未验证 提交 60783a75 编写于 作者: K Kexin Zhao 提交者: GitHub

Modify machine translation example using new LoDTensor API (#11018)

* modify old machine translation

* modify new_api machine translation
上级 88aa2d8a
......@@ -148,28 +148,6 @@ def decoder_decode(context, is_sparse):
return translation_ids, translation_scores
def set_init_lod(data, lod, place):
res = fluid.LoDTensor()
res.set(data, place)
res.set_lod(lod)
return res
def to_lodtensor(data, place):
seq_lens = [len(seq) for seq in data]
cur_len = 0
lod = [cur_len]
for l in seq_lens:
cur_len += l
lod.append(cur_len)
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
res = fluid.LoDTensor()
res.set(flattened_data, place)
res.set_lod([lod])
return res
def train_program(is_sparse):
context = encoder(is_sparse)
rnn_out = decoder_train(context, is_sparse)
......@@ -218,7 +196,6 @@ def train(use_cuda, is_sparse, is_local=True):
def decode_main(use_cuda, is_sparse):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
......@@ -234,26 +211,32 @@ def decode_main(use_cuda, is_sparse):
[1. for _ in range(batch_size)], dtype='float32')
init_ids_data = init_ids_data.reshape((batch_size, 1))
init_scores_data = init_scores_data.reshape((batch_size, 1))
init_lod = [i for i in range(batch_size)] + [batch_size]
init_lod = [1] * batch_size
init_lod = [init_lod, init_lod]
init_ids = fluid.create_lod_tensor(init_ids_data, init_lod, place)
init_scores = fluid.create_lod_tensor(init_scores_data, init_lod, place)
train_data = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(dict_size), buf_size=1000),
batch_size=batch_size)
for _, data in enumerate(train_data()):
init_ids = set_init_lod(init_ids_data, init_lod, place)
init_scores = set_init_lod(init_scores_data, init_lod, place)
src_word_data = to_lodtensor(map(lambda x: x[0], data), place)
feed_order = ['src_word_id']
feed_list = [
framework.default_main_program().global_block().var(var_name)
for var_name in feed_order
]
feeder = fluid.DataFeeder(feed_list, place)
for data in train_data():
feed_dict = feeder.feed(map(lambda x: [x[0]], data))
feed_dict['init_ids'] = init_ids
feed_dict['init_scores'] = init_scores
result_ids, result_scores = exe.run(
framework.default_main_program(),
feed={
'src_word_id': src_word_data,
'init_ids': init_ids,
'init_scores': init_scores
},
feed=feed_dict,
fetch_list=[translation_ids, translation_scores],
return_numpy=False)
print result_ids.lod()
......
......@@ -147,28 +147,6 @@ def decoder_decode(context, is_sparse):
return translation_ids, translation_scores
def set_init_lod(data, lod, place):
res = fluid.LoDTensor()
res.set(data, place)
res.set_lod(lod)
return res
def to_lodtensor(data, place):
seq_lens = [len(seq) for seq in data]
cur_len = 0
lod = [cur_len]
for l in seq_lens:
cur_len += l
lod.append(cur_len)
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
res = fluid.LoDTensor()
res.set(flattened_data, place)
res.set_lod([lod])
return res
def train_main(use_cuda, is_sparse, is_local=True):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
......@@ -192,23 +170,25 @@ def train_main(use_cuda, is_sparse, is_local=True):
paddle.dataset.wmt14.train(dict_size), buf_size=1000),
batch_size=batch_size)
feed_order = [
'src_word_id', 'target_language_word', 'target_language_next_word'
]
exe = Executor(place)
def train_loop(main_program):
exe.run(framework.default_startup_program())
feed_list = [
main_program.global_block().var(var_name) for var_name in feed_order
]
feeder = fluid.DataFeeder(feed_list, place)
batch_id = 0
for pass_id in xrange(1):
for data in train_data():
word_data = to_lodtensor(map(lambda x: x[0], data), place)
trg_word = to_lodtensor(map(lambda x: x[1], data), place)
trg_word_next = to_lodtensor(map(lambda x: x[2], data), place)
outs = exe.run(main_program,
feed={
'src_word_id': word_data,
'target_language_word': trg_word,
'target_language_next_word': trg_word_next
},
feed=feeder.feed(data),
fetch_list=[avg_cost])
avg_cost_val = np.array(outs[0])
print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
......@@ -258,26 +238,32 @@ def decode_main(use_cuda, is_sparse):
[1. for _ in range(batch_size)], dtype='float32')
init_ids_data = init_ids_data.reshape((batch_size, 1))
init_scores_data = init_scores_data.reshape((batch_size, 1))
init_lod = [i for i in range(batch_size)] + [batch_size]
init_lod = [1] * batch_size
init_lod = [init_lod, init_lod]
init_ids = fluid.create_lod_tensor(init_ids_data, init_lod, place)
init_scores = fluid.create_lod_tensor(init_scores_data, init_lod, place)
train_data = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(dict_size), buf_size=1000),
batch_size=batch_size)
for _, data in enumerate(train_data()):
init_ids = set_init_lod(init_ids_data, init_lod, place)
init_scores = set_init_lod(init_scores_data, init_lod, place)
src_word_data = to_lodtensor(map(lambda x: x[0], data), place)
feed_order = ['src_word_id']
feed_list = [
framework.default_main_program().global_block().var(var_name)
for var_name in feed_order
]
feeder = fluid.DataFeeder(feed_list, place)
for data in train_data():
feed_dict = feeder.feed(map(lambda x: [x[0]], data))
feed_dict['init_ids'] = init_ids
feed_dict['init_scores'] = init_scores
result_ids, result_scores = exe.run(
framework.default_main_program(),
feed={
'src_word_id': src_word_data,
'init_ids': init_ids,
'init_scores': init_scores
},
feed=feed_dict,
fetch_list=[translation_ids, translation_scores],
return_numpy=False)
print result_ids.lod()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
新手
引导
客服 返回
顶部