未验证 提交 5ed23c60 编写于 作者: J juncaipeng 提交者: GitHub

Modify doc for shuffle, firstn, save_vars, load_vars, L1DecayRegularizer,...

Modify doc for shuffle, firstn, save_vars, load_vars, L1DecayRegularizer, L2DecayRegularizer (#20287)

* modify shuffle, firstn, regularizer, load_vars, save_vars, test=develop, test=document_fix
上级 52dcc167
...@@ -70,10 +70,10 @@ paddle.fluid.BuildStrategy.ReduceStrategy ('paddle.fluid.core_avx.ReduceStrategy ...@@ -70,10 +70,10 @@ paddle.fluid.BuildStrategy.ReduceStrategy ('paddle.fluid.core_avx.ReduceStrategy
paddle.fluid.BuildStrategy.ReduceStrategy.__init__ __init__(self: paddle.fluid.core_avx.ParallelExecutor.BuildStrategy.ReduceStrategy, arg0: int) -> None paddle.fluid.BuildStrategy.ReduceStrategy.__init__ __init__(self: paddle.fluid.core_avx.ParallelExecutor.BuildStrategy.ReduceStrategy, arg0: int) -> None
paddle.fluid.BuildStrategy.__init__ __init__(self: paddle.fluid.core_avx.ParallelExecutor.BuildStrategy) -> None paddle.fluid.BuildStrategy.__init__ __init__(self: paddle.fluid.core_avx.ParallelExecutor.BuildStrategy) -> None
paddle.fluid.gradients (ArgSpec(args=['targets', 'inputs', 'target_gradients', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'e2097e1e0ed84ae44951437bfe269a1b')) paddle.fluid.gradients (ArgSpec(args=['targets', 'inputs', 'target_gradients', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'e2097e1e0ed84ae44951437bfe269a1b'))
paddle.fluid.io.save_vars (ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '869104f47e6fd21d897c3fcc426aa942')) paddle.fluid.io.save_vars (ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '9ff7159eef501e9dfaf520073e681c10'))
paddle.fluid.io.save_params (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', '046d7c43d67e08c2660bb3bd7e081015')) paddle.fluid.io.save_params (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', '046d7c43d67e08c2660bb3bd7e081015'))
paddle.fluid.io.save_persistables (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'ffcee38044975c29f2ab2fec0576f963')) paddle.fluid.io.save_persistables (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'ffcee38044975c29f2ab2fec0576f963'))
paddle.fluid.io.load_vars (ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '1bb9454cf09d71f190bb51550c5a3ac9')) paddle.fluid.io.load_vars (ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '12dd2c3f29d63f7a920bb1e0a0e8caff'))
paddle.fluid.io.load_params (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'f3f16db75ae076d46608c7e976650cfc')) paddle.fluid.io.load_params (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'f3f16db75ae076d46608c7e976650cfc'))
paddle.fluid.io.load_persistables (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', '1e039084ad3781eb43966581eed48688')) paddle.fluid.io.load_persistables (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', '1e039084ad3781eb43966581eed48688'))
paddle.fluid.io.save_inference_model (ArgSpec(args=['dirname', 'feeded_var_names', 'target_vars', 'executor', 'main_program', 'model_filename', 'params_filename', 'export_for_deployment', 'program_only'], varargs=None, keywords=None, defaults=(None, None, None, True, False)), ('document', 'fc82bfd137a9b1ab8ebd1651bd35b6e5')) paddle.fluid.io.save_inference_model (ArgSpec(args=['dirname', 'feeded_var_names', 'target_vars', 'executor', 'main_program', 'model_filename', 'params_filename', 'export_for_deployment', 'program_only'], varargs=None, keywords=None, defaults=(None, None, None, True, False)), ('document', 'fc82bfd137a9b1ab8ebd1651bd35b6e5'))
...@@ -98,8 +98,8 @@ paddle.fluid.io.map_readers (ArgSpec(args=['func'], varargs='readers', keywords= ...@@ -98,8 +98,8 @@ paddle.fluid.io.map_readers (ArgSpec(args=['func'], varargs='readers', keywords=
paddle.fluid.io.buffered (ArgSpec(args=['reader', 'size'], varargs=None, keywords=None, defaults=None), ('document', '0d6186f109feceb99f60ec50a0a624cb')) paddle.fluid.io.buffered (ArgSpec(args=['reader', 'size'], varargs=None, keywords=None, defaults=None), ('document', '0d6186f109feceb99f60ec50a0a624cb'))
paddle.fluid.io.compose (ArgSpec(args=[], varargs='readers', keywords='kwargs', defaults=None), ('document', '81c933c8da58041d91f084dcf6322349')) paddle.fluid.io.compose (ArgSpec(args=[], varargs='readers', keywords='kwargs', defaults=None), ('document', '81c933c8da58041d91f084dcf6322349'))
paddle.fluid.io.chain (ArgSpec(args=[], varargs='readers', keywords=None, defaults=None), ('document', 'e0311508658a7e741fc39feea8be0ad2')) paddle.fluid.io.chain (ArgSpec(args=[], varargs='readers', keywords=None, defaults=None), ('document', 'e0311508658a7e741fc39feea8be0ad2'))
paddle.fluid.io.shuffle (ArgSpec(args=['reader', 'buf_size'], varargs=None, keywords=None, defaults=None), ('document', 'e42ea6fee23ce26b23cb142cd1d6522d')) paddle.fluid.io.shuffle (ArgSpec(args=['reader', 'buf_size'], varargs=None, keywords=None, defaults=None), ('document', '961d0a950cc837c8b13577301dee7bd8'))
paddle.fluid.io.firstn (ArgSpec(args=['reader', 'n'], varargs=None, keywords=None, defaults=None), ('document', 'c5bb8f7dd4f917f1569a368aab5b8aad')) paddle.fluid.io.firstn (ArgSpec(args=['reader', 'n'], varargs=None, keywords=None, defaults=None), ('document', 'db83c761a5530a05c1ffe2f6f78198f4'))
paddle.fluid.io.xmap_readers (ArgSpec(args=['mapper', 'reader', 'process_num', 'buffer_size', 'order'], varargs=None, keywords=None, defaults=(False,)), ('document', '9c804a42f8a4dbaa76b3c98e0ab7f796')) paddle.fluid.io.xmap_readers (ArgSpec(args=['mapper', 'reader', 'process_num', 'buffer_size', 'order'], varargs=None, keywords=None, defaults=(False,)), ('document', '9c804a42f8a4dbaa76b3c98e0ab7f796'))
paddle.fluid.io.multiprocess_reader (ArgSpec(args=['readers', 'use_pipe', 'queue_size'], varargs=None, keywords=None, defaults=(True, 1000)), ('document', '7d8b3a96e592107c893d5d51ce968ba0')) paddle.fluid.io.multiprocess_reader (ArgSpec(args=['readers', 'use_pipe', 'queue_size'], varargs=None, keywords=None, defaults=(True, 1000)), ('document', '7d8b3a96e592107c893d5d51ce968ba0'))
paddle.fluid.initializer.ConstantInitializer ('paddle.fluid.initializer.ConstantInitializer', ('document', '911263fc30c516c55e89cd72086a23f8')) paddle.fluid.initializer.ConstantInitializer ('paddle.fluid.initializer.ConstantInitializer', ('document', '911263fc30c516c55e89cd72086a23f8'))
...@@ -1075,9 +1075,9 @@ paddle.fluid.optimizer.RecomputeOptimizer.set_dict (ArgSpec(args=['self', 'state ...@@ -1075,9 +1075,9 @@ paddle.fluid.optimizer.RecomputeOptimizer.set_dict (ArgSpec(args=['self', 'state
paddle.fluid.optimizer.RecomputeOptimizer.state_dict (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', 'deca1537945d33940b350923fb16ddf8')) paddle.fluid.optimizer.RecomputeOptimizer.state_dict (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', 'deca1537945d33940b350923fb16ddf8'))
paddle.fluid.backward.append_backward (ArgSpec(args=['loss', 'parameter_list', 'no_grad_set', 'callbacks', 'checkpoints'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', 'c68fe1cb95d90762b57c309cae9b99d9')) paddle.fluid.backward.append_backward (ArgSpec(args=['loss', 'parameter_list', 'no_grad_set', 'callbacks', 'checkpoints'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', 'c68fe1cb95d90762b57c309cae9b99d9'))
paddle.fluid.backward.gradients (ArgSpec(args=['targets', 'inputs', 'target_gradients', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'e2097e1e0ed84ae44951437bfe269a1b')) paddle.fluid.backward.gradients (ArgSpec(args=['targets', 'inputs', 'target_gradients', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'e2097e1e0ed84ae44951437bfe269a1b'))
paddle.fluid.regularizer.L1DecayRegularizer ('paddle.fluid.regularizer.L1DecayRegularizer', ('document', '34603757e70974d2fcc730643b382925')) paddle.fluid.regularizer.L1DecayRegularizer ('paddle.fluid.regularizer.L1DecayRegularizer', ('document', '4fe4381ca996f3fc0458fe28594a25e8'))
paddle.fluid.regularizer.L1DecayRegularizer.__init__ (ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.regularizer.L1DecayRegularizer.__init__ (ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.regularizer.L2DecayRegularizer ('paddle.fluid.regularizer.L2DecayRegularizer', ('document', 'b94371c3434d7f695bc5b2d6fb5531fd')) paddle.fluid.regularizer.L2DecayRegularizer ('paddle.fluid.regularizer.L2DecayRegularizer', ('document', 'e5d02740904686c1c50e8f80c1582861'))
paddle.fluid.regularizer.L2DecayRegularizer.__init__ (ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.regularizer.L2DecayRegularizer.__init__ (ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.LoDTensor ('paddle.fluid.core_avx.LoDTensor', ('document', '8ee00d246c952b92e5e8ca2d92a4fc00')) paddle.fluid.LoDTensor ('paddle.fluid.core_avx.LoDTensor', ('document', '8ee00d246c952b92e5e8ca2d92a4fc00'))
paddle.fluid.LoDTensor.__init__ 1. __init__(self: paddle.fluid.core_avx.LoDTensor, arg0: List[List[int]]) -> None 2. __init__(self: paddle.fluid.core_avx.LoDTensor) -> None paddle.fluid.LoDTensor.__init__ 1. __init__(self: paddle.fluid.core_avx.LoDTensor, arg0: List[List[int]]) -> None 2. __init__(self: paddle.fluid.core_avx.LoDTensor) -> None
......
...@@ -139,38 +139,32 @@ def save_vars(executor, ...@@ -139,38 +139,32 @@ def save_vars(executor,
predicate=None, predicate=None,
filename=None): filename=None):
""" """
Save variables to the given directory by executor. This API saves specific variables in the `Program` to files.
There are two ways to specify variables to be saved: The first way, list There are two ways to specify the variables to be saved: set variables in
variables in a list and assign it to the `vars`. The second way, assign the a list and assign it to the `vars`, or use the `predicate` function to select
`main_program` with an existing program, then all variables in the program variables that make `predicate(variable) == True`. The first way has a higher priority.
will be saved. The first way has a higher priority. In other words, if `vars`
are assigned, the `main_program` and the `predicate` will be ignored.
The `dirname` are used to specify the folder where to save variables. The `dirname` is used to specify the folder where to save variables.
If you prefer to save variables in separate files in the folder `dirname`, If you prefer to save variables in separate files in the `dirname` floder,
set `filename` None; if you prefer to save all variables in a single file, do not set `filename`. If you prefer to save all variables in a single file,
use `filename` to specify it. use `filename` to specify it.
Args: Args:
executor(Executor): The executor to run for saving variables. executor(Executor): The executor to run for saving variables.
dirname(str): The directory path. dirname(str): The folder where to save variables.
main_program(Program|None): The program whose variables will be saved. main_program(Program, optional): The program whose variables will be saved.
If it is None, the default main program will If it is None, the default main program will
be used automatically. be used automatically.
Default: None Default: None
vars(list[Variable]|None): The list that contains all variables to save. vars(list[Variable], optional): The list contains all variables to be saved.
It has a higher priority than the `main_program`. Default: None
Default: None predicate(function, optional): The function selects the variables that make
predicate(function|None): If it is not None, only variables in the `predicate(variable) == True`.
`main_program` that makes predicate(variable)==True Default: None
will be saved. It only works when we are using the filename(str, optional): If you prefer to save all variables in a single file,
`main_program` to specify variables (In other words use `filename` to specify it. Otherwise, let `filename` be None.
`vars` is None). Default: None
Default: None
filename(str|None): The file which to save all variables. If you prefer to save
variables separately, set it to None.
Default: None
Returns: Returns:
None None
...@@ -182,6 +176,7 @@ def save_vars(executor, ...@@ -182,6 +176,7 @@ def save_vars(executor,
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
main_prog = fluid.Program() main_prog = fluid.Program()
startup_prog = fluid.Program() startup_prog = fluid.Program()
with fluid.program_guard(main_prog, startup_prog): with fluid.program_guard(main_prog, startup_prog):
...@@ -194,24 +189,20 @@ def save_vars(executor, ...@@ -194,24 +189,20 @@ def save_vars(executor,
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(startup_prog) exe.run(startup_prog)
param_path = "./my_paddle_model" # The first usage: use `vars` to set the saved variables.
# The first usage: using `main_program` to specify variables
def name_has_fc(var):
res = "fc" in var.name
return res
fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
vars=None, predicate = name_has_fc)
# All variables in `main_program` whose name includes "fc" will be saved.
# And variables are going to be saved separately.
# The second usage: using `vars` to specify variables
var_list = [w, b] var_list = [w, b]
path = "./my_paddle_vars" path = "./my_paddle_vars"
fluid.io.save_vars(executor=exe, dirname=path, vars=var_list, fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
filename="vars_file") filename="vars_file")
# var_a, var_b and var_c will be saved. And they are going to be # w and b will be save in a file named "var_file".
# saved in the same file named 'var_file' in the path "./my_paddle_vars".
# The second usage: use `predicate` to select the saved variable.
def name_has_fc(var):
res = "fc" in var.name
return res
param_path = "./my_paddle_model"
fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
# all variables whose names contain "fc " are saved.
""" """
save_dirname = os.path.normpath(dirname) save_dirname = os.path.normpath(dirname)
main_program = _get_valid_program(main_program) main_program = _get_valid_program(main_program)
...@@ -555,38 +546,33 @@ def load_vars(executor, ...@@ -555,38 +546,33 @@ def load_vars(executor,
predicate=None, predicate=None,
filename=None): filename=None):
""" """
Load variables from the given directory by executor. This API loads variables from files by executor.
There are two ways to specify variables to be loaded: The first way, list There are two ways to specify the variables to be loaded: the first way, set
variables in a list and assign it to the `vars`. The second way, assign the variables in a list and assign it to the `vars`; the second way, use the
`main_program` with an existing program, then all variables in the program `predicate` function to select variables that make `predicate(variable) == True`.
will be loaded. The first way has a higher priority. In other words if `vars` The first way has a higher priority.
are assigned, the `main_program` and the `predicate` will be ignored.
The `dirname` are used to specify the folder where to load variables. The `dirname` is used to specify the folder where to load variables.
If variables were saved in separate files in the folder `dirname`, If variables were saved in separate files in the folder `dirname`,
set `filename` None; if all variables were saved in a single file, set `filename` None. If all variables were saved in a single file,
use `filename` to specify it. use `filename` to specify it.
Args: Args:
executor(Executor): The executor to run for loading variables. executor(Executor): The executor to run for loading variables.
dirname(str): The directory path. dirname(str): The folder where to load the variables.
main_program(Program|None): The program whose variables will be loaded. main_program(Program, optional): The program whose variables will be loaded.
If it is None, the default main program will If it is None, the default main program will
be used automatically. be used automatically.
Default: None Default: None
vars(list[Variable]|None): The list that contains all variables to load. vars(list[Variable], optional): The list that contains all variables to be loaded.
It has a higher priority than the `main_program`.
Default: None Default: None
predicate(function|None): If it is not None, only variables in the predicate(function, optional): The function selects variables that make
`main_program` that makes predicate(variable)==True `predicate(variable) == True`.
will be loaded. It only works when we are using the Default: None
`main_program` to specify variables (In other words filename(str, optional): The file which saved all required variables. If variables
`vars` is None). were saved in separate files, set it to be None.
Default: None Default: None
filename(str|None): The file which saved all required variables. If variables
were saved in differnet files, set it to None.
Default: None
Returns: Returns:
None None
...@@ -598,6 +584,7 @@ def load_vars(executor, ...@@ -598,6 +584,7 @@ def load_vars(executor,
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
main_prog = fluid.Program() main_prog = fluid.Program()
startup_prog = fluid.Program() startup_prog = fluid.Program()
with fluid.program_guard(main_prog, startup_prog): with fluid.program_guard(main_prog, startup_prog):
...@@ -610,8 +597,18 @@ def load_vars(executor, ...@@ -610,8 +597,18 @@ def load_vars(executor,
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(startup_prog) exe.run(startup_prog)
# The first usage: using `vars` to specify the variables.
path = "./my_paddle_vars"
var_list = [w, b]
fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
filename="vars_file")
fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
filename="vars_file")
# w and b will be loaded, and they are supposed to
# be saved in the same file named 'var_file' in the path "./my_paddle_vars".
# The second usage: using the `predicate` function to select variables
param_path = "./my_paddle_model" param_path = "./my_paddle_model"
# The first usage: using `main_program` to specify variables
def name_has_fc(var): def name_has_fc(var):
res = "fc" in var.name res = "fc" in var.name
return res return res
...@@ -619,18 +616,9 @@ def load_vars(executor, ...@@ -619,18 +616,9 @@ def load_vars(executor,
vars=None, predicate=name_has_fc) vars=None, predicate=name_has_fc)
fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog, fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
vars=None, predicate=name_has_fc) vars=None, predicate=name_has_fc)
# All variables in `main_program` whose name includes "fc" will be loaded. # Load All variables in the `main_program` whose name includes "fc".
# And all the variables are supposed to have been saved in differnet files. # And all the variables are supposed to be saved in separate files.
# The second usage: using `vars` to specify variables
path = "./my_paddle_vars"
var_list = [w, b]
fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
filename="vars_file")
fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
filename="vars_file")
# w and b will be loaded. And they are supposed to haven
# been saved in the same file named 'var_file' in the path "./my_paddle_vars".
""" """
load_dirname = os.path.normpath(dirname) load_dirname = os.path.normpath(dirname)
......
...@@ -110,21 +110,24 @@ class WeightDecayRegularizer(object): ...@@ -110,21 +110,24 @@ class WeightDecayRegularizer(object):
class L2DecayRegularizer(WeightDecayRegularizer): class L2DecayRegularizer(WeightDecayRegularizer):
"""Implements the L2 Weight Decay Regularization """
Implement the L2 Weight Decay Regularization, which helps to prevent the model over-fitting.
Small values of L2 can help prevent over fitting the training data. In the implementation, the formula of L2 Weight Decay Regularization is as follows:
.. math:: .. math::
L2WeightDecay = reg\_coeff * parameter L2WeightDecay = reg\_coeff * parameter
Args: Args:
regularization_coeff(float): regularization coeff regularization_coeff(float, optional): regularization coeff.
Default:0.0
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
main_prog = fluid.Program() main_prog = fluid.Program()
startup_prog = fluid.Program() startup_prog = fluid.Program()
with fluid.program_guard(main_prog, startup_prog): with fluid.program_guard(main_prog, startup_prog):
...@@ -182,21 +185,24 @@ class L2DecayRegularizer(WeightDecayRegularizer): ...@@ -182,21 +185,24 @@ class L2DecayRegularizer(WeightDecayRegularizer):
class L1DecayRegularizer(WeightDecayRegularizer): class L1DecayRegularizer(WeightDecayRegularizer):
"""Implements the L1 Weight Decay Regularization """
Implement the L1 Weight Decay Regularization, which encourages the weights to be sparse.
L1 regularization encourages sparsity.
In the implementation, the formula of L1 Weight Decay Regularization is as follows:
.. math:: .. math::
L1WeightDecay = reg\_coeff * sign(parameter) L1WeightDecay = reg\_coeff * sign(parameter)
Args: Args:
regularization_coeff(float): regularization coeff regularization_coeff(float, optional): regularization coeff.
Default:0.0.
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
main_prog = fluid.Program() main_prog = fluid.Program()
startup_prog = fluid.Program() startup_prog = fluid.Program()
with fluid.program_guard(main_prog, startup_prog): with fluid.program_guard(main_prog, startup_prog):
......
...@@ -101,19 +101,33 @@ def map_readers(func, *readers): ...@@ -101,19 +101,33 @@ def map_readers(func, *readers):
def shuffle(reader, buf_size): def shuffle(reader, buf_size):
""" """
Creates a data reader whose data output is shuffled. paddle.fluid.io.shuffle ( :ref:`api_fluid_io_shuffle` ) is recommended to use,
and paddle.reader.shuffle is an alias.
Output from the iterator that created by original reader will be This API creates a decorated reader that outputs the shuffled data.
buffered into shuffle buffer, and then shuffled. The size of shuffle buffer
is determined by argument buf_size.
:param reader: the original reader whose output will be shuffled. The output data from the origin reader will be saved into a buffer,
:type reader: callable and then shuffle the data. The size of buffer is determined by argument buf_size.
:param buf_size: shuffle buffer size.
:type buf_size: int Args:
reader(callable): the original reader whose data will be shuffled.
buf_size(int): the size of shuffled buffer.
:return: the new reader whose output is shuffled. Returns:
:rtype: callable callable: a decorated reader.
Examples:
.. code-block:: python
import paddle.fluid as fluid
def reader():
for i in range(5):
yield i
shuffled_reader = fluid.io.shuffle(reader, 3)
for e in shuffled_reader():
print(e)
# outputs are 0~4 unordered arrangement
""" """
def data_reader(): def data_reader():
...@@ -303,14 +317,31 @@ def buffered(reader, size): ...@@ -303,14 +317,31 @@ def buffered(reader, size):
def firstn(reader, n): def firstn(reader, n):
""" """
Limit the max number of samples that reader could return. paddle.fluid.io.firstn ( :ref:`api_fluid_io_firstn` ) is recommended to use,
and paddle.reader.firstn is an alias.
This API creates a decorated reader, and limits the max number of
samples that reader could return.
:param reader: the data reader to read from. Args:
:type reader: callable reader(callable): the input reader.
:param n: the max number of samples that return. n(int): the max number of samples in the reader.
:type n: int
:return: the decorated reader. Returns:
:rtype: callable callable: the decorated reader.
Examples:
.. code-block:: python
import paddle.fluid as fluid
def reader():
for i in range(100):
yield i
firstn_reader = fluid.io.firstn(reader, 5)
for e in firstn_reader():
print(e)
# the outputs are: 0 1 2 3 4
""" """
# TODO(yuyang18): Check if just drop the reader, could clean the opened # TODO(yuyang18): Check if just drop the reader, could clean the opened
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册