For example, the `ListenAndDo` operator creates a thread to handle each incoming request.
6. Threads are not necessarily OS thread; instead, they could be [green threads](https://en.wikipedia.org/wiki/Green_threads) managed by ThreadPool. Multiple green threads might run on the same OS thread. An example green threads is Go's [goroutines](https://tour.golang.org/concurrency/1).
# Memory Optimization
## Problem
In a lecture from Andrew Ng, he attributes the recent sucess of AI due to a combination of these:
- availability of Big Data
- supercomputing power to process this Big Data over very large neural networks
- modern algorithms
Following graph shows the details:
![](images/deep_learning.png)
Larger model usually brings better performance. However, GPU memory is certain limited. For example, the memory size of a GTX TITAN X is only 12GB. To train complex and large model, we have to take care of memory using. Besides, memory optimization is also necessary in both online/mobile inference.
## Solution
### Basic Strategy
There are some basic strategies to make memory optimization, including in-place operation and memory sharing.
#### In-place Operation
In a relu activation operator:
$y = \max(x, 0)$
If the variable x is not used in any other operator, we can make an in-place operation. In other words, the memory block of variable y and variable x are the same. In-place operation will save 50% memory occupancy immediately.
#### Memory Sharing
Not all operators support in-place operations. Memory sharing is a more general strategy.
Following is an example:
```
a = op1(b, c);
d = op2(a)
e = op3(d, f)
```
In this case, variable a is no longer used, and op2 does not support in-place operation. After op2 finished, we can put the memory of variable a to a memory pool. Then, variable e can share the memory of variable a from the pool.
### Live Variable Analysis
It's not enough to only have some basic strategies. The prerequisite of memory optimization is to know if a variable is still "live" after an operation.
In our design, the neural network topology is defined as a program. Luckily, [live variable analysis](https://en.wikipedia.org/wiki/Live_variable_analysis) is a classic problem in compilers which can be used in many stages, such as register allocation.
In compilers, the front end of the compilers translates programs into an intermediate language with an unbounded number of temporaries. This program must run on a machine with a bounded number of registers. Two temporaries a and b can fit into the same register, if a and b are never "in use" at the same time. Thus, many temporaries can fit in few registers; if they don't all fit, the excess temporaries can be kept in memory.
Therefore, the compiler needs to analyze the intermediate-representation program to determine which temporaries are in use at the same time. We say a variable is "live" if it holds a value that may be needed in the future, so this analysis is called liveness analysis.
We can leran these techniques from compilers. There are mainly two stages to make live variable analysis:
- construct a control flow graph
- solve the dataflow equations
#### Control Flow Graph
To preform analyses on a program, it is often useful to make a control flow graph. A [control flow graph](https://en.wikipedia.org/wiki/Control_flow_graph) (CFG) in computer science is a representation, using graph notation, of all paths that might be traversed through a program during its execution. Each statement in the program is a node in the flow graph; if statemment x can be followed by statement y, there is an egde from x to y.
Following is the flow graph for a simple loop.
![](images/control_flow_graph.png)
#### Dataflow Analysis
liveness of variable "flows" around the edges of the control flow graph; determining the live range of each variable is an example of a dataflow problem. [Dataflow analysis](https://en.wikipedia.org/wiki/Data-flow_analysis) is a technique for gathering information about the possible set of values calculated at various points in a computer program.
A simple way to perform data-flow analysis of programs is to set up dataflow equations for each node of the control flow graph and solve them by repeatedly calculating the output from the input locally at each node until the whole system stabilizes.
- Flow Graph Terminology
A flow graph node has out-edges that lead to sucessor nodes, and in-edges that come from presucessor nodes. The set *pred[n]* is all the predecessors of node n, and *succ[n]* is the set of sucessors.
In former control flow graph, the out-edges of node 5 are 5 --> 6 and 5 --> 2, and *succ[5]* = {2, 6}. The in-edges of 2 are 5 --> 2 and 1 --> 2, and *pred[2]* = {1, 5}.
- Uses and Defs
An assignmemt to a variable or temporary defines that variable. An occurence of a variable on the right-hand side of an assginment(or in other expressions) uses the variable. We can speak the *def* of a variable as the set of graph nodes that define it; or the *def* of a graph node as the set of variables that it defines; and the similarly for the *use* of a variable or graph node. In former control flow graph, *def(3)* = {c}, *use(3)* = {b, c}.
- Liveness
A variable is *live* on an edge if there is a directed path from that edge to a *use* of the variable that does not go through any *def*. A variable is *live-in* at a node if it is live on any of the in-edges of that node; it is *live-out* at a node if it is live on any of the out-edges of the node.
The calcution of liveness can be solved by iteration until a fixed pointer is reached. Following is the recursive formula:
![](images/dataflow_equations.png)
### Memory optimization transpiler
At last, we take basic strategy and liveness analysis techniques learning from compilers to implement our memory optimization transpiler.
#### add in-place attribute
In-place is a built-in attribute of an operator. Since we treat in-place and other operators differently, we have to add an in-place attribute for every operator.
#### contruct control flow graph
Following is the ProgramDesc protobuf of [machine translation](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/fluid/tests/book/test_machine_translation.py) example.
- Block0:
```
lookup_table
mul
...
while(sub-block idx 1)
...
array_to_lod_tensor
cross_entropy
...
while_grad(sub-block idx 2)
read_from_array
array_to_lod_tensor
...
```
- Block1
```
read_from_array
read_from_array
...
write_to_array
increment
write_to_array
less_than
```
- Block2
```
read_from_array
increment
...
write_to_array
write_to_array
```
We can transfer all the operators and variables in ProgramDesc to build a control flow graph.
```python
class ControlFlowGraph(object):
def __init__(self, Program):
self._sucessors = defaultdict(set)
self._presucessors = defaultdict(set)
self._uses = defaultdict(set)
self._defs = defaultdict(set)
self._live_in = defaultdict(set)
self._live_out = defaultdict(set)
self._program = Program
def build(self):
pass
def dataflow_analysis(self):
pass
def memory_optimization(self):
pass
def get_program(self):
return self._program
```
#### make dataflow analysis
We follow guide from compilers and try to solve the dataflow equation to get liveness of every variable. If the live-in of an operator node is different from the live-out, then we can make memory sharing.
For example:
```
a = op1(b, c);
d = op2(a)
e = op3(d, f)
```
The dataflow analysis result is:
```
live_in(op1) = {b, c, f}
live_out(op1) = {a, f}
live_in(op2) = {a, f}
live_out(op2) = {d, f}
live_in(op3) = {d, f}
live_out(op3) = {}
```
After op1, we can process variable b and variable c; After op2, we can process variable a. After op3, we can process variable d and variable f.
#### memory sharing policy
A memory pool will be mantained in the stage of memory optimization. Each operator node will be scanned to determine memory optimization is done or not. If an operator satifies the requirement, following policy will be taken to handle input/output variables.
```
if op.support_inplace():
i --> pool
pool --> o
else:
pool --> o
i --> pool
```
## Reference
- [Lecture Notes From Artificial Intelligence Is The New Electricity By Andrew Ng](https://manavsehgal.com/lecture-notes-from-artificial-intelligence-is-the-new-electricity-by-andrew-ng-4712dcbf26e5)
- Modern compiler implementation in ML, by Andrew W. Appel
- [Optimizing Memory Consumption in Deep learning](https://mxnet.incubator.apache.org/architecture/note_memory.html)
......@@ -48,8 +48,8 @@ Fluid uses class [DeviceContext](https://github.com/PaddlePaddle/Paddle/blob/dev
```
/-> CPUDeviceContext --> MKLDeviceContext
DeviceContext ----> CUDADeviceContext --> CUDNNDeviceContext
/-> CPUDeviceContext
DeviceContext ----> CUDADeviceContext
\-> FPGADeviceContext
```
......@@ -79,16 +79,6 @@ private:
};
```
- CUDNNDeviceContext
```
class CUDNNDeviceContext : public CUDADeviceContext {
private:
cudnnHandle_t cudnn_handle_;
};
```
### Memory and Tensor
......
# Android平台编译指南
用户可通过如下两种方式,交叉编译Android平台上适用的PaddlePaddle库:
- 基于Docker容器的编译方式
- 基于Linux交叉编译环境的编译方式
- [基于Docker容器的编译方式](#基于docker容器的编译方式)
- [基于Linux交叉编译环境的编译方式](#基于linux交叉编译环境的编译方式)
## 基于Docker容器的编译方式
Docker能在所有主要操作系统(包括Linux,Mac OS X和Windows)上运行,因此,使用基于Docker容器的编译方式,用户可在自己熟悉的开发平台上编译Android平台上适用的PaddlePaddle库。
......@@ -16,6 +17,12 @@ $ cd Paddle
$ docker build -t username/paddle-android:dev . -f Dockerfile.android
```
用户也可以使用PaddlePaddle提供的官方开发镜像:
```bash
$ docker pull paddlepaddle/paddle:latest-dev-android
```
### 编译PaddlePaddle C-API库
构建好开发镜像后,即可使用开发镜像来编译Android版PaddlePaddle C-API库。
Android的Docker开发镜像向用户提供两个可配置的参数:
......@@ -41,23 +48,25 @@ Android的Docker开发镜像向用户提供两个可配置的参数:
</tr>
<tr class="row-odd">
<td>ANDROID_API</td>
<td>>= 21</td>
<td>>= 16</td>
<td>21</td>
</tr>
</tbody>
</table>
- 编译`armeabi-v7a``Android API 21`的PaddlePaddle库
```bash
$ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=armeabi-v7a" -e "ANDROID_API=21" username/paddle-android:dev
```
- 编译`arm64-v8a``Android API 21`的PaddlePaddle库
```bash
$ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=arm64-v8a" -e "ANDROID_API=21" username/paddle-android:dev
```
执行上述`docker run`命令时,容器默认执行[paddle/scripts/docker/build_android.sh](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build_android.sh)脚本。该脚本中记录了交叉编译Android版PaddlePaddle库常用的CMake配置,并且会根据`ANDROID_ABI``ANDROID_API`自动构建独立工具链、进行编译和安装。由于arm64架构要求Android API不小于21。因此当`ANDROID_ABI=arm64-v8a``ANDROID_API<21`时,Docker容器中将默认使用`Android API 21`的编译工具链。用户可以参考下文**配置交叉编译参数**章节,根据个人的需求修改定制Docker容器所执行的脚本。编译安装结束之后,PaddlePaddle的C-API库将被安装到`$PWD/install_android`目录,所依赖的第三方库同时也被安装到`$PWD/install_android/third_party`目录。
执行上述`docker run`命令时,容器默认执行[paddle/scripts/docker/build_android.sh](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build_android.sh)脚本。该脚本中记录了交叉编译Android版PaddlePaddle库常用的CMake配置,并且会根据`ANDROID_ABI``ANDROID_API`自动构建独立工具链、进行编译和安装。由于arm64架构要求Android API不小于21。因此当`ANDROID_ABI=arm64-v8a``ANDROID_API<21`时,Docker容器中将默认使用`Android API 21`的编译工具链。用户可以参考下文[配置交叉编译参数](#配置交叉编译参数)章节,根据个人的需求修改定制Docker容器所执行的脚本。编译安装结束之后,PaddlePaddle的C-API库将被安装到`$PWD/install_android`目录,所依赖的第三方库同时也被安装到`$PWD/install_android/third_party`目录。
## 基于Linux交叉编译环境的编译方式
本文档将以Linux x86-64平台为例,介绍交叉编译Android平台上适用的PaddlePaddle库的方法和步骤。
......@@ -83,6 +92,7 @@ your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain
此命令将在`your/path/to/arm_standalone_toolchain`目录生成一套独立编译工具链,面向架构为32位ARM架构,支持的最小的Android API级别为21,支持编译器`arm-linux-androideabi-gcc (GCC) 4.9``clang 3.8`
- 构建`arm64-v8a``Android API 21`的独立工具链:
```bash
your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain.sh \
--arch=arm64 --platform=android-21 --install-dir=your/path/to/arm64_standalone_toolchain
......@@ -90,14 +100,12 @@ your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain
此命令将在`your/path/to/arm64_standalone_toolchain`目录生成一套独立编译工具链,面向架构为64位ARM64架构,支持的最小Android API级别为21,支持编译器`arm-linux-androideabi-gcc (GCC) 4.9``clang 3.8`
注意:**PaddlePaddle要求使用的编译工具链所支持的Android API级别不小于21**
### 配置交叉编译参数
CMake系统对交叉编译提供了支持[cmake-toolchains](https://cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html#cross-compiling)。为了简化cmake配置,PaddlePaddle为交叉编译提供了工具链配置文档[cmake/cross_compiling/android.cmake](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/android.cmake),以提供一些默认的编译器和编译参数相关配置。注意,从CMake 3.7版本开始,CMake官方对Android平台的交叉编译提供了通用的支持。PaddlePaddle若检测到用户使用的CMake版本不低于3.7时,将会将用户传进来的配置参数传递CMake系统,交由CMake系统本身来处理。有关参数配置的详细说明见[cmake-toolchains](https://cmake.org/cmake/help/v3.7/manual/cmake-toolchains.7.html#cross-compiling)
交叉编译Android版本的PaddlePaddle库时,有一些必须配置的参数:
- `CMAKE_SYSTEM_NAME`,CMake编译的目标平台,必须设置为`Android`。在设置`CMAKE_SYSTEM_NAME=Android`后,PaddlePaddle的CMake系统才认为是在交叉编译Android系统的版本,并自动编译宿主机版protoc可执行文件、目标机版protobuf库、以及Android所需`arm_soft_fp_abi`分支的目标机版OpenBLAS库。此外,还会强制设置一些PaddlePaddle参数的值(`WITH_GPU=OFF``WITH_AVX=OFF``WITH_PYTHON=OFF``WITH_RDMA=OFF`)。
- `CMAKE_SYSTEM_NAME`,CMake编译的目标平台,必须设置为`Android`。在设置`CMAKE_SYSTEM_NAME=Android`后,PaddlePaddle的CMake系统才认为是在交叉编译Android系统的版本,并自动编译PaddlePaddle所需的所有第三方库。此外,还会强制设置一些PaddlePaddle参数的值(`WITH_GPU=OFF``WITH_AVX=OFF``WITH_PYTHON=OFF``WITH_RDMA=OFF``WITH_MKL=OFF``WITH_GOLANG=OFF`)。
- `WITH_C_API`,必须设置为`ON`。在Android平台上只支持使用C-API来预测。
- `WITH_SWIG_PY`,必须设置为`OFF`。在Android平台上不支持通过swig调用来训练或者预测。
......@@ -119,7 +127,7 @@ Android平台可选配置参数:
其他配置参数:
- `USE_EIGEN_FOR_BLAS`,是否使用Eigen库进行矩阵计算。可设置`ON/OFF`,默认值为`OFF`
- `HOST_C/CXX_COMPILER`,宿主机的C/C++编译器。在编译宿主机版protoc可执行文件和目标机版OpenBLAS库时需要用到。默认设置成环境变量`CC`的值;若环境变量`CC`没有设置,则设置成`cc`编译器。
- `HOST_C/CXX_COMPILER`,宿主机的C/C++编译器。在编译宿主机版protoc可执行文件和目标机版OpenBLAS库时需要用到。默认设置成环境变量`CC/CXX`的值;若环境变量`CC/CXX`没有设置,则设置成`cc/c++`编译器。
常用的cmake配置如下:
......@@ -147,9 +155,10 @@ cmake -DCMAKE_SYSTEM_NAME=Android \
..
```
用户还可根据自己的需求设置其他编译参数。比如希望最小化生成的库的大小,可以设置`CMAKE_BUILD_TYPE``MinSizeRel`;若希望最快的执行速度,则可设置`CMAKE_BUILD_TYPE``Release`。亦可以通过手动设置`CMAKE_C/CXX_FLAGS_MINSIZEREL/RELEASE`来影响PaddlePaddle的编译过程。
用户还可根据自己的需求设置其他编译参数。比如希望最小化生成的库的大小,可以设置`CMAKE_BUILD_TYPE``MinSizeRel`;若希望最快的执行速度,则可设置`CMAKE_BUILD_TYPE``Release`。亦可以通过手动设置`CMAKE_C/CXX_FLAGS`来影响PaddlePaddle的编译过程。
**性能TIPS**,为了达到最快的计算速度,在CMake参数配置上,有以下建议:
- 设置`CMAKE_BUILD_TYPE``Release`
- 使用`clang`编译工具链
- `armeabi-v7a`时,设置`USE_EIGEN_BLAS=ON`,使用Eigen进行矩阵计算;`arm64-v8a`时,设置`USE_EIGEN_FOR_BLAS=OFF`,使用OpenBLAS进行矩阵计算
......
# Build PaddlePaddle for Android
There are two approaches to build PaddlePaddle for Android: using Docker and on Linux without Docker.
There are two approaches to build PaddlePaddle for Android:
- [Cross-Compiling Using Docker](#cross-compiling-using-docker)
- [Cross-Compiling on Linux](#cross-compiling-on-linux)
## Cross-Compiling Using Docker
......@@ -16,6 +19,12 @@ $ cd Paddle
$ docker build -t paddle:dev-android . -f Dockerfile.android
```
Users can directly use the published Docker image.
```bash
$ docker pull paddlepaddle/paddle:latest-dev-android
```
### Build the Inference Library
We can run the Docker image we just created to build the inference library of PaddlePaddle for Android using the command below:
......@@ -47,7 +56,7 @@ The Docker image accepts two arguments `ANDROID_ABI` and `ANDROID_API`:
</tr>
<tr class="row-odd">
<td>ANDROID_API</td>
<td>>= 21</td>
<td>>= 16</td>
<td>21</td>
</tr>
</tbody>
......@@ -93,15 +102,13 @@ Android NDK includes everything we need to build the [*standalone toolchain*](ht
The generated standalone toolchain will be in `your/path/to/arm64_standalone_toolchain`.
**Please be aware that the minimum level of Android API required by PaddlePaddle is 21.**
### Cross-Compiling Arguments
CMake supports [choosing the toolchain](https://cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html#cross-compiling). PaddlePaddle provides [`android.cmake`](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/android.cmake), which configures the Android cross-compiling toolchain for CMake. `android.cmake` is not required for CMake >= 3.7, which support Android cross-compiling. PaddlePaddle detects the CMake version, for those newer than 3.7, it uses [the official version](https://cmake.org/cmake/help/v3.7/manual/cmake-toolchains.7.html#cross-compiling).
Some other CMake arguments you need to know:
- `CMAKE_SYSTEM_NAME` must be `Android`. This tells PaddlePaddle's CMake system to cross-compile third-party dependencies. This also changes some other CMake arguments like `WITH_GPU=OFF`, `WITH_AVX=OFF`, `WITH_PYTHON=OFF`, and `WITH_RDMA=OFF`.
- `CMAKE_SYSTEM_NAME` must be `Android`. This tells PaddlePaddle's CMake system to cross-compile third-party dependencies. This also changes some other CMake arguments like `WITH_GPU=OFF`, `WITH_AVX=OFF`, `WITH_PYTHON=OFF`, `WITH_RDMA=OFF`, `WITH_MKL=OFF` and `WITH_GOLANG=OFF`.
- `WITH_C_API` must be `ON`, to build the C-based inference library for Android.
- `WITH_SWIG_PY` must be `OFF` because the Android platform doesn't support SWIG-based API.
......@@ -123,7 +130,7 @@ Some Android-specific arguments:
Other useful arguments:
- `USE_EIGEN_FOR_BLAS`: indicates if using Eigen. Could be `ON` or `OFF`, defaults to `OFF`.
- `HOST_C/CXX_COMPILER`: specifies the host compiler, which is used to build the host-specific protoc and target-specific OpenBLAS. It defaults to the value of the environment variable `CC`, or `cc`.
- `HOST_C/CXX_COMPILER`: specifies the host compiler, which is used to build the host-specific protoc and target-specific OpenBLAS. It defaults to the value of the environment variable `CC/C++`, or `cc/c++`.
Some frequent configurations for your reference:
......@@ -158,6 +165,7 @@ There are some other arguments you might want to configure.
- `CMAKE_BUILD_TYPE-Release` optimizes the runtime performance.
Our own tip for performance optimization to use clang and Eigen or OpenBLAS:
- `CMAKE_BUILD_TYPE=Release`
- `ANDROID_TOOLCHAIN=clang`
- `USE_EIGEN_BLAS=ON` for `armeabi-v7a`, or `USE_EIGEN_FOR_BLAS=OFF` for `arm64-v8a`.
......
# PaddlePaddle Compiling Guide for iOS
# Build PaddlePaddle for iOS
This tutorial will walk you through cross compiling the PaddlePaddle library for iOS from the source in MacOS.
......@@ -98,7 +98,7 @@ You can set other compiling parameters for your own need. I.E. if you are trying
- set `CMAKE_BUILD_TYPE` with `Release`
- set `IOS_USE_VECLIB_FOR_BLAS` with `ON`
## Compile and install
## Build and install
After CMake, run following commands, PaddlePaddle will download the compile 3rd party dependencies, compile and install PaddlePaddle inference library.
......@@ -109,7 +109,7 @@ $ make install
Please Note: if you compiled PaddlePaddle in the source directory for other platforms, do remove `third_party` and `build` directory within the source with `rm -rf` to ensure that all the 3rd party libraries dependencies and PaddlePaddle is newly compiled with current CMake configuration.
`your/path/to/install` directory will have following directories after `compile` and `install`:
`your/path/to/install` directory will have following directories after `make install`:
- `include`, contains all the C-API header files.
- `lib`, contains PaddlePaddle C-API static library.
......
......@@ -24,6 +24,7 @@ else()
add_subdirectory(framework)
add_subdirectory(operators)
add_subdirectory(pybind)
add_subdirectory(inference)
endif()
if(WITH_SWIG_PY)
......
......@@ -26,7 +26,10 @@ nv_test(lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor)
cc_test(variable_test SRCS variable_test.cc)
cc_library(scope SRCS scope.cc DEPS glog)
cc_library(threadpool SRCS threadpool.cc)
cc_test(threadpool_test SRCS threadpool_test.cc DEPS threadpool)
cc_library(scope SRCS scope.cc DEPS glog threadpool)
cc_test(scope_test SRCS scope_test.cc DEPS scope)
cc_library(data_transform SRCS data_transform.cc DEPS math_function tensor framework_proto)
......@@ -70,9 +73,7 @@ cc_test(var_type_inference_test SRCS var_type_inference_test.cc DEPS op_registry
cc_library(selected_rows SRCS selected_rows.cc DEPS tensor)
cc_test(selected_rows_test SRCS selected_rows_test.cc DEPS selected_rows)
cc_library(threadpool SRCS threadpool.cc)
cc_test(threadpool_test SRCS threadpool_test.cc DEPS threadpool)
cc_library(init SRCS init.cc DEPS gflags device_context place stringpiece)
cc_library(init SRCS init.cc DEPS gflags device_context place stringpiece operator)
cc_test(init_test SRCS init_test.cc DEPS init)
cc_test(op_kernel_type_test SRCS op_kernel_type_test.cc DEPS place device_context framework_proto)
......@@ -11,6 +11,7 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <functional>
#include "paddle/framework/data_transform.h"
#include "paddle/framework/lod_tensor.h"
......@@ -36,6 +37,28 @@ auto KernelNHWC = OpKernelType(proto::DataType::FP64, platform::CPUPlace(),
auto KernelNCHW = OpKernelType(proto::DataType::FP64, platform::CPUPlace(),
DataLayout::kNCHW, LibraryType::kPlain);
// TODO(dzhwinter): Only for testing multiple op kernel.
// Dummy transform function for library_type
// should be removed.
auto KernelPlain = OpKernelType(proto::DataType::FP32, platform::CUDAPlace(0),
DataLayout::kAnyLayout, LibraryType::kPlain);
auto KernelCUDNN = OpKernelType(proto::DataType::FP32, platform::CUDAPlace(0),
DataLayout::kAnyLayout, LibraryType::kCUDNN);
void DummyTrans(const platform::DeviceContext* ctx,
const KernelTypePair& kernel_pair, const Variable& in,
Variable* out) {
PADDLE_ENFORCE(in.IsType<Tensor>(), "Only Support Tensor transform!.");
PADDLE_ENFORCE(
platform::places_are_same_class(kernel_pair.first.place_,
kernel_pair.second.place_),
"TransDataType Only Support DataType transform on same place!");
auto src = in.Get<Tensor>();
auto* dst = out->GetMutable<Tensor>();
*dst = src;
}
void TransDataType(const platform::DeviceContext* ctx,
const KernelTypePair& kernel_pair, const Variable& in,
Variable* out) {
......@@ -74,26 +97,28 @@ void TransDataType(const platform::DeviceContext* ctx,
}
}
void TransDataLayout(const platform::DeviceContext* ctx,
void TransDataLayout(const std::vector<int>& axis,
const platform::DeviceContext* ctx,
const KernelTypePair& kernel_pair, const Variable& in,
Variable* out) {
PADDLE_ENFORCE(in.IsType<Tensor>(), "Only Support Tensor transform!.");
PADDLE_ENFORCE(in.IsType<Tensor>(), "Only support Tensor transform!.");
PADDLE_ENFORCE(
platform::places_are_same_class(kernel_pair.first.place_,
kernel_pair.second.place_),
"TransDataType Only Support DataType transform on same place!");
"TransDataLayout only support DataLayout transform on same place!");
PADDLE_ENFORCE(kernel_pair.first.data_type_ == kernel_pair.second.data_type_,
"TransDataLayout only support Datatype are same!");
auto src = in.Get<Tensor>();
auto* dst = out->GetMutable<Tensor>();
PADDLE_ENFORCE(arity(src.dims()) == 4, "Input Arity Only Suppport 4!");
auto src_dim = src.dims();
dst->Resize(src_dim);
auto place = kernel_pair.second.place_;
CopyFrom(src, place, *ctx, dst);
const std::vector<int> axis = {0, 2, 3, 1};
auto src_dim = src.dims();
std::vector<int64_t> dst_dim;
dst_dim.resize(axis.size());
for (size_t i = 0; i < axis.size(); i++) {
dst_dim[i] = src_dim[axis[i]];
......@@ -102,7 +127,7 @@ void TransDataLayout(const platform::DeviceContext* ctx,
dst->Resize(make_ddim(dst_dim));
auto src_type = kernel_pair.first.data_type_;
framework::VisitDataType(src_type, CastDataLayout(src, dst, ctx, axis));
framework::VisitDataType(src_type, CastDataLayout(ctx, axis, src, dst));
dst->set_layout(kernel_pair.second.data_layout_);
}
......@@ -111,5 +136,24 @@ void TransDataLayout(const platform::DeviceContext* ctx,
} // namespace paddle
namespace f = paddle::framework;
namespace {
std::vector<int> NHWC2NCHW = {0, 3, 1, 2};
std::vector<int> NCHW2NHWC = {0, 2, 3, 1};
}
REGISTER_DATA_TRANSFORM_FN(f::KernelFP32, f::KernelFP64, f::TransDataType);
REGISTER_DATA_TRANSFORM_FN(f::KernelNHWC, f::KernelNCHW, f::TransDataLayout);
REGISTER_DATA_TRANSFORM_FN(f::KernelPlain, f::KernelCUDNN, f::DummyTrans);
REGISTER_DATA_TRANSFORM_FN(f::KernelCUDNN, f::KernelPlain, f::DummyTrans);
REGISTER_DATA_TRANSFORM_FN(f::KernelNHWC, f::KernelNCHW,
std::bind(f::TransDataLayout, NHWC2NCHW,
std::placeholders::_1,
std::placeholders::_2,
std::placeholders::_3,
std::placeholders::_4));
REGISTER_DATA_TRANSFORM_FN(f::KernelNCHW, f::KernelNHWC,
std::bind(f::TransDataLayout, NCHW2NHWC,
std::placeholders::_1,
std::placeholders::_2,
std::placeholders::_3,
std::placeholders::_4));
......@@ -73,6 +73,7 @@ struct CastDataType {
auto numel = in_.numel();
auto* in_end = in_begin + numel;
auto* out_begin = out_->mutable_data<OutType>(place);
if (platform::is_cpu_place(place)) {
platform::Transform<platform::CPUDeviceContext> trans;
auto* context = static_cast<const platform::CPUDeviceContext*>(ctx_);
......@@ -86,9 +87,9 @@ struct CastDataType {
};
struct CastDataLayout {
CastDataLayout(const framework::Tensor& in, framework::Tensor* out,
const platform::DeviceContext* ctx,
const std::vector<int>& axis)
CastDataLayout(const platform::DeviceContext* ctx,
const std::vector<int>& axis, const framework::Tensor& in,
framework::Tensor* out)
: in_(in), out_(out), ctx_(ctx), axis_(axis) {}
const framework::Tensor in_;
framework::Tensor* out_;
......@@ -98,6 +99,7 @@ struct CastDataLayout {
template <typename T>
void operator()() {
auto place = ctx_->GetPlace();
if (platform::is_cpu_place(place)) {
operators::math::Transpose<platform::CPUDeviceContext, T, 4> trans4;
auto* context = static_cast<const platform::CPUDeviceContext*>(ctx_);
......
......@@ -106,7 +106,7 @@ TEST(DataTransform, Register) {
ASSERT_EQ(test_value, 2);
}
TEST(DataTransform, Layout) {
TEST(DataTransform, DataLayout) {
using namespace paddle::framework;
using namespace paddle::platform;
......@@ -127,7 +127,19 @@ TEST(DataTransform, Layout) {
}
Tensor dst = out.Get<Tensor>();
EXPECT_TRUE(dst.layout() != src->layout());
EXPECT_TRUE(dst.layout() == DataLayout::kNCHW);
EXPECT_TRUE(dst.dims() == make_ddim({2, 2, 3, 1}));
{
auto kernel1 = GenFromBit({1, 0, 1, 0});
auto kernel2 = GenFromBit({1, 0, 0, 0});
auto pair0 = std::make_pair(kernel1, kernel2);
instance.Get(pair0)(ctx, pair0, out, &in);
}
EXPECT_TRUE(src->layout() == DataLayout::kNHWC);
EXPECT_TRUE(src->dims() == make_ddim({2, 3, 1, 2}));
}
TEST(DataTransform, DataType) {
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#include <string>
#include "paddle/framework/init.h"
#include "paddle/framework/operator.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
#include "paddle/string/piece.h"
......@@ -24,7 +25,6 @@ namespace framework {
std::once_flag gflags_init_flag;
// TODO(qijun) move init gflags to init.cc
void InitGflags(std::vector<std::string> &argv) {
std::call_once(gflags_init_flag, [&]() {
int argc = argv.size();
......@@ -72,8 +72,14 @@ bool InitDevices(const std::vector<std::string> &devices) {
LOG(WARNING) << "Not specified CPU device, create CPU by Default.";
}
platform::DeviceContextPool::Init(places);
framework::UseALL();
return true;
}
void InitGLOG(const std::string &prog_name) {
google::InitGoogleLogging(prog_name.c_str());
google::InstallFailureSignalHandler();
}
} // namespace framework
} // namespace paddle
......@@ -22,6 +22,8 @@ namespace framework {
void InitGflags(std::vector<std::string> &argv);
void InitGLOG(const std::string &prog_name);
bool InitDevices(const std::vector<std::string> &devices);
} // namespace framework
......
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cctype>
namespace paddle {
namespace framework {
......@@ -41,6 +42,9 @@ inline std::string LibraryTypeToString(const LibraryType& library_type) {
inline LibraryType StringToLibraryType(const char* ctype) {
std::string s(ctype);
for (size_t i = 0; i < s.size(); ++i) {
s[i] = toupper(s[i]);
}
if (s == std::string("PLAIN")) {
return LibraryType::kPlain;
} else if (s == std::string("MKLDNN")) {
......
......@@ -177,6 +177,9 @@ void AppendLoD(LoD *lod, const LoD &lod_length) {
lod->empty() || lod->size() == lod_length.size(),
"The lod_length should has the same size with the appended lod.");
if (lod->empty()) {
for (size_t i = 0; i < lod_length.size(); ++i) {
lod->emplace_back(1, 0); // size = 1, value = 0;
}
*lod = LoD(lod_length.size(), std::vector<size_t>({0}));
}
for (size_t i = 0; i < lod->size(); ++i) {
......@@ -214,9 +217,10 @@ void SerializeToStream(std::ostream &os, const LoDTensor &tensor,
SerializeToStream(os, static_cast<Tensor>(tensor), dev_ctx);
}
void DeserializeFromStream(std::istream &is, LoDTensor *tensor) {
void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
const platform::DeviceContext &dev_ctx) {
{
// the 1st field, unit32_t version for SelectedRows
// the 1st field, unit32_t version for LoDTensor
uint32_t version;
is.read(reinterpret_cast<char *>(&version), sizeof(version));
PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
......@@ -237,7 +241,7 @@ void DeserializeFromStream(std::istream &is, LoDTensor *tensor) {
}
}
// the 3st filed, Tensor
DeserializeFromStream(is, static_cast<Tensor *>(tensor));
DeserializeFromStream(is, static_cast<Tensor *>(tensor), dev_ctx);
}
} // namespace framework
......
......@@ -208,7 +208,8 @@ void AppendLoD(LoD* lod, const LoD& lod_length);
*/
void SerializeToStream(std::ostream& os, const LoDTensor& tensor,
const platform::DeviceContext& dev_ctx);
void DeserializeFromStream(std::istream& is, LoDTensor* tensor);
void DeserializeFromStream(std::istream& is, LoDTensor* tensor,
const platform::DeviceContext& dev_ctx);
} // namespace framework
} // namespace paddle
......@@ -132,7 +132,7 @@ TEST_F(LoDTensorTester, SerializeAndDeserialize) {
std::ostringstream oss;
SerializeToStream(oss, lod_tensor_, cpu_ctx);
std::istringstream iss(oss.str());
DeserializeFromStream(iss, &dst_tensor);
DeserializeFromStream(iss, &dst_tensor, cpu_ctx);
float* dst_ptr = dst_tensor.mutable_data<float>(platform::CPUPlace());
for (int i = 0; i < kLodTensorSize; ++i) {
EXPECT_EQ(dst_ptr[i], i);
......
......@@ -64,7 +64,7 @@ class CompileTimeInferShapeContext : public InferShapeContext {
PADDLE_ENFORCE_EQ(in_var->GetType(), proto::VarDesc::LOD_TENSOR,
"The %d-th output of Output(%s) must be LoDTensor.", j,
out);
out_var->SetLoDLevel(in_var->GetLodLevel());
out_var->SetLoDLevel(in_var->GetLoDLevel());
}
bool IsRuntime() const override;
......
......@@ -26,13 +26,12 @@ namespace framework {
struct OpKernelType {
struct Hash {
size_t operator()(const OpKernelType& key) const {
int place = key.place_.which() + (1 << LEFT_SHIFT);
int data_type =
static_cast<int>(key.data_type_) + (1 << (LEFT_SHIFT + 1));
int data_layout =
static_cast<int>(key.data_layout_) + (1 << (LEFT_SHIFT + 2));
int library_type =
static_cast<int>(key.library_type_) + (1 << (LEFT_SHIFT + 3));
int place = key.place_.which();
int data_type = static_cast<int>(key.data_type_) << LEFT_SHIFT;
int data_layout = static_cast<int>(key.data_layout_) << (LEFT_SHIFT * 2);
int library_type = static_cast<int>(key.library_type_)
<< (LEFT_SHIFT * 3);
std::hash<int> hasher;
return hasher(place + data_type + data_layout + library_type);
}
......
......@@ -12,13 +12,16 @@
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/op_registry.h"
#include <glog/logging.h>
#include <gtest/gtest.h>
#include "paddle/framework/op_registry.h"
namespace pd = paddle::framework;
namespace paddle {
namespace framework {
class CosineOp : public OperatorBase {
public:
using OperatorBase::OperatorBase;
......@@ -252,7 +255,6 @@ TEST(OperatorRegistrar, CPU) {
op->Run(scope, cpu_place);
}
#ifdef PADDLE_WITH_CUDA
TEST(OperatorRegistrar, CUDA) {
paddle::framework::proto::OpDesc op_desc;
paddle::platform::CUDAPlace cuda_place(0);
......@@ -263,4 +265,131 @@ TEST(OperatorRegistrar, CUDA) {
op->Run(scope, cuda_place);
}
#endif
static int op_test_value = 0;
using paddle::platform::DeviceContext;
using paddle::platform::CPUDeviceContext;
using paddle::platform::CUDADeviceContext;
namespace paddle {
namespace framework {
class OpWithMultiKernelTest : public OperatorWithKernel {
public:
using OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(InferShapeContext* ctx) const override {}
framework::OpKernelType GetActualKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(proto::DataType::FP32, ctx.device_context());
}
framework::OpKernelType GetExpectedKernelType(
const framework::OpKernelType& kernel) const override {
return framework::OpKernelType(kernel.data_type_, platform::CUDAPlace(0),
kernel.data_layout_,
framework::LibraryType::kCUDNN);
}
};
template <typename DeviceContext, typename T>
class OpMultiKernelTest : public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const;
};
template <typename T>
class OpMultiKernelTest<CPUDeviceContext, T>
: public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const {
++op_test_value;
}
};
template <typename T>
class OpMultiKernelTest<CUDADeviceContext, T>
: public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const {
--op_test_value;
}
};
template <typename DeviceContext, typename T>
class OpMultiKernelTest2 : public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const;
};
template <typename T>
class OpMultiKernelTest2<CPUDeviceContext, T>
: public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const {
op_test_value += 10;
}
};
template <typename T>
class OpMultiKernelTest2<CUDADeviceContext, T>
: public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const {
op_test_value -= 10;
}
};
} // namespace framework
} // namespace paddle
REGISTER_OP_WITHOUT_GRADIENT(op_with_multi_kernel,
paddle::framework::OpWithMultiKernelTest,
paddle::framework::OpKernelTestMaker);
REGISTER_OP_KERNEL(
op_with_multi_kernel, CPU, paddle::platform::CPUPlace,
paddle::framework::OpMultiKernelTest<CPUDeviceContext, float>);
REGISTER_OP_KERNEL(
op_with_multi_kernel, MKLDNN, paddle::platform::CPUPlace,
paddle::framework::OpMultiKernelTest2<CPUDeviceContext, float>);
REGISTER_OP_KERNEL(
op_with_multi_kernel, CUDA, paddle::platform::CUDAPlace,
paddle::framework::OpMultiKernelTest<CUDADeviceContext, float>);
REGISTER_OP_KERNEL(
op_with_multi_kernel, CUDNN, paddle::platform::CUDAPlace,
paddle::framework::OpMultiKernelTest2<CUDADeviceContext, float>);
TEST(OperatorRegistrar, OpWithMultiKernel) {
paddle::framework::proto::OpDesc op_desc;
paddle::platform::CUDAPlace cuda_place(0);
paddle::platform::CPUPlace cpu_place;
paddle::framework::Scope scope;
op_desc.set_type("op_with_multi_kernel");
auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
// use all available kernels
paddle::framework::UseALL();
op->Run(scope, cuda_place);
EXPECT_EQ(op_test_value, -10);
// remove cuda kernels
paddle::framework::UseCPU();
op->Run(scope, cpu_place);
EXPECT_EQ(op_test_value, -9);
// add cuda kernels
paddle::framework::UseCUDA();
op->Run(scope, cuda_place);
EXPECT_EQ(op_test_value, -10);
// use cudnn kernel
paddle::framework::UseCUDNN();
op->Run(scope, cuda_place);
EXPECT_EQ(op_test_value, -20);
}
......@@ -11,6 +11,7 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <glog/logging.h>
#include <algorithm>
#include <atomic>
......@@ -25,6 +26,53 @@ limitations under the License. */
namespace paddle {
namespace framework {
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;
void UseCPU() {
kKernelPriority.clear();
/*Plain CPU*/
auto pair0 = std::make_tuple(platform::CPUPlace(), LibraryType::kPlain);
kKernelPriority.insert(kKernelPriority.begin(), pair0);
}
void UseMKLDNN() {
UseCPU();
#if PADDLE_WITH_MKLML
{
/*MKLDNN Kernel*/
auto pair0 = std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN);
kKernelPriority.insert(kKernelPriority.begin(), pair0);
}
#endif
}
void UseCUDA() {
UseMKLDNN();
#if PADDLE_WITH_CUDA
/*Plain GPU*/
auto pair0 = std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain);
kKernelPriority.insert(kKernelPriority.begin(), pair0);
#endif
}
void UseCUDNN() {
UseCUDA();
#if PADDLE_WITH_CUDA
if (platform::dynload::HasCUDNN()) {
/*CUDNN Kernel*/
auto pair0 = std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN);
kKernelPriority.insert(kKernelPriority.begin(), pair0);
}
#endif
}
void UseALL() {
UseCPU();
UseMKLDNN();
UseCUDA();
UseCUDNN();
}
std::string OperatorBase::Input(const std::string& name) const {
auto& ins = Inputs(name);
PADDLE_ENFORCE_LE(ins.size(), 1UL,
......@@ -402,6 +450,12 @@ const platform::DeviceContext* GetDeviceContext(
}
}
const platform::DeviceContext* GetDeviceContext(
const framework::OpKernelType& kernel) {
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
return pool.Get(kernel.place_);
}
void OperatorWithKernel::Run(const Scope& scope,
const platform::Place& place) const {
RuntimeInferShapeContext infer_shape_ctx(*this, scope);
......@@ -422,13 +476,8 @@ void OperatorWithKernel::Run(const Scope& scope,
ExecutionContext ctx(*this, scope, *dev_ctx);
auto actual_kernel_key = GetActualKernelType(ctx);
auto expected_kernel_key = GetExpectedKernelType(actual_kernel_key);
auto kernel_iter = kernels.find(expected_kernel_key);
if (kernel_iter == kernels.end()) {
PADDLE_THROW("The operator %s does not support %s", type_,
expected_kernel_key);
}
auto expected_kernel_key = GetExpectedKernelType(actual_kernel_key);
if (actual_kernel_key == expected_kernel_key) {
PADDLE_ENFORCE_EQ(actual_kernel_key.place_, expected_kernel_key.place_,
......@@ -436,9 +485,24 @@ void OperatorWithKernel::Run(const Scope& scope,
"CPU and other devices. For example, multi-GPU model "
"parallelism will failed.");
} else {
// find the best key candidate
const DataTransformFnMap& trans_map = DataTransformFnMap::Instance();
for (auto& candidate : kKernelPriority) {
auto candidate_key =
OpKernelType(actual_kernel_key.data_type_, std::get<0>(candidate),
actual_kernel_key.data_layout_, std::get<1>(candidate));
auto candidate_pair = std::make_pair(actual_kernel_key, candidate_key);
if ((actual_kernel_key == candidate_key) ||
(kernels.count(candidate_key) &&
trans_map.GetNullable(candidate_pair))) {
expected_kernel_key = candidate_key;
break;
}
}
auto kernel_pair = std::make_pair(actual_kernel_key, expected_kernel_key);
const DataTransformFn* trans_fun =
DataTransformFnMap::Instance().GetNullable(kernel_pair);
const DataTransformFn* trans_fun = trans_map.GetNullable(kernel_pair);
if (trans_fun) {
auto input_vars = this->InputVars();
// TODO(qijun) filter the input vars that do not need to be transformed
......@@ -471,7 +535,20 @@ void OperatorWithKernel::Run(const Scope& scope,
}
}
kernel_iter->second->Compute(ctx);
VLOG(10) << "Actual kernel: " << actual_kernel_key
<< "Expected kernel: " << expected_kernel_key;
auto kernel_iter = kernels.find(expected_kernel_key);
if (kernel_iter == kernels.end()) {
PADDLE_THROW("The operator %s does not support %s", type_,
expected_kernel_key);
}
auto* expected_dev_ctx = GetDeviceContext(expected_kernel_key);
ExecutionContext expected_ctx(*this, scope, *expected_dev_ctx);
kernel_iter->second->Compute(expected_ctx);
}
OpKernelType OperatorWithKernel::GetActualKernelType(
......
......@@ -17,6 +17,7 @@ limitations under the License. */
#include <algorithm>
#include <atomic>
#include <string>
#include <tuple>
#include <unordered_map>
#include <vector>
......@@ -52,10 +53,33 @@ constexpr char kGradVarSuffix[] = "@GRAD";
/// Variables with this suffix are supposed to be filled up with zeros.
constexpr char kZeroVarSuffix[] = "@ZERO";
// define some kernel hint
const std::string kUseCPU = "use_cpu";
const std::string kUseCUDNN = "use_cudnn";
const std::string kUseMKLDNN = "use_mkldnn";
// define some kernel priority
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;
/**
* @brief Use cpu kernel only
*/
void UseCPU();
/**
* @brief Perfer MKLDNN kernel than Plain CPU kernel
*/
void UseMKLDNN();
/**
* @brief Perfer CUDA kernel than Plain CPU kernel
*/
void UseCUDA();
/**
* @brief Perfer cudnn kernel than Plain CUDA kernel
*/
void UseCUDNN();
/**
* @brief Use all available kernels
*/
void UseALL();
inline std::string GradVarName(const std::string& var_name) {
return var_name + kGradVarSuffix;
......
......@@ -17,6 +17,7 @@ limitations under the License. */
#include <memory> // for unique_ptr
#include <mutex> // for call_once
#include "glog/logging.h"
#include "paddle/framework/threadpool.h"
#include "paddle/string/printf.h"
namespace paddle {
......@@ -87,7 +88,8 @@ void Scope::DeleteScope(Scope* scope) {
auto it = std::find(this->kids_.begin(), this->kids_.end(), scope);
PADDLE_ENFORCE(it != this->kids_.end(), "Cannot find %p as kid scope", scope);
this->kids_.erase(it);
delete scope;
// Make delete async.
Async([scope] { delete scope; });
}
void Scope::Rename(const std::string& origin_name,
......
......@@ -37,8 +37,8 @@ void SerializeToStream(std::ostream& os, const SelectedRows& selected_rows,
SerializeToStream(os, selected_rows.value(), dev_ctx);
}
void DeserializeFromStream(std::istream& is, SelectedRows* selected_rows) {
auto tensor = *selected_rows->mutable_value();
void DeserializeFromStream(std::istream& is, SelectedRows* selected_rows,
const platform::DeviceContext& dev_ctx) {
{
// the 1st field, unit32_t version for SelectedRows
uint32_t version;
......@@ -62,7 +62,7 @@ void DeserializeFromStream(std::istream& is, SelectedRows* selected_rows) {
selected_rows->set_height(height);
}
// the 4st field, tensor which contains the data
DeserializeFromStream(is, &tensor);
DeserializeFromStream(is, selected_rows->mutable_value(), dev_ctx);
}
} // namespace framework
......
......@@ -66,7 +66,8 @@ class SelectedRows {
*/
void SerializeToStream(std::ostream& os, const SelectedRows& selected_rows,
const platform::DeviceContext& dev_ctx);
void DeserializeFromStream(std::istream& is, SelectedRows* selected_rows);
void DeserializeFromStream(std::istream& is, SelectedRows* selected_rows,
const platform::DeviceContext& dev_ctx);
} // namespace framework
} // namespace paddle
......@@ -51,10 +51,12 @@ TEST_F(SelectedRowsTester, SerializeAndDeseralize) {
SerializeToStream(oss, *selected_rows_, cpu_ctx);
std::istringstream iss(oss.str());
DeserializeFromStream(iss, &dst_tensor);
DeserializeFromStream(iss, &dst_tensor, cpu_ctx);
ASSERT_EQ(selected_rows_->rows(), dst_tensor.rows());
ASSERT_EQ(selected_rows_->height(), dst_tensor.height());
ASSERT_EQ(selected_rows_->value().dims(), dst_tensor.value().dims());
ASSERT_EQ(selected_rows_->GetCompleteDims(), dst_tensor.GetCompleteDims());
}
} // namespace framework
......
......@@ -270,7 +270,23 @@ inline void SerializeToStream(std::ostream& os, const Tensor& tensor,
}
}
inline void DeserializeFromStream(std::istream& is, Tensor* tensor) {
struct DeserializedDataFunctor {
DeserializedDataFunctor(void** buf, Tensor* tensor,
const platform::Place& place)
: buf_(buf), tensor_(tensor), place_(place) {}
template <typename T>
void operator()() {
*buf_ = tensor_->mutable_data<T>(place_);
}
void** buf_;
Tensor* tensor_;
platform::Place place_;
};
inline void DeserializeFromStream(std::istream& is, Tensor* tensor,
const platform::DeviceContext& dev_ctx) {
uint32_t version;
is.read(reinterpret_cast<char*>(&version), sizeof(version));
PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
......@@ -289,27 +305,28 @@ inline void DeserializeFromStream(std::istream& is, Tensor* tensor) {
dims.reserve(static_cast<size_t>(desc.dims().size()));
std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims));
tensor->Resize(framework::make_ddim(dims));
void* buf;
platform::Place cpu = platform::CPUPlace();
// TODO(Yancey1989): use VisiterDataType instead of DataType switch
switch (desc.data_type()) {
case proto::FP32:
buf = tensor->mutable_data<float>(cpu);
break;
case proto::FP64:
buf = tensor->mutable_data<double>(cpu);
break;
case proto::INT32:
buf = tensor->mutable_data<int>(cpu);
break;
case proto::INT64:
buf = tensor->mutable_data<int64_t>(cpu);
break;
default:
PADDLE_THROW("DataType %d not supported", desc.data_type());
auto ctx = platform::CPUDeviceContext();
if (platform::is_gpu_place(dev_ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
Tensor cpu_tensor;
cpu_tensor.Resize(framework::make_ddim(dims));
framework::VisitDataType(
desc.data_type(),
DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
is.read(static_cast<char*>(buf), cpu_tensor.memory_size());
auto cpu_place = new platform::CPUPlace();
framework::CopyFrom(cpu_tensor, *cpu_place, dev_ctx, tensor);
delete cpu_place;
#else
PADDLE_THROW("Unexpected branch");
#endif
} else {
framework::VisitDataType(
desc.data_type(),
DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
is.read(static_cast<char*>(buf), tensor->memory_size());
}
is.read(static_cast<char*>(buf), tensor->memory_size());
}
}
......
......@@ -270,11 +270,12 @@ TEST(Tensor, SerializeAndDeserialize) {
SerializeToStream(oss, src_tensor, cpu_ctx);
std::istringstream iss(oss.str());
DeserializeFromStream(iss, &dst_tensor);
DeserializeFromStream(iss, &dst_tensor, cpu_ctx);
int* dst_ptr = dst_tensor.mutable_data<int>(platform::CPUPlace());
for (int i = 0; i < 5; ++i) {
ASSERT_EQ(dst_ptr[i], array[i]);
}
ASSERT_EQ(dst_tensor.dims(), src_tensor.dims());
delete place;
}
#ifdef PADDLE_WITH_CUDA
......@@ -292,13 +293,12 @@ TEST(Tensor, SerializeAndDeserialize) {
SerializeToStream(oss, gpu_tensor, gpu_ctx);
std::istringstream iss(oss.str());
DeserializeFromStream(iss, &dst_tensor);
DeserializeFromStream(iss, &dst_tensor, gpu_ctx);
int* dst_ptr = dst_tensor.mutable_data<int>(platform::CPUPlace());
for (int i = 0; i < 6; ++i) {
ASSERT_EQ(dst_ptr[i], array[i]);
}
delete gpu_place;
}
#endif
......
......@@ -29,7 +29,6 @@ namespace framework {
class ThreadPool {
public:
typedef std::packaged_task<void()> Task;
typedef std::function<void()> Fun;
/**
* @brief Get a instance of threadpool, the thread number will
......@@ -67,7 +66,8 @@ class ThreadPool {
* @return std::future<void>, we could wait for the task finished by
* f.wait().
*/
std::future<void> Run(const Fun& fn) {
template <typename Callback>
std::future<void> Run(Callback fn) {
std::unique_lock<std::mutex> lock(mutex_);
Task task(std::bind(fn));
std::future<void> f = task.get_future();
......@@ -159,5 +159,13 @@ class ThreadPool {
std::condition_variable completed_;
};
// Run a function asynchronously.
// NOTE: The function must return void. If the function need to return a value,
// you can use lambda to capture a value pointer.
template <typename Callback>
std::future<void> Async(Callback callback) {
return ThreadPool::GetInstance()->Run(callback);
}
} // namespace framework
} // namespace paddle
......@@ -52,7 +52,7 @@ void VarDesc::SetLoDLevel(int32_t lod_level) {
}
}
int32_t VarDesc::GetLodLevel() const {
int32_t VarDesc::GetLoDLevel() const {
switch (desc_.type()) {
case proto::VarDesc::LOD_TENSOR:
return desc_.lod_tensor().lod_level();
......
......@@ -76,7 +76,7 @@ class VarDesc {
void SetLoDLevel(int32_t lod_level);
int32_t GetLodLevel() const;
int32_t GetLoDLevel() const;
proto::VarDesc::VarType GetType() const;
......
......@@ -17,6 +17,8 @@ limitations under the License. */
#include "paddle/framework/lod_rank_table.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/selected_rows.h"
#include "paddle/framework/variable.h"
namespace paddle {
namespace framework {
......@@ -35,7 +37,7 @@ inline proto::VarDesc::VarType ToVarType(std::type_index type) {
}
template <typename Visitor>
inline void VisitVarType(const Variable& var, Visitor visitor) {
inline void VisitVarType(const framework::Variable& var, Visitor visitor) {
switch (ToVarType(var.Type())) {
case proto::VarDesc_VarType_LOD_TENSOR:
visitor(var.Get<framework::LoDTensor>());
......
set(FLUID_CORE_MODULES
backward proto_desc paddle_memory executor prune init ${GLOB_OP_LIB})
cc_library(paddle_fluid_api
SRCS inference.cc
DEPS ${FLUID_CORE_MODULES})
# Merge all modules into a simgle static library
cc_library(paddle_fluid DEPS paddle_fluid_api ${FLUID_CORE_MODULES})
# ptools
# just for testing, we may need to change the storing format for inference_model
# and move the dependent of pickle.
# download from http://www.picklingtools.com/
# build in the C++ sub-directory, using command
# make -f Makefile.Linux libptools.so
set(PTOOLS_LIB)
set(PTOOLS_ROOT $ENV{PTOOLS_ROOT} CACHE PATH "Folder contains PicklingTools")
find_path(PTOOLS_INC_DIR chooseser.h PATHS ${PTOOLS_ROOT}/C++)
find_library(PTOOLS_SHARED_LIB NAMES ptools PATHS ${PTOOLS_ROOT}/C++)
if(PTOOLS_INC_DIR AND PTOOLS_SHARED_LIB)
add_definitions(-DPADDLE_USE_PTOOLS)
set(PTOOLS_LIB ptools)
message(STATUS "Found PicklingTools: ${PTOOLS_SHARED_LIB}")
add_library(${PTOOLS_LIB} SHARED IMPORTED GLOBAL)
set_property(TARGET ${PTOOLS_LIB} PROPERTY IMPORTED_LOCATION ${PTOOLS_SHARED_LIB})
include_directories(${PTOOLS_ROOT}/C++)
include_directories(${PTOOLS_ROOT}/C++/opencontainers_1_8_5/include)
add_definitions(-DOC_NEW_STYLE_INCLUDES) # used in ptools
endif()
add_executable(example example.cc)
if(APPLE)
set(OPTIONAL_LINK_FLAGS)
if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang" OR "${CMAKE_CXX_COMPILER_ID}" STREQUAL "AppleClang")
set(OPTIONAL_LINK_FLAGS "-undefined dynamic_lookup")
endif()
target_link_libraries(example
-Wl,-force_load paddle_fluid
${OPTIONAL_LINK_FLAGS}
${PTOOLS_LIB})
else()
target_link_libraries(example
-Wl,--start-group -Wl,--whole-archive paddle_fluid
-Wl,--no-whole-archive -Wl,--end-group
${PTOOLS_LIB})
endif()
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <time.h>
#include <iostream>
#include "gflags/gflags.h"
#include "paddle/inference/inference.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
DEFINE_string(feed_var_names, "", "Names of feeding variables");
DEFINE_string(fetch_var_names, "", "Names of fetching variables");
int main(int argc, char** argv) {
google::ParseCommandLineFlags(&argc, &argv, true);
if (FLAGS_dirname.empty() || FLAGS_feed_var_names.empty() ||
FLAGS_fetch_var_names.empty()) {
// Example:
// ./example --dirname=recognize_digits_mlp.inference.model
// --feed_var_names="x"
// --fetch_var_names="fc_2.tmp_2"
std::cout << "Usage: ./example --dirname=path/to/your/model "
"--feed_var_names=x --fetch_var_names=y"
<< std::endl;
exit(1);
}
std::cout << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
std::cout << "FLAGS_feed_var_names: " << FLAGS_feed_var_names << std::endl;
std::cout << "FLAGS_fetch_var_names: " << FLAGS_fetch_var_names << std::endl;
std::string dirname = FLAGS_dirname;
std::vector<std::string> feed_var_names = {FLAGS_feed_var_names};
std::vector<std::string> fetch_var_names = {FLAGS_fetch_var_names};
paddle::InferenceEngine* engine = new paddle::InferenceEngine();
engine->LoadInferenceModel(dirname, feed_var_names, fetch_var_names);
paddle::framework::LoDTensor input;
srand(time(0));
float* input_ptr =
input.mutable_data<float>({1, 784}, paddle::platform::CPUPlace());
for (int i = 0; i < 784; ++i) {
input_ptr[i] = rand() / (static_cast<float>(RAND_MAX));
}
std::vector<paddle::framework::LoDTensor> feeds;
feeds.push_back(input);
std::vector<paddle::framework::LoDTensor> fetchs;
engine->Execute(feeds, fetchs);
for (size_t i = 0; i < fetchs.size(); ++i) {
auto dims_i = fetchs[i].dims();
std::cout << "dims_i:";
for (int j = 0; j < dims_i.size(); ++j) {
std::cout << " " << dims_i[j];
}
std::cout << std::endl;
std::cout << "result:";
float* output_ptr = fetchs[i].data<float>();
for (int j = 0; j < paddle::framework::product(dims_i); ++j) {
std::cout << " " << output_ptr[j];
}
std::cout << std::endl;
}
delete engine;
return 0;
}
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "inference.h"
#include <fstream>
#include "paddle/framework/executor.h"
#include "paddle/framework/feed_fetch_method.h"
#include "paddle/framework/init.h"
#include "paddle/framework/scope.h"
#ifdef PADDLE_USE_PTOOLS
#include "chooseser.h"
#endif
namespace paddle {
void InferenceEngine::LoadInferenceModel(
const std::string& dirname,
const std::vector<std::string>& feed_var_names,
const std::vector<std::string>& fetch_var_names) {
#ifdef PADDLE_USE_PTOOLS
std::string model_filename = dirname + "/__model__";
LOG(INFO) << "Using PicklingTools, loading model from " << model_filename;
Val v;
LoadValFromFile(model_filename.c_str(), v, SERIALIZE_P0);
std::string program_desc_str = v["program_desc_str"];
LOG(INFO) << "program_desc_str's size: " << program_desc_str.size();
// PicklingTools cannot parse the vector of strings correctly.
#else
// program_desc_str
// the inference.model is stored by following python codes:
// inference_program = fluid.io.get_inference_program(predict)
// model_filename = "recognize_digits_mlp.inference.model/inference.model"
// with open(model_filename, "w") as f:
// program_str = inference_program.desc.serialize_to_string()
// f.write(struct.pack('q', len(program_str)))
// f.write(program_str)
std::string model_filename = dirname + "/inference.model";
LOG(INFO) << "loading model from " << model_filename;
std::ifstream fs(model_filename, std::ios_base::binary);
int64_t size = 0;
fs.read(reinterpret_cast<char*>(&size), sizeof(int64_t));
LOG(INFO) << "program_desc_str's size: " << size;
std::string program_desc_str;
program_desc_str.resize(size);
fs.read(&program_desc_str[0], size);
#endif
program_ = new framework::ProgramDesc(program_desc_str);
GenerateLoadProgram(dirname);
if (feed_var_names.empty() || fetch_var_names.empty()) {
LOG(FATAL) << "Please specify the feed_var_names and fetch_var_names.";
}
feed_var_names_ = feed_var_names;
fetch_var_names_ = fetch_var_names;
PrependFeedOp();
AppendFetchOp();
}
bool InferenceEngine::IsParameter(const framework::VarDesc* var) {
if (var->Persistable()) {
// There are many unreachable variables in the program
for (size_t i = 0; i < program_->Size(); ++i) {
const framework::BlockDesc& block = program_->Block(i);
for (auto* op : block.AllOps()) {
for (auto input_argument_name : op->InputArgumentNames()) {
if (input_argument_name == var->Name()) {
return true;
}
}
}
}
}
return false;
}
void InferenceEngine::GenerateLoadProgram(const std::string& dirname) {
framework::BlockDesc* global_block = program_->MutableBlock(0);
load_program_ = new framework::ProgramDesc();
framework::BlockDesc* load_block = load_program_->MutableBlock(0);
for (auto* var : global_block->AllVars()) {
if (IsParameter(var)) {
LOG(INFO) << "parameter's name: " << var->Name();
framework::VarDesc* new_var = load_block->Var(var->Name());
new_var->SetShape(var->Shape());
new_var->SetDataType(var->GetDataType());
new_var->SetType(var->GetType());
new_var->SetLoDLevel(var->GetLoDLevel());
new_var->SetPersistable(true);
// append_op
framework::OpDesc* op = load_block->AppendOp();
op->SetType("load");
op->SetOutput("Out", {new_var->Name()});
op->SetAttr("file_path", {dirname + "/" + new_var->Name()});
op->CheckAttrs();
}
}
}
void InferenceEngine::PrependFeedOp() {
if (!program_) {
LOG(FATAL) << "Please initialize the program_ first.";
}
framework::BlockDesc* global_block = program_->MutableBlock(0);
// create_var
framework::VarDesc* feed_var = global_block->Var("feed");
feed_var->SetType(framework::proto::VarDesc::FEED_MINIBATCH);
feed_var->SetPersistable(true);
// prepend feed_op
for (size_t i = 0; i < feed_var_names_.size(); ++i) {
std::string var_name = feed_var_names_[i];
LOG(INFO) << "feed var's name: " << var_name;
// prepend_op
framework::OpDesc* op = global_block->PrependOp();
op->SetType("feed");
op->SetInput("X", {"feed"});
op->SetOutput("Out", {var_name});
op->SetAttr("col", {static_cast<int>(i)});
op->CheckAttrs();
}
}
void InferenceEngine::AppendFetchOp() {
if (!program_) {
LOG(FATAL) << "Please initialize the program_ first.";
}
framework::BlockDesc* global_block = program_->MutableBlock(0);
// create_var
framework::VarDesc* fetch_var = global_block->Var("fetch");
fetch_var->SetType(framework::proto::VarDesc::FETCH_LIST);
fetch_var->SetPersistable(true);
// append fetch_op
for (size_t i = 0; i < fetch_var_names_.size(); ++i) {
std::string var_name = fetch_var_names_[i];
LOG(INFO) << "fetch var's name: " << var_name;
// append_op
framework::OpDesc* op = global_block->AppendOp();
op->SetType("fetch");
op->SetInput("X", {var_name});
op->SetOutput("Out", {"fetch"});
op->SetAttr("col", {static_cast<int>(i)});
op->CheckAttrs();
}
}
void InferenceEngine::Execute(const std::vector<framework::LoDTensor>& feeds,
std::vector<framework::LoDTensor>& fetchs) {
if (!program_ || !load_program_) {
LOG(FATAL) << "Please initialize the program_ and load_program_ first.";
}
if (feeds.size() < feed_var_names_.size()) {
LOG(FATAL) << "Please feed " << feed_var_names_.size() << " input Tensors.";
}
auto* place = new platform::CPUPlace();
framework::InitDevices({"CPU"});
framework::Executor* executor = new framework::Executor(*place);
framework::Scope* scope = new framework::Scope();
executor->Run(*load_program_, scope, 0, true, true);
// set_feed_variable
for (size_t i = 0; i < feed_var_names_.size(); ++i) {
framework::SetFeedVariable(scope, feeds[i], "feed", i);
}
executor->Run(*program_, scope, 0, true, true);
// get_fetch_variable
fetchs.resize(fetch_var_names_.size());
for (size_t i = 0; i < fetch_var_names_.size(); ++i) {
fetchs[i] = framework::GetFetchVariable(*scope, "fetch", i);
}
delete place;
delete scope;
delete executor;
}
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/block_desc.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/program_desc.h"
namespace paddle {
class InferenceEngine {
public:
InferenceEngine() : program_(nullptr), load_program_(nullptr) {}
~InferenceEngine() {
delete program_;
delete load_program_;
}
void LoadInferenceModel(const std::string& dirname,
const std::vector<std::string>& feed_var_names,
const std::vector<std::string>& fetch_var_names);
void Execute(const std::vector<framework::LoDTensor>& feeds,
std::vector<framework::LoDTensor>& fetchs);
private:
bool IsParameter(const framework::VarDesc* var);
void GenerateLoadProgram(const std::string& dirname);
void PrependFeedOp();
void AppendFetchOp();
private:
framework::ProgramDesc* program_;
framework::ProgramDesc* load_program_;
std::vector<std::string> feed_var_names_;
std::vector<std::string> fetch_var_names_;
};
} // namespace paddle
......@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/detail/safe_ref.h"
namespace paddle {
namespace operators {
......@@ -26,12 +27,16 @@ class ActivationKernel
using T = typename Functor::ELEMENT_TYPE;
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<framework::Tensor>("X");
auto* Out = context.Output<framework::Tensor>("Out");
Out->mutable_data<T>(context.GetPlace());
auto x = framework::EigenVector<T>::Flatten(*X);
auto out = framework::EigenVector<T>::Flatten(*Out);
auto& X = detail::Ref(context.Input<framework::Tensor>("X"),
"Cannot get input tensor X, variable name = %s",
context.op().Input("X"));
auto& Out = detail::Ref(context.Output<framework::Tensor>("Out"),
"Cannot get output tensor Out, variable name = %s",
context.op().Output("Out"));
Out.mutable_data<T>(context.GetPlace());
auto x = framework::EigenVector<T>::Flatten(X);
auto out = framework::EigenVector<T>::Flatten(Out);
auto* place =
context.template device_context<DeviceContext>().eigen_device();
Functor functor;
......
......@@ -64,7 +64,7 @@ class BatchNormOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
"Input X must have 2 to 5 dimensions.");
const int C =
const int64_t C =
(data_layout == DataLayout::kNCHW ? x_dims[1]
: x_dims[x_dims.size() - 1]);
......@@ -78,6 +78,7 @@ class BatchNormOp : public framework::OperatorWithKernel {
ctx->SetOutputDim("VarianceOut", {C});
ctx->SetOutputDim("SavedMean", {C});
ctx->SetOutputDim("SavedVariance", {C});
ctx->ShareLoD("X", "Y");
}
};
......
......@@ -315,10 +315,7 @@ class CudnnConvGradOpKernel : public framework::OpKernel<T> {
} // namespace operators
} // namespace paddle
REGISTER_OP_KERNEL(conv2d, CUDNN, paddle::platform::CUDAPlace,
paddle::operators::CudnnConvOpKernel<float>,
paddle::operators::CudnnConvOpKernel<double>);
// TODO(dzhwinter) : below register should be removed
REGISTER_OP_CUDA_KERNEL(conv2d_cudnn,
paddle::operators::CudnnConvOpKernel<float>,
paddle::operators::CudnnConvOpKernel<double>);
......
......@@ -44,14 +44,12 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
paddings.size(), strides.size(),
"Conv paddings dimension and Conv strides dimension should be the same.");
int input_channels = in_dims[1];
PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups,
PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups,
"The number of input channels should be equal to filter "
"channels * groups.");
int output_channels = filter_dims[0];
PADDLE_ENFORCE_EQ(
output_channels % groups, 0,
filter_dims[0] % groups, 0,
"The number of output channels should be divided by groups.");
std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
......@@ -66,6 +64,7 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
dilations[i], paddings[i], strides[i]));
}
ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
ctx->ShareLoD("Input", "Output");
}
Conv2DOpMaker::Conv2DOpMaker(OpProto* proto, OpAttrChecker* op_checker)
......
......@@ -62,12 +62,25 @@ class ConvOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override;
framework::OpKernelType GetExpectedKernelType(
const framework::OpKernelType& kernel) const override {
return framework::OpKernelType(kernel.data_type_, platform::CUDAPlace(0),
kernel.data_layout_,
framework::LibraryType::kCUDNN);
}
};
class ConvOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override;
framework::OpKernelType GetExpectedKernelType(
const framework::OpKernelType& kernel) const override {
return framework::OpKernelType(kernel.data_type_, platform::CUDAPlace(0),
kernel.data_layout_,
framework::LibraryType::kCUDNN);
}
};
template <typename DeviceContext, typename T>
......
......@@ -21,14 +21,9 @@ namespace detail {
Status SendRecvServerImpl::SendVariable(ServerContext *context,
const VariableMessage *in_var,
VoidMessage *out_var) {
// TODO(typhoonzero): support different variable types.
std::istringstream iss(in_var->serialized());
framework::LoDTensor t;
framework::DeserializeFromStream(iss, &t);
TensorWithName tensor_with_name =
std::make_pair(in_var->varname(), std::move(t));
var_recv_queue_.Push(std::move(tensor_with_name));
MessageWithName msg_with_name =
std::make_pair(in_var->varname(), std::move(*in_var));
var_recv_queue_.Push(std::move(msg_with_name));
return Status::OK;
}
......@@ -37,14 +32,8 @@ Status SendRecvServerImpl::GetVariable(ServerContext *context,
VariableMessage *out_var) {
std::string get_var_name = in_var->varname();
auto *var = scope_->FindVar(get_var_name);
auto tensor = var->Get<framework::LoDTensor>();
std::ostringstream oss;
framework::SerializeToStream(oss, tensor, platform::CPUDeviceContext());
std::string *varname = out_var->mutable_varname();
*varname = get_var_name;
std::string *serialized = out_var->mutable_serialized();
*serialized = oss.str();
SerializeToMessage(get_var_name, var, platform::CPUDeviceContext(), out_var);
return Status::OK;
}
......
......@@ -27,14 +27,8 @@ bool RPCClient::SendVariable(const framework::Scope& scope,
auto ctx = platform::CPUDeviceContext();
auto* var = scope.FindVar(inname);
PADDLE_ENFORCE(var);
// TODO(typhoonzero): support SelectedRows
PADDLE_ENFORCE(var->IsType<framework::LoDTensor>(),
"Only support LoDTensor, %s has wrong type", inname);
const framework::LoDTensor& tensor = var->Get<framework::LoDTensor>();
std::ostringstream oss;
framework::SerializeToStream(oss, tensor, ctx);
msg.set_varname(inname);
msg.set_serialized(oss.str());
SerializeToMessage(inname, var, ctx, &msg);
Status status = stub_->SendVariable(&context, msg, &out_msg);
if (!status.ok()) {
LOG(ERROR) << "gRPC error: " << status.error_message();
......@@ -50,19 +44,15 @@ bool RPCClient::GetVariable(const framework::Scope& scope,
call_msg.set_varname(outname);
auto ctx = platform::CPUDeviceContext();
Status status = stub_->GetVariable(&context, call_msg, &ret_msg);
auto* outvar = scope.FindVar(outname);
if (!status.ok()) {
LOG(ERROR) << "gRPC error: " << status.error_message();
return false;
}
std::istringstream iss(ret_msg.serialized());
DeserializeFromMessage(ret_msg, ctx, outvar);
framework::LoDTensor ret_tensor;
framework::DeserializeFromStream(iss, &ret_tensor);
auto* outvar = scope.FindVar(outname);
framework::LoDTensor* out_tensor = outvar->GetMutable<framework::LoDTensor>();
// FIXME(typhoonzero): do not copy.
framework::CopyFrom(ret_tensor, ctx.GetPlace(), ctx, out_tensor);
return true;
}
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under
the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
......@@ -13,7 +12,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
syntax = "proto3";
package sendrecv;
service SendRecvService {
......@@ -29,12 +27,18 @@ service SendRecvService {
// VariableMessage is serialized paddle variable message.
// It can be:
// Tensor
// LoDTensor
// SelectedRows
enum VarType {
LOD_TENSOR = 0;
SELECTED_ROWS = 1;
}
message VariableMessage {
string varname = 1;
bytes serialized = 2;
// TODO(Yancey1989): reference framework::proto::VarDesc::VarType
VarType type = 2;
bytes serialized = 3;
}
message VoidMessage {}
......@@ -14,10 +14,10 @@ limitations under the License. */
#pragma once
#include "paddle/framework/data_type.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/scope.h"
#include "paddle/framework/selected_rows.h"
#include "paddle/framework/var_type.h"
#include "paddle/operators/detail/simple_block_queue.h"
#include "paddle/operators/detail/send_recv.grpc.pb.h"
......@@ -44,7 +44,7 @@ namespace paddle {
namespace operators {
namespace detail {
typedef std::pair<std::string, framework::LoDTensor> TensorWithName;
typedef std::pair<std::string, sendrecv::VariableMessage> MessageWithName;
class SendRecvServerImpl final : public SendRecvService::Service {
public:
......@@ -60,13 +60,13 @@ class SendRecvServerImpl final : public SendRecvService::Service {
void Done();
void SetScope(framework::Scope *scope) { scope_ = scope; };
const TensorWithName Get() { return this->var_recv_queue_.Pop(); }
const MessageWithName Get() { return this->var_recv_queue_.Pop(); }
void Push(const TensorWithName &msg) { this->var_recv_queue_.Push(msg); }
void Push(const MessageWithName &msg) { this->var_recv_queue_.Push(msg); }
private:
// received variable from RPC, operators fetch variable from this queue.
SimpleBlockQueue<TensorWithName> var_recv_queue_;
SimpleBlockQueue<MessageWithName> var_recv_queue_;
framework::Scope *scope_;
// condition of the sub program
std::mutex mutex_;
......@@ -89,6 +89,53 @@ class RPCClient {
std::unique_ptr<SendRecvService::Stub> stub_;
};
inline void SerializeToMessage(const std::string &name,
const framework::Variable *var,
const platform::DeviceContext &ctx,
VariableMessage *msg) {
msg->set_varname(name);
std::ostringstream oss;
switch (framework::ToVarType(var->Type())) {
case framework::proto::VarDesc_VarType_LOD_TENSOR:
msg->set_type(sendrecv::VarType::LOD_TENSOR);
framework::SerializeToStream(oss, var->Get<framework::LoDTensor>(), ctx);
break;
case framework::proto::VarDesc_VarType_SELECTED_ROWS:
msg->set_type(sendrecv::VarType::SELECTED_ROWS);
framework::SerializeToStream(oss, var->Get<framework::SelectedRows>(),
ctx);
break;
default: {
PADDLE_THROW("Serialize does not support type: %s",
typeid(var->Type()).name());
break;
}
}
msg->set_serialized(oss.str());
}
inline void DeserializeFromMessage(const VariableMessage &msg,
const platform::DeviceContext &ctx,
framework::Variable *var) {
using namespace paddle::framework::proto;
std::istringstream iss(msg.serialized());
switch (msg.type()) {
case sendrecv::VarType::LOD_TENSOR:
DeserializeFromStream(iss, var->GetMutable<framework::LoDTensor>(), ctx);
break;
case sendrecv::VarType::SELECTED_ROWS: {
DeserializeFromStream(iss, var->GetMutable<framework::SelectedRows>(),
ctx);
break;
}
default: {
PADDLE_THROW("Deserialize does not support type: %s",
typeid(var->Type()).name());
break;
}
}
}
} // namespace detail
} // namespace operators
} // namespace paddle
......@@ -38,10 +38,10 @@ class LoadOp : public framework::OperatorBase {
out_var_name);
auto *tensor = out_var->GetMutable<framework::LoDTensor>();
DeserializeFromStream(fin, tensor);
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(place);
DeserializeFromStream(fin, tensor, dev_ctx);
if (platform::is_gpu_place(place)) {
// copy CPU to GPU
......
......@@ -58,6 +58,7 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
OutputSizePool(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
}
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
ctx->ShareLoD("X", "Out");
}
void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const {
......
......@@ -60,7 +60,7 @@ class RecvOp : public framework::OperatorBase {
}
void Stop() override {
detail::TensorWithName term_msg;
detail::MessageWithName term_msg;
term_msg.first = LISTEN_TERMINATE_MESSAGE;
rpc_service_->Push(term_msg);
rpc_server_->Shutdown();
......@@ -94,7 +94,7 @@ class RecvOp : public framework::OperatorBase {
// the gradient arrives, just add suffix 0~n then average the gradient.
for (size_t i = 0; i < param_count * trainer_count; ++i) {
// blocking get one var from client.
const detail::TensorWithName &v = rpc_service_->Get();
const detail::MessageWithName &v = rpc_service_->Get();
auto grad_var_name = v.first;
if (grad_var_name == LISTEN_TERMINATE_MESSAGE) {
exit_flag = true;
......@@ -121,11 +121,10 @@ class RecvOp : public framework::OperatorBase {
}
auto *var = recv_scope.Var(grad_var_name);
auto *tensor = var->GetMutable<framework::LoDTensor>();
// FIXME(typhoonzero): do not copy
platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
auto &dev_ctx = *pool.Borrow(dev_place);
framework::CopyFrom(v.second, dev_place, dev_ctx, tensor);
platform::DeviceContextPool &pool =
platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(dev_place);
detail::DeserializeFromMessage(v.second, dev_ctx, var);
}
if (exit_flag) {
break;
......
......@@ -20,22 +20,27 @@ limitations under the License. */
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/program_desc.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/selected_rows_functor.h"
#include "paddle/string/printf.h"
USE_NO_KERNEL_OP(send);
USE_NO_KERNEL_OP(recv);
USE_OP(sum);
namespace f = paddle::framework;
namespace p = paddle::platform;
namespace m = paddle::operators::math;
// global for simplicity.
std::unique_ptr<paddle::framework::OperatorBase> recv_op;
std::unique_ptr<f::OperatorBase> recv_op;
void InitTensorsInScope(paddle::framework::Scope &scope,
paddle::platform::CPUPlace &place) {
paddle::platform::CPUDeviceContext ctx(place);
void InitTensorsInScope(f::Scope &scope, p::CPUPlace &place) {
p::CPUDeviceContext ctx(place);
for (int i = 0; i < 2; ++i) {
auto var_name = paddle::string::Sprintf("x%d", i);
auto var = scope.Var(var_name);
auto tensor = var->GetMutable<paddle::framework::LoDTensor>();
auto tensor = var->GetMutable<f::LoDTensor>();
tensor->Resize({10, 10});
float *expect = tensor->mutable_data<float>(place);
for (int64_t i = 0; i < tensor->numel(); ++i) {
......@@ -44,21 +49,53 @@ void InitTensorsInScope(paddle::framework::Scope &scope,
}
auto out_var = scope.Var("Out");
auto out_tensor = out_var->GetMutable<paddle::framework::LoDTensor>();
auto out_tensor = out_var->GetMutable<f::LoDTensor>();
out_tensor->Resize({10, 10});
out_tensor->mutable_data<float>(place); // allocate
}
void AddOp(const std::string &type,
const paddle::framework::VariableNameMap &inputs,
const paddle::framework::VariableNameMap &outputs,
paddle::framework::AttributeMap attrs,
paddle::framework::BlockDesc *block) {
void InitSelectedRowsInScope(f::Scope &scope, p::CPUPlace &place) {
p::CPUDeviceContext ctx(place);
int64_t height = 10;
int64_t row_numel = 10;
m::SetConstant<p::CPUDeviceContext, float> set_one;
// init x0
std::vector<int64_t> rows0{0, 4, 7};
auto x0_var = scope.Var("x0");
auto x0 = x0_var->GetMutable<f::SelectedRows>();
x0->set_rows(rows0);
x0->set_height(height);
auto x0_value = x0->mutable_value();
x0_value->mutable_data<float>(
f::make_ddim({static_cast<int64_t>(rows0.size()), row_numel}), place);
set_one(ctx, x0_value, 1.0);
// init x1
std::vector<int64_t> rows1{2, 9};
auto x1_var = scope.Var("x1");
auto x1 = x1_var->GetMutable<f::SelectedRows>();
x1->set_rows(rows1);
x1->set_height(height);
auto x1_value = x1->mutable_value();
x1_value->mutable_data<float>(
f::make_ddim({static_cast<int64_t>(rows1.size()), row_numel}), place);
set_one(ctx, x1_value, 1.0);
auto out_var = scope.Var("Out");
auto out = out_var->GetMutable<f::SelectedRows>();
auto out_value = out->mutable_value();
out->set_height(height);
out_value->mutable_data<float>(f::make_ddim({5, 10}), place);
}
void AddOp(const std::string &type, const f::VariableNameMap &inputs,
const f::VariableNameMap &outputs, f::AttributeMap attrs,
f::BlockDesc *block) {
// insert output
for (auto kv : outputs) {
for (auto v : kv.second) {
auto var = block->Var(v);
var->SetDataType(paddle::framework::proto::DataType::FP32);
var->SetDataType(f::proto::DataType::FP32);
}
}
......@@ -74,58 +111,99 @@ void AddOp(const std::string &type,
op->SetAttrMap(attrs);
}
void StartServerNet() {
paddle::framework::Scope scope;
paddle::platform::CPUPlace place;
InitTensorsInScope(scope, place);
void StartServerNet(bool is_sparse) {
f::Scope scope;
p::CPUPlace place;
if (is_sparse) {
InitSelectedRowsInScope(scope, place);
} else {
InitTensorsInScope(scope, place);
}
// sub program run in recv_op, for simple test we use sum
paddle::framework::ProgramDesc program;
paddle::framework::BlockDesc *block = program.MutableBlock(0);
f::ProgramDesc program;
f::BlockDesc *block = program.MutableBlock(0);
// X for server side tensors, RX for received tensers, must be of same shape.
AddOp("sum", {{"X", {"x0", "x1"}}}, {{"Out", {"x0"}}}, {}, block);
AddOp("sum", {{"X", {"x0", "x1"}}}, {{"Out", {"Out"}}}, {}, block);
paddle::framework::AttributeMap attrs;
f::AttributeMap attrs;
attrs.insert({"endpoint", std::string("127.0.0.1:6174")});
attrs.insert({"ParamList", std::vector<std::string>({"x0"})});
attrs.insert({"ParamList", std::vector<std::string>({"Out"})});
attrs.insert({"GradList", std::vector<std::string>({"x1"})});
std::string program_proto;
PADDLE_ENFORCE(program.Proto()->SerializeToString(&program_proto));
attrs.insert({"OptimizeProgram", program_proto});
recv_op = paddle::framework::OpRegistry::CreateOp("recv", {{"RX", {"x1"}}},
{}, attrs);
recv_op = f::OpRegistry::CreateOp("recv", {{"RX", {"x1"}}}, {}, attrs);
recv_op->Run(scope, place);
}
TEST(SendRecvOp, CPU) {
std::thread server_thread(StartServerNet);
sleep(5); // wait server to start
TEST(SendRecvOp, CPUDense) {
std::thread server_thread(StartServerNet, false);
sleep(3); // wait server to start
// local net
paddle::framework::Scope scope;
paddle::platform::CPUPlace place;
f::Scope scope;
p::CPUPlace place;
InitTensorsInScope(scope, place);
paddle::framework::AttributeMap attrs;
f::AttributeMap attrs;
attrs.insert({"endpoints", std::vector<std::string>({"127.0.0.1:6174"})});
attrs.insert({"epmap", std::vector<std::string>({"127.0.0.1:6174"})});
auto send_op = paddle::framework::OpRegistry::CreateOp(
"send", {{"X", {"x1"}}}, {{"Out", {"x0"}}}, attrs);
auto send_op = f::OpRegistry::CreateOp("send", {{"X", {"x1"}}},
{{"Out", {"Out"}}}, attrs);
send_op->Run(scope, place);
auto in_var = scope.Var("x1");
auto tensor = in_var->GetMutable<paddle::framework::LoDTensor>();
auto tensor = in_var->GetMutable<f::LoDTensor>();
float *expected = tensor->data<float>();
auto out_var = scope.Var("x0");
auto target = out_var->GetMutable<paddle::framework::LoDTensor>();
auto out_var = scope.Var("Out");
auto target = out_var->GetMutable<f::LoDTensor>();
// x1 * 2 == x0
EXPECT_NE(target->memory_size(), size_t(0));
float *actual = target->data<float>();
for (int64_t i = 0; i < target->numel(); ++i) {
EXPECT_EQ(expected[i] * 2, actual[i]);
}
recv_op->Stop();
server_thread.join();
recv_op.reset(nullptr);
}
TEST(SendRecvOp, CPUSparse) {
std::thread server_thread(StartServerNet, true);
sleep(3); // wait server to start
// local net
f::Scope scope;
p::CPUPlace place;
p::CPUDeviceContext ctx(place);
InitSelectedRowsInScope(scope, place);
f::AttributeMap attrs;
attrs.insert({"endpoints", std::vector<std::string>({"127.0.0.1:6174"})});
attrs.insert({"epmap", std::vector<std::string>({"127.0.0.1:6174"})});
auto send_op = f::OpRegistry::CreateOp("send", {{"X", {"x1"}}},
{{"Out", {"Out"}}}, attrs);
send_op->Run(scope, place);
auto x0 = scope.Var("x0")->GetMutable<f::SelectedRows>();
auto x1 = scope.Var("x1")->GetMutable<f::SelectedRows>();
auto out = scope.Var("Out")->GetMutable<f::SelectedRows>();
auto actual = out->mutable_value();
std::unique_ptr<f::SelectedRows> expect{new f::SelectedRows()};
auto expect_value = expect->mutable_value();
expect_value->mutable_data<float>(f::make_ddim({5, 10}), place);
m::SelectedRowsAdd<p::CPUDeviceContext, float> add_functor;
add_functor(ctx, *x0, *x1, expect.get());
EXPECT_EQ(actual->numel(), expect_value->numel());
EXPECT_EQ(out->rows().size(), x0->rows().size() + x1->rows().size());
for (int64_t i = 0; i < expect_value->numel(); ++i) {
EXPECT_EQ(expect_value->mutable_data<float>(place)[i],
actual->mutable_data<float>(place)[i]);
}
recv_op->Stop();
server_thread.join();
// recv_op.reset();
recv_op.reset();
}
......@@ -25,12 +25,12 @@ namespace operators {
using StepScopeVar = std::vector<framework::Scope *>;
using LoDTensor = framework::LoDTensor;
constexpr char kStepBlock[] = "sub_block";
constexpr char kCondition[] = "Condition";
constexpr char kStepScopes[] = "StepScopes";
constexpr char kParameters[] = "X";
constexpr char kParamGrads[] = "X@GRAD";
constexpr char kOutputs[] = "Out";
static constexpr char kStepBlock[] = "sub_block";
static constexpr char kCondition[] = "Condition";
static constexpr char kStepScopes[] = "StepScopes";
static constexpr char kX[] = "X";
static constexpr char kXGRAD[] = "X@GRAD";
static constexpr char kOutputs[] = "Out";
class WhileOp : public framework::OperatorBase {
public:
......@@ -67,7 +67,7 @@ class WhileOpMaker : public framework::OpProtoAndCheckerMaker {
public:
WhileOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(kParameters,
AddInput(kX,
"A set of variables, which are required by operators inside the "
"block of While Op.")
.AsDuplicable();
......@@ -158,8 +158,8 @@ class WhileGradOp : public framework::OperatorBase {
executor.Run(*program, *cur_scope_iter, block->ID(), false);
auto &pg_names = Outputs(kParamGrads);
auto &p_names = Inputs(kParameters);
auto &pg_names = Outputs(kXGRAD);
auto &p_names = Inputs(kX);
PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size());
for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) {
if (pg_names[param_id] == framework::kEmptyVarName) {
......@@ -213,11 +213,11 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
std::unique_ptr<framework::OpDesc> Apply() const override {
auto *grad = new framework::OpDesc();
grad->SetType("while_grad");
grad->SetInput(kParameters, Input(kParameters));
grad->SetInput(kX, Input(kX));
// Not all of IGs will be generated by inner gradient operators of while op.
// Ignore IGs that is not generated by the inside block.
auto igs = InputGrad(kParameters, /*do not drop empty gradient*/ false);
auto igs = InputGrad(kX, /*do not drop empty gradient*/ false);
std::unordered_set<std::string> all_outs;
for (size_t i = 0; i < grad_block_[0]->OpSize(); ++i) {
for (auto &oname : grad_block_[0]->Op(i)->OutputArgumentNames()) {
......@@ -231,7 +231,7 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
}
}
grad->SetOutput(framework::GradVarName(kParameters), igs);
grad->SetOutput(framework::GradVarName(kX), igs);
grad->SetInput(kOutputs, Output(kOutputs));
......@@ -240,7 +240,7 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
std::unordered_set<std::string> block_ins;
auto *fwd_block = this->grad_block_[0]->ParentBlock();
{
for (auto &p : Input(kParameters)) {
for (auto &p : Input(kX)) {
block_ins.insert(p);
}
for (auto &o : Output(kOutputs)) {
......@@ -288,8 +288,8 @@ class WhileGradOpVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto p_names = op_desc.Input(kParameters);
auto pg_names = op_desc.Output(framework::GradVarName(kParameters));
auto p_names = op_desc.Input(kX);
auto pg_names = op_desc.Output(framework::GradVarName(kX));
for (size_t i = 0; i < p_names.size(); ++i) {
auto &p_var = detail::Ref(block->FindVarRecursive(p_names[i]));
......@@ -307,21 +307,21 @@ class WhileGradOpVarTypeInference : public framework::VarTypeInference {
class WhileGradOpShapeInference : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *ctx) const override {
ctx->HasInputs(kParameters);
ctx->HasOutputs(framework::GradVarName(kParameters));
ctx->HasInputs(kX);
ctx->HasOutputs(framework::GradVarName(kX));
ctx->HasInputs(kOutputs);
ctx->HasInputs(framework::GradVarName(kOutputs));
auto p_names = ctx->Inputs(kParameters);
auto pg_names = ctx->Outputs(kParamGrads);
auto var_types = ctx->GetInputsVarType(kParameters);
auto p_names = ctx->Inputs(kX);
auto pg_names = ctx->Outputs(kXGRAD);
auto var_types = ctx->GetInputsVarType(kX);
std::vector<std::string> names_to_set;
std::vector<framework::DDim> dims_to_set;
for (size_t i = 0; i < p_names.size(); ++i) {
if (pg_names[i] == framework::kEmptyVarName) {
continue;
}
auto dims = ctx->GetInputsElementDim(kParameters, i);
auto dims = ctx->GetInputsElementDim(kX, i);
if (var_types[i] == framework::proto::VarDesc::LOD_TENSOR) {
names_to_set.push_back(pg_names[i]);
dims_to_set.push_back(dims);
......
......@@ -127,15 +127,21 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
PADDLE_ENFORCE(dynload::cublasCreate(&cublas_handle_));
PADDLE_ENFORCE(dynload::cublasSetStream(cublas_handle_, stream_));
PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, stream_));
if (dynload::HasCUDNN()) {
PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, stream_));
} else {
cudnn_handle_ = nullptr;
}
}
CUDADeviceContext::~CUDADeviceContext() {
SetDeviceId(place_.device);
Wait();
PADDLE_ENFORCE(dynload::cublasDestroy(cublas_handle_));
PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_));
if (cudnn_handle_ != nullptr) {
PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_));
}
eigen_stream_.reset();
eigen_device_.reset();
PADDLE_ENFORCE(cudaStreamDestroy(stream_));
......@@ -160,20 +166,6 @@ cudnnHandle_t CUDADeviceContext::cudnn_handle() const { return cudnn_handle_; }
cudaStream_t CUDADeviceContext::stream() const { return stream_; }
CUDNNDeviceContext::CUDNNDeviceContext(CUDAPlace place)
: CUDADeviceContext(place) {
PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, stream()));
}
CUDNNDeviceContext::~CUDNNDeviceContext() {
SetDeviceId(boost::get<CUDAPlace>(GetPlace()).device);
Wait();
PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_));
}
cudnnHandle_t CUDNNDeviceContext::cudnn_handle() const { return cudnn_handle_; }
#endif
#ifdef PADDLE_WITH_MKLDNN
......
......@@ -107,18 +107,6 @@ struct DefaultDeviceContextType<platform::CUDAPlace> {
using TYPE = CUDADeviceContext;
};
class CUDNNDeviceContext : public CUDADeviceContext {
public:
explicit CUDNNDeviceContext(CUDAPlace place);
virtual ~CUDNNDeviceContext();
/*! \brief Return cudnn handle in the device context. */
cudnnHandle_t cudnn_handle() const;
private:
cudnnHandle_t cudnn_handle_;
};
#endif
#ifdef PADDLE_WITH_MKLDNN
......@@ -203,7 +191,7 @@ class DeviceContextPool {
struct Hash {
std::hash<int> hash_;
size_t operator()(const platform::Place& place) const {
int pre_hash = place.which() + (1 << LEFT_SHIFT);
int pre_hash = place.which() << LEFT_SHIFT;
if (platform::is_gpu_place(place)) {
pre_hash += boost::get<platform::CUDAPlace>(place).GetDeviceId();
}
......
......@@ -49,21 +49,6 @@ TEST(Device, CUDADeviceContext) {
}
}
TEST(Device, CUDNNDeviceContext) {
using paddle::platform::CUDNNDeviceContext;
using paddle::platform::CUDAPlace;
if (paddle::platform::dynload::HasCUDNN()) {
int count = paddle::platform::GetCUDADeviceCount();
for (int i = 0; i < count; ++i) {
CUDNNDeviceContext* device_context = new CUDNNDeviceContext(CUDAPlace(i));
cudnnHandle_t cudnn_handle = device_context->cudnn_handle();
ASSERT_NE(nullptr, cudnn_handle);
ASSERT_NE(nullptr, device_context->stream());
delete device_context;
}
}
}
TEST(Device, DeviceContextPool) {
using paddle::platform::DeviceContextPool;
using paddle::platform::CUDADeviceContext;
......
......@@ -23,11 +23,6 @@ void BindConstValue(pybind11::module& m) {
m.def("kTempVarName", [] { return framework::kTempVarName; });
m.def("kGradVarSuffix", [] { return framework::kGradVarSuffix; });
m.def("kZeroVarSuffix", [] { return framework::kZeroVarSuffix; });
// for kernel_hint key
m.def("kUseCPU", [] { return framework::kUseCPU; });
m.def("kUseCUDNN", [] { return framework::kUseCUDNN; });
m.def("kUseMKLDNN", [] { return framework::kUseMKLDNN; });
}
} // namespace pybind
......
......@@ -216,7 +216,7 @@ void BindVarDsec(py::module &m) {
.def("set_dtype", &VarDesc::SetDataType)
.def("shape", &VarDesc::Shape, py::return_value_policy::reference)
.def("dtype", &VarDesc::GetDataType, py::return_value_policy::reference)
.def("lod_level", &VarDesc::GetLodLevel)
.def("lod_level", &VarDesc::GetLoDLevel)
.def("set_lod_level", &VarDesc::SetLoDLevel)
.def("type", &VarDesc::GetType)
.def("set_type", &VarDesc::SetType)
......
......@@ -427,8 +427,15 @@ All parameter, weight, gradient are variables in Paddle.
m.def("unique_integer", UniqueIntegerGenerator);
m.def("init_gflags", framework::InitGflags);
m.def("init_glog", framework::InitGLOG);
m.def("init_devices", &framework::InitDevices);
m.def("use_cpu", framework::UseCPU);
m.def("use_mkldnn", framework::UseMKLDNN);
m.def("use_cuda", framework::UseCUDA);
m.def("use_cudnn", framework::UseCUDNN);
m.def("use_all", framework::UseALL);
m.def("is_compile_gpu", IsCompileGPU);
m.def("set_feed_variable", framework::SetFeedVariable);
m.def("get_fetch_variable", framework::GetFetchVariable);
......
......@@ -29,6 +29,7 @@ DECLARE_bool(with_gpu);
DECLARE_bool(parallel_nn);
DECLARE_string(config_args);
DECLARE_bool(use_mkldnn);
DECLARE_bool(use_mkl_packed);
const char *kConfigParserModuleName = "paddle.trainer.config_parser";
const char *kConfigParserFuncName = "parse_config_and_serialize";
......@@ -46,6 +47,7 @@ TrainerConfigHelper::TrainerConfigHelper(const std::string &configFilePath)
<< ",with_cost=" << FLAGS_with_cost << ",use_gpu=" << FLAGS_use_gpu
<< ",parallel_nn=" << FLAGS_parallel_nn
<< ",use_mkldnn=" << FLAGS_use_mkldnn
<< ",use_mkl_packed=" << FLAGS_use_mkl_packed
<< ",cudnn_version=" << hl_get_cudnn_lib_version();
if (!FLAGS_config_args.empty()) {
configArgs << "," << FLAGS_config_args;
......
......@@ -27,6 +27,13 @@ DEFINE_bool(use_mkldnn, false, "Default still keep use CPU training");
DEFINE_bool(use_mkldnn, false, "Only support CPU training");
#endif
#ifdef PADDLE_WITH_MKLML
// TODO(TJ): change to true when fully confirmed
DEFINE_bool(use_mkl_packed, false, "Whether to use MKL Packed Optimization");
#else
DEFINE_bool(use_mkl_packed, false, "Not to use MKL Packed Optimization");
#endif
DEFINE_bool(parallel_nn,
false,
"Whether to use multi-threads to calculate one neural network."
......
......@@ -41,3 +41,4 @@ DECLARE_string(predict_file);
DECLARE_bool(prev_batch_state);
DECLARE_string(init_model_path);
DECLARE_bool(use_mkldnn);
DECLARE_bool(use_mkl_packed);
......@@ -3622,8 +3622,13 @@ class ConcatenateLayer2(LayerBase):
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
layer_type = 'recurrent'
def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs,
use_mkl_packed = bool(
int(g_command_config_args.get("use_mkl_packed", 0)))
self.layer_type = 'mkl_packed_recurrent' if use_mkl_packed else 'recurrent'
super(RecurrentLayer, self).__init__(name, self.layer_type, 0, inputs,
**xargs)
config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
input_layer = self.get_input_layer(0)
......
......@@ -135,6 +135,8 @@ def init(**kwargs):
cp.g_command_config_args['use_gpu'] = kwargs['use_gpu']
if 'use_mkldnn' in kwargs:
cp.g_command_config_args['use_mkldnn'] = kwargs['use_mkldnn']
if 'use_mkl_packed' in kwargs:
cp.g_command_config_args['use_mkl_packed'] = kwargs['use_mkl_packed']
assert 'parallel_nn' not in kwargs, ("currently 'parallel_nn' is not "
"supported in v2 APIs.")
......
from __future__ import print_function
# import all class inside framework into fluid module
import framework
from framework import *
......@@ -27,7 +28,7 @@ __all__ = framework.__all__ + executor.__all__ + [
]
def __read_gflags_from_env__():
def __bootstrap__():
"""
Enable reading gflags from environment variables.
......@@ -36,11 +37,30 @@ def __read_gflags_from_env__():
"""
import sys
import core
import os
try:
num_threads = int(os.getenv('OMP_NUM_THREADS', '1'))
except ValueError:
num_threads = 1
if num_threads > 1:
print(
'WARNING: OMP_NUM_THREADS set to {0}, not 1. The computation '
'speed will not be optimized if you use data parallel. It will '
'fail if this PaddlePaddle binary is compiled with OpenBlas since'
' OpenBlas does not support multi-threads.'.format(num_threads),
file=sys.stderr)
print('PLEASE USE OMP_NUM_THREADS WISELY.', file=sys.stderr)
os.environ['OMP_NUM_THREADS'] = str(num_threads)
read_env_flags = ['use_pinned_memory', 'check_nan_inf']
if core.is_compile_gpu():
read_env_flags.append('fraction_of_gpu_memory_to_use')
core.init_gflags([sys.argv[0]] +
["--tryfromenv=" + ",".join(read_env_flags)])
core.init_glog(sys.argv[0])
if core.is_compile_gpu():
core.init_devices(["CPU", "GPU:0"])
......@@ -48,4 +68,4 @@ def __read_gflags_from_env__():
core.init_devices(["CPU"])
__read_gflags_from_env__()
__bootstrap__()
......@@ -65,13 +65,6 @@ class Executor(object):
p.set_place(each)
act_places.append(p)
# TODO(dzhwinter) : consider that our fluid tests all written in
# CUDAPlace(gpu_id), this will be changed in the future
if core.is_compile_gpu():
core.init_devices(["CPU", "GPU:0"])
else:
core.init_devices(["CPU"])
# TODO(dzhwinter) : only use the first place
self.executor = core.Executor(act_places[0])
self.places = places
......
......@@ -17,10 +17,6 @@ TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
USE_CPU = core.kUseCPU()
USE_CUDNN = core.kUseMKLDNN()
USE_MKLDNN = core.kUseMKLDNN()
def grad_var_name(var_name):
"""
......
......@@ -36,7 +36,7 @@ def save_vars(executor, dirname, main_program=None, vars=None, predicate=None):
:param executor: executor that save variable
:param dirname: directory path
:param main_program: program. If vars is None, then filter all variables in this
program which fit `predicate`. Default g_program.
program which fit `predicate`. Default default_main_program.
:param predicate: The Predicate describes a callable that returns a variable
as a bool. If it returns true, the variables will be saved.
:param vars: variables need to be saved. If specify vars, program & predicate
......
......@@ -236,21 +236,47 @@ def gru_unit(input,
activation='tanh',
gate_activation='sigmoid'):
"""
GRUUnit Operator implements partial calculations of the GRU unit as following:
GRU unit layer. The equation of a gru step is:
$$
update \ gate: u_t = actGate(xu_t + W_u * h_{t-1} + b_u) \\
reset \ gate: r_t = actGate(xr_t + W_r * h_{t-1} + b_r) \\
output \ candidate: {h}_t = actNode(xc_t + W_c * dot(r_t, h_{t-1}) + b_c) \\
output: h_t = dot((1 - u_t), h_{t-1}) + dot(u_t, {h}_t)
$$
.. math::
u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
ch_t & = actNode(xc_t + W_c dot(r_t, h_{t-1}) + b_c)
h_t & = dot((1-u_t), ch_{t-1}) + dot(u_t, h_t)
which is same as one time step of GRU Operator.
The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
of the equation above, the :math:`z_t` is split into 3 parts -
:math:`xu_t`, :math:`xr_t` and :math:`xc_t`. This means that in order to
implement a full GRU unit operator for an input, a fully
connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.
This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t - 1})`
and concatenation of :math:`u_t`, :math:`r_t` and :math:`ch_t`.
Args:
input (Variable): The fc transformed input value of current step.
hidden (Variable): The hidden value of lstm unit from previous step.
size (integer): The input dimension value.
weight (ParamAttr): The weight parameters for gru unit. Default: None
bias (ParamAttr): The bias parameters for gru unit. Default: None
activation (string): The activation type for cell (actNode). Default: 'tanh'
gate_activation (string): The activation type for gates (actGate). Default: 'sigmoid'
Returns:
tuple: The hidden value, reset-hidden value and gate values.
Examples:
.. code-block:: python
@note To implement the complete GRU unit, fully-connected operator must be
used before to feed xu, xr and xc as the Input of GRUUnit operator.
# assuming we have x_t_data and prev_hidden of size=10
x_t = fluid.layers.fc(input=x_t_data, size=30)
hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
hidden = prev_hidden)
TODO(ChunweiYan) add more document here
"""
activation_dict = dict(
identity=0,
......
from ..registry import register_layer
__all__ = [
'mean', 'mul', 'dropout', 'reshape', 'sigmoid', 'scale', 'transpose',
'sigmoid_cross_entropy_with_logits', 'elementwise_add', 'elementwise_div',
'elementwise_sub', 'elementwise_mul', 'clip', 'abs', 'sequence_softmax'
__activations__ = [
'abs', 'tanh', 'sigmoid', 'relu', 'sqrt', 'ceil', 'floor', 'log', 'round'
]
__all__ = [
'mean',
'mul',
'dropout',
'reshape',
'scale',
'transpose',
'sigmoid_cross_entropy_with_logits',
'elementwise_add',
'elementwise_div',
'elementwise_sub',
'elementwise_mul',
'clip',
'sequence_softmax',
] + __activations__
for _OP in set(__all__):
globals()[_OP] = register_layer(_OP)
......@@ -14,6 +14,7 @@ hidden1 = fluid.layers.fc(input=image,
param_attr=fluid.ParamAttr(
regularizer=regularizer,
clip=fluid.clip.ClipByValue(10)))
hidden2 = fluid.layers.fc(input=hidden1,
size=64,
act='relu',
......@@ -73,5 +74,9 @@ for pass_id in range(PASS_NUM):
+ " test_acc=" + str(test_pass_acc))
if test_pass_acc > 0.7:
fluid.io.save_inference_model(
"./recognize_digits_mlp.inference.model/", ["x"], [predict],
exe)
exit(0)
exit(1)
import unittest
import numpy as np
import paddle.v2.fluid.core as core
from op_test import OpTest
......@@ -47,6 +49,7 @@ def conv2d_forward_naive(input, filter, group, conv_param):
class TestConv2dOp(OpTest):
def setUp(self):
core.use_cuda()
self.init_op_type()
self.init_group()
self.init_dilation()
......@@ -167,26 +170,31 @@ class TestWithDilation(TestConv2dOp):
#----------------Conv2dCudnn----------------
class TestCudnn(TestConv2dOp):
def init_op_type(self):
core.use_cudnn()
self.op_type = "conv2d_cudnn"
class TestCudnnWithPad(TestWithPad):
def init_op_type(self):
core.use_cudnn()
self.op_type = "conv2d_cudnn"
class TestCudnnWithStride(TestWithStride):
def init_op_type(self):
core.use_cudnn()
self.op_type = "conv2d_cudnn"
class TestCudnnWithGroup(TestWithGroup):
def init_op_type(self):
core.use_cudnn()
self.op_type = "conv2d_cudnn"
class TestCudnnWith1x1(TestWith1x1):
def init_op_type(self):
core.use_cudnn()
self.op_type = "conv2d_cudnn"
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册