提交 60a4f69b 编写于 作者: Q Qiao Longfei

add lookup remote table op

上级 e0b48f7e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/distributed_ops/lookup_remote_table_op.h"
#include "paddle/fluid/framework/var_type_inference.h"
namespace paddle {
namespace operators {
class LookupRemoteTableOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("W"),
"Input(W) of LookupRemoteTableOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Ids"),
"Input(Ids) of LookupRemoteTableOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of LookupRemoteTableOp should not be null.");
auto table_dims = ctx->GetInputDim("W");
auto ids_dims = ctx->GetInputDim("Ids");
int ids_rank = ids_dims.size();
PADDLE_ENFORCE_EQ(table_dims.size(), 2);
PADDLE_ENFORCE_EQ(ids_dims[ids_rank - 1], 1,
"The last dimension of the 'Ids' tensor must be 1.");
auto output_dims =
framework::vectorize(framework::slice_ddim(ids_dims, 0, ids_rank - 1));
output_dims.push_back(table_dims[1]);
ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
if (ctx->GetOutputsVarType("Out")[0] ==
framework::proto::VarType::LOD_TENSOR) {
ctx->ShareLoD("Ids", /*->*/ "Out");
}
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("W"));
return framework::OpKernelType(data_type, ctx.device_context());
}
};
class LookupRemoteTableOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("W",
"(Tensor) The input represents embedding tensors, "
"which is a learnable parameter.");
AddInput("Ids",
"An input with type int32 or int64 "
"contains the ids to be looked up in W. "
"The last dimension size must be 1.");
AddOutput("Out", "The lookup results, which have the same type as W.");
AddAttr<int64_t>("padding_idx",
"(int64, default -1) "
"If the value is -1, it makes no effect to lookup. "
"Otherwise the given value indicates padding the output "
"with zeros whenever lookup encounters it in Ids.")
.SetDefault(kNoPadding);
// NOTE(minqiyang): grad_inplace is an temporal attribute,
// please do NOT set this attribute in python layer.
AddAttr<bool>("grad_inplace",
"(boolean, default false) "
"If the grad op reuse the input's variable.")
.SetDefault(false);
AddComment(R"DOC(
Lookup Remote Table Operator.
This operator is used to perform lookups on the parameter W,
then concatenated into a dense tensor.
The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(lookup_remote_table, ops::LookupRemoteTableOp,
ops::EmptyGradOpMaker, ops::LookupRemoteTableOpMaker);
REGISTER_OP_CPU_KERNEL(lookup_remote_table, ops::LookupRemoteTableKernel<float>,
ops::LookupRemoteTableKernel<double>);
...@@ -14,21 +14,22 @@ limitations under the License. */ ...@@ -14,21 +14,22 @@ limitations under the License. */
#include <future> // NOLINT #include <future> // NOLINT
#include <ostream> #include <ostream>
#include <vector>
#include <set> #include <set>
#include <unordered_map> #include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/operators/detail/macros.h"
#include "paddle/fluid/memory/memcpy.h" #include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/detail/macros.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h" #include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
namespace distributed { namespace distributed {
inline size_t GetSectionIndex(int64_t id, const std::vector<int64_t>& abs_sections) { inline size_t GetSectionIndex(int64_t id,
const std::vector<int64_t>& abs_sections) {
for (size_t i = 1; i < abs_sections.size(); ++i) { for (size_t i = 1; i < abs_sections.size(); ++i) {
if (row < abs_sections[i]) { if (row < abs_sections[i]) {
return i - 1; return i - 1;
...@@ -38,7 +39,7 @@ inline size_t GetSectionIndex(int64_t id, const std::vector<int64_t>& abs_sectio ...@@ -38,7 +39,7 @@ inline size_t GetSectionIndex(int64_t id, const std::vector<int64_t>& abs_sectio
} }
inline std::vector<int64_t> ToAbsoluteSection( inline std::vector<int64_t> ToAbsoluteSection(
const std::vector<int64_t>& height_sections) { const std::vector<int64_t>& height_sections) {
std::vector<int64_t> abs_sections; std::vector<int64_t> abs_sections;
abs_sections.resize(height_sections.size()); abs_sections.resize(height_sections.size());
abs_sections[0] = 0; abs_sections[0] = 0;
...@@ -49,9 +50,8 @@ inline std::vector<int64_t> ToAbsoluteSection( ...@@ -49,9 +50,8 @@ inline std::vector<int64_t> ToAbsoluteSection(
} }
inline std::vector<std::vector<int64_t>> SplitIds( inline std::vector<std::vector<int64_t>> SplitIds(
const std::string& id_name, const std::string& id_name, const std::vector<int64_t>& height_section,
const std::vector<int64_t>& height_section, framework::Scope* scope) {
framework::Scope* scope) {
auto& id_tensor = scope->Var(id_name)->Get<framework::LoDTensor>(); auto& id_tensor = scope->Var(id_name)->Get<framework::LoDTensor>();
auto* id_data = id_tensor.data<int64_t>(); auto* id_data = id_tensor.data<int64_t>();
std::set<int64_t> all_ids; std::set<int64_t> all_ids;
...@@ -68,32 +68,32 @@ inline std::vector<std::vector<int64_t>> SplitIds( ...@@ -68,32 +68,32 @@ inline std::vector<std::vector<int64_t>> SplitIds(
} }
inline void SplitIdsIntoMultipleVarsBySection( inline void SplitIdsIntoMultipleVarsBySection(
const std::string& id_name, const std::string& id_name, const std::vector<std::string>& in_var_names,
const std::vector<std::string>& in_var_names, const std::vector<int64_t>& height_section,
const std::vector<int64_t>& height_section, const std::vector<std::vector<int64_t>>& splited_ids,
const std::vector<std::vector<int64_t>>& splited_ids, framework::Scope* scope) {
framework::Scope* scope) {
PADDLE_ENFORCE_EQ(in_var_names.size(), height_section.size() + 1, ""); PADDLE_ENFORCE_EQ(in_var_names.size(), height_section.size() + 1, "");
auto place = platform::CPUPlace(); auto place = platform::CPUPlace();
for (size_t i = 0; i < in_var_names.size(); ++i) { for (size_t i = 0; i < in_var_names.size(); ++i) {
auto* id_tensor = scope->Var(in_var_names[i])->GetMutable<framework::LoDTensor>(); auto* id_tensor =
scope->Var(in_var_names[i])->GetMutable<framework::LoDTensor>();
auto& ids = splited_ids[i]; auto& ids = splited_ids[i];
if (!ids.empty()) { if (!ids.empty()) {
auto* id_tensor_data = id_tensor->mutable_data<int64_t>(framework::make_ddim({ids.size(), 1}), place); auto* id_tensor_data = id_tensor->mutable_data<int64_t>(
framework::make_ddim({ids.size(), 1}), place);
memcpy(id_tensor_data, ids.data(), sizeof(int64_t) * ids.size()); memcpy(id_tensor_data, ids.data(), sizeof(int64_t) * ids.size());
} }
} }
} }
inline void MergeMultipleVarsIntoOnBySection( inline void MergeMultipleVarsIntoOnBySection(
const std::string& id_name, const std::string& id_name, const std::string& out_name,
const std::string& out_name, const std::vector<std::string>& out_var_names,
const std::vector<std::string>& out_var_names, const std::vector<int64_t>& height_section,
const std::vector<int64_t>& height_section, const std::vector<std::vector<int64_t>>& splited_ids,
const std::vector<std::vector<int64_t>>& splited_ids, framework::Scope* scope) {
framework::Scope* scope) {
PADDLE_ENFORCE_EQ(in_var_names.size(), height_section.size() + 1, ""); PADDLE_ENFORCE_EQ(in_var_names.size(), height_section.size() + 1, "");
auto cpu_place = platform::CPUPlace(); auto cpu_place = platform::CPUPlace();
...@@ -109,9 +109,11 @@ inline void MergeMultipleVarsIntoOnBySection( ...@@ -109,9 +109,11 @@ inline void MergeMultipleVarsIntoOnBySection(
auto& out_tensor = scope->Var(out_name)->Get<framework::LoDTensor>(); auto& out_tensor = scope->Var(out_name)->Get<framework::LoDTensor>();
auto* out_tensor_data = out_tensor.mutable_data<float>(); auto* out_tensor_data = out_tensor.mutable_data<float>();
for (size_t section_idx = 0; section_idx < out_var_names.size(); ++section_idx) { for (size_t section_idx = 0; section_idx < out_var_names.size();
++section_idx) {
auto& ids_in_this_section = splited_ids[section_idx]; auto& ids_in_this_section = splited_ids[section_idx];
auto& prefetch_out_var = scope->Var(out_var_names[section_idx])->Get<framework::LoDTensor>(); auto& prefetch_out_var =
scope->Var(out_var_names[section_idx])->Get<framework::LoDTensor>();
const auto* out_var_data = prefetch_out_var.mutable_data<float>(); const auto* out_var_data = prefetch_out_var.mutable_data<float>();
auto& dims = prefetch_out_var.dims(); auto& dims = prefetch_out_var.dims();
...@@ -126,31 +128,27 @@ inline void MergeMultipleVarsIntoOnBySection( ...@@ -126,31 +128,27 @@ inline void MergeMultipleVarsIntoOnBySection(
auto& offsets = id_to_offset[origin_id]; auto& offsets = id_to_offset[origin_id];
for (auto& offset : offsets) { for (auto& offset : offsets) {
// should support GPU tensor // should support GPU tensor
memory::Copy(cpu_place, out_tensor_data + offset * row_numel, memory::Copy(cpu_place, out_tensor_data + offset * row_numel, cpu_place,
cpu_place, out_var_data + i * grad_row_numel, out_var_data + i * grad_row_numel,
sizeof(T) * grad_row_numel); sizeof(T) * grad_row_numel);
} }
} }
} }
} }
inline void prefetch( inline void prefetch(const std::string& table_name, const std::string& id_name,
const std::string& table_name, const std::string& out_name,
const std::string& id_name, const std::vector<std::string>& epmap,
const std::string& out_name, const std::vector<int64_t>& height_section,
const std::vector<std::string>& epmap, const framework::Scope& scope,
const std::vector<int64_t>& height_section, const platform::Place& place) const {
const framework::Scope& scope,
const platform::Place& place) const {
auto local_scope = scope.NewScope(); auto local_scope = scope.NewScope();
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
auto& ctx = *pool.Get(place); auto& ctx = *pool.Get(place);
distributed::RPCClient* rpc_client = distributed::RPCClient* rpc_client =
distributed::RPCClient::GetInstance<RPCCLIENT_T>( distributed::RPCClient::GetInstance<RPCCLIENT_T>(Attr<int>("trainer_id"));
Attr<int>("trainer_id"));
std::vector<std::string> in_var_names; std::vector<std::string> in_var_names;
std::vector<std::string> out_var_names; std::vector<std::string> out_var_names;
...@@ -160,7 +158,8 @@ inline void prefetch( ...@@ -160,7 +158,8 @@ inline void prefetch(
} }
auto splited_ids = SplitIds(id_name, height_section, local_scope); auto splited_ids = SplitIds(id_name, height_section, local_scope);
SplitIdsIntoMultipleVarsBySection(id_name, in_var_names, height_section, splited_ids, local_scope); SplitIdsIntoMultipleVarsBySection(id_name, in_var_names, height_section,
splited_ids, local_scope);
// create output var in local scope // create output var in local scope
for (auto& name : out_var_names) { for (auto& name : out_var_names) {
...@@ -171,9 +170,9 @@ inline void prefetch( ...@@ -171,9 +170,9 @@ inline void prefetch(
for (size_t i = 0; i < ins.size(); i++) { for (size_t i = 0; i < ins.size(); i++) {
if (NeedSend(local_scope, ins[i])) { if (NeedSend(local_scope, ins[i])) {
VLOG(30) << "sending " << ins[i] << " to " << epmap[i] << " to get " VLOG(30) << "sending " << ins[i] << " to " << epmap[i] << " to get "
<< outs[i] << " back"; << outs[i] << " back";
rets.push_back(rpc_client->AsyncPrefetchVar(epmap[i], ctx, local_scope, rets.push_back(rpc_client->AsyncPrefetchVar(
in_var_names[i], out_var_names[i])); epmap[i], ctx, local_scope, in_var_names[i], out_var_names[i]));
} else { } else {
VLOG(30) << "don't send no-initialied variable: " << out_var_names[i]; VLOG(30) << "don't send no-initialied variable: " << out_var_names[i];
} }
...@@ -182,11 +181,71 @@ inline void prefetch( ...@@ -182,11 +181,71 @@ inline void prefetch(
PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient"); PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient");
} }
MergeMultipleVarsIntoOnBySection(id_name, out_name, out_var_names, height_section, plited_ids, scope) MergeMultipleVarsIntoOnBySection(id_name, out_name, out_var_names,
height_section, plited_ids, scope)
scope.DeleteScope(local_scope); scope.DeleteScope(local_scope);
} }
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;
constexpr int64_t kNoPadding = -1;
template <typename T>
class LookupRemoteTableKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* ids_t = context.Input<LoDTensor>("Ids"); // int tensor
auto* output_t = context.Output<LoDTensor>("Out"); // float tensor
auto* table_var = context.InputVar("W");
int64_t padding_idx = context.Attr<int64_t>("padding_idx");
int64_t* ids = const_cast<int64_t*>(ids_t->data<int64_t>());
int64_t ids_numel = ids_t->numel();
if (table_var->IsType<LoDTensor>()) {
auto* table_t = context.Input<LoDTensor>("W");
int64_t row_number = table_t->dims()[0];
int64_t row_width = table_t->dims()[1];
auto* table = table_t->data<T>();
auto* output = output_t->mutable_data<T>(context.GetPlace());
for (int64_t i = 0; i < ids_numel; ++i) {
if (padding_idx != kNoPadding && ids[i] == padding_idx) {
memset(output + i * row_width, 0, row_width * sizeof(T));
} else {
PADDLE_ENFORCE_LT(ids[i], row_number);
PADDLE_ENFORCE_GE(ids[i], 0, "ids %d", i);
memcpy(output + i * row_width, table + ids[i] * row_width,
row_width * sizeof(T));
}
}
} else if (table_var->IsType<SelectedRows>()) {
const auto& table_t = table_var->Get<SelectedRows>();
int64_t row_width = table_t.value().dims()[1];
const auto* table = table_t.value().data<T>();
auto* output = output_t->mutable_data<T>(context.GetPlace());
auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
for (int64_t i = 0; i < ids_numel; ++i) {
if (padding_idx != kNoPadding && ids[i] == padding_idx) {
memset(output + i * row_width, 0, row_width * sizeof(T));
} else {
PADDLE_ENFORCE_GE(ids[i], 0);
auto id_index = table_t.Index(ids[i]);
PADDLE_ENFORCE_GE(id_index, 0, "the input key should be exists.");
blas.VCOPY(row_width, table + id_index * row_width,
output + i * row_width);
}
}
}
}
};
} // namespace distributed } // namespace distributed
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册