提交 60d5f09c 编写于 作者: D danleifeng

fix is_empty api and code example; test=develop

上级 9b124014
......@@ -3788,7 +3788,7 @@ def reorder_lod_tensor_by_rank(x, rank_table):
return out
def is_empty(x, cond=None):
def is_empty(x, name=None):
"""
:alias_main: paddle.is_empty
:alias: paddle.is_empty,paddle.tensor.is_empty,paddle.tensor.logic.is_empty
......@@ -3798,35 +3798,60 @@ def is_empty(x, cond=None):
Args:
x (Variable): The Variable to be tested.
cond (Variable, optional): Output parameter. Default: None. If this parameter is given, it
saves the test result of given 'x'.
name (str, optional): The default value is ``None`` . Normally users
don't have to set this parameter. For more information,
please refer to :ref:`api_guide_Name` .
Returns:
Variable: A bool scalar. True if 'x' is an empty Variable.
Raises:
TypeError: If input cond is not a variable, or cond's dtype is
not bool.
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
res = fluid.layers.is_empty(x=input)
# or:
# fluid.layers.is_empty(x=input, cond=res)
# static mode
import numpy as np
import paddle
paddle.enable_static()
input = paddle.static.data(name="input", shape=[4, 32, 32], dtype="float32")
res = paddle.is_empty(x=input)
exe = paddle.static.Executor(paddle.CPUPlace())
data = np.ones((4, 32, 32)).astype(np.float32)
out = exe.run(feed={'input':data}, fetch_list=[res])
print("is_empty: ", out)
# ('out:', [array([False])])
.. code-block:: python
# dygraph_mode
import paddle
input = paddle.rand(shape=[4, 32, 32], dtype='float32')
res = paddle.is_empty(x=input)
print("res:", res)
# ('res:', Tensor: eager_tmp_1
# - place: CPUPlace
# - shape: [1]
# - layout: NCHW
# - dtype: bool
# - data: [0])
"""
if in_dygraph_mode():
assert isinstance(
x, Variable
), "The input data 'x' in is_empty must be Variable in dygraph mode"
return core.ops.is_empty(x)
check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
'is_empty')
check_type(cond, 'cond', (Variable, type(None)), 'is_empty')
check_type(name, "name", (str, type(None)), "is_empty")
helper = LayerHelper("is_empty", **locals())
if cond is None:
cond = helper.create_variable_for_type_inference(dtype='bool')
cond.stop_gradient = True
else:
check_dtype(cond.dtype, 'cond', ['bool'], 'is_empty')
cond = helper.create_variable_for_type_inference(dtype='bool')
cond.stop_gradient = True
helper.append_op(
type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
return cond
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册