提交 5e4cc241 编写于 作者: W wangyang59

Revised deconv implementations according to luotao1

上级 5fff96f5
...@@ -22,9 +22,9 @@ bool ConvBaseLayer::init(const LayerMap& layerMap, ...@@ -22,9 +22,9 @@ bool ConvBaseLayer::init(const LayerMap& layerMap,
Layer::init(layerMap, parameterMap); Layer::init(layerMap, parameterMap);
if (config_.type() == "exconv" || config_.type() == "cudnn_conv") { if (config_.type() == "exconv" || config_.type() == "cudnn_conv") {
isConv_ = true; isDeconv_ = false;
} else { } else {
isConv_ = false; isDeconv_ = true;
} }
/* Initialize the convolutional layer parameter */ /* Initialize the convolutional layer parameter */
......
...@@ -28,8 +28,8 @@ class ConvBaseLayer : public Layer { ...@@ -28,8 +28,8 @@ class ConvBaseLayer : public Layer {
protected: protected:
typedef std::vector<int> IntV; typedef std::vector<int> IntV;
/// True if it's convolution layer, false if it's deconv layer /// True if it's deconv layer, false if it's convolution layer
bool isConv_; bool isDeconv_;
/// The number of filters. /// The number of filters.
int numFilters_; int numFilters_;
......
...@@ -13,11 +13,12 @@ See the License for the specific language governing permissions and ...@@ -13,11 +13,12 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "ExpandConvBaseLayer.h"
#include "paddle/utils/Logging.h" #include "paddle/utils/Logging.h"
#include "ConvBaseLayerCpu.h"
namespace paddle { namespace paddle {
bool ConvBaseLayerCpu::init(const LayerMap &layerMap, bool ExpandConvBaseLayer::init(const LayerMap &layerMap,
const ParameterMap &parameterMap) { const ParameterMap &parameterMap) {
/* Initialize the basic convolutional parent class */ /* Initialize the basic convolutional parent class */
ConvBaseLayer::init(layerMap, parameterMap); ConvBaseLayer::init(layerMap, parameterMap);
...@@ -34,10 +35,10 @@ bool ConvBaseLayerCpu::init(const LayerMap &layerMap, ...@@ -34,10 +35,10 @@ bool ConvBaseLayerCpu::init(const LayerMap &layerMap,
/* Initialize the projection */ /* Initialize the projection */
for (auto &inputConfig : config_.inputs()) { for (auto &inputConfig : config_.inputs()) {
const ConvConfig &conf = inputConfig.conv_conf(); const ConvConfig &conf = inputConfig.conv_conf();
nf = isConv_ ? numFilters_ : conf.channels(); nf = (!isDeconv_) ? numFilters_ : conf.channels();
subM_.push_back(nf / conf.groups()); subM_.push_back(nf / conf.groups());
subN_.push_back(conf.output_x() * conf.output_x()); subN_.push_back(conf.output_x() * conf.output_x());
channel = isConv_ ? conf.channels() : numFilters_; channel = (!isDeconv_) ? conf.channels() : numFilters_;
subK_.push_back(channel * conf.filter_size() * conf.filter_size() / subK_.push_back(channel * conf.filter_size() * conf.filter_size() /
conf.groups()); conf.groups());
/* Consistent caffe mode for multiple input */ /* Consistent caffe mode for multiple input */
...@@ -47,11 +48,11 @@ bool ConvBaseLayerCpu::init(const LayerMap &layerMap, ...@@ -47,11 +48,11 @@ bool ConvBaseLayerCpu::init(const LayerMap &layerMap,
return true; return true;
} }
void ConvBaseLayerCpu::resetExpandInput(size_t height, size_t width) { void ExpandConvBaseLayer::resetExpandInput(size_t height, size_t width) {
Matrix::resizeOrCreate(expandInput_, height, width, false, useGpu_); Matrix::resizeOrCreate(expandInput_, height, width, false, useGpu_);
} }
void ConvBaseLayerCpu::addSharedBias() { void ExpandConvBaseLayer::addSharedBias() {
size_t mapW = getSize() / numFilters_; size_t mapW = getSize() / numFilters_;
size_t mapH = getOutputValue()->getElementCnt() / mapW; size_t mapH = getOutputValue()->getElementCnt() / mapW;
MatrixPtr out = MatrixPtr out =
...@@ -75,7 +76,7 @@ void ConvBaseLayerCpu::addSharedBias() { ...@@ -75,7 +76,7 @@ void ConvBaseLayerCpu::addSharedBias() {
bias->clear(); bias->clear();
} }
void ConvBaseLayerCpu::addUnsharedBias() { void ExpandConvBaseLayer::addUnsharedBias() {
MatrixPtr outValue = getOutputValue(); MatrixPtr outValue = getOutputValue();
MatrixPtr bias = MatrixPtr bias =
Matrix::create(biases_->getW()->getData(), 1, Matrix::create(biases_->getW()->getData(), 1,
...@@ -84,9 +85,9 @@ void ConvBaseLayerCpu::addUnsharedBias() { ...@@ -84,9 +85,9 @@ void ConvBaseLayerCpu::addUnsharedBias() {
} }
void ConvBaseLayerCpu::expandOneFrame(MatrixPtr image, size_t startIdx, void ExpandConvBaseLayer::expandOneFrame(MatrixPtr image, size_t startIdx,
int inIdx) { int inIdx) {
int channel = isConv_ ? channels_[inIdx] : numFilters_; int channel = (!isDeconv_) ? channels_[inIdx] : numFilters_;
resetExpandInput(subK_[inIdx] * groups_[inIdx], subN_[inIdx]); resetExpandInput(subK_[inIdx] * groups_[inIdx], subN_[inIdx]);
real *imgData = image->getData() + startIdx * image->getWidth(); real *imgData = image->getData() + startIdx * image->getWidth();
...@@ -101,7 +102,7 @@ void ConvBaseLayerCpu::expandOneFrame(MatrixPtr image, size_t startIdx, ...@@ -101,7 +102,7 @@ void ConvBaseLayerCpu::expandOneFrame(MatrixPtr image, size_t startIdx,
imageTmp->clear(); imageTmp->clear();
} }
void ConvBaseLayerCpu::expandFwdOnce(MatrixPtr image, MatrixPtr out, void ExpandConvBaseLayer::expandFwdOnce(MatrixPtr image, MatrixPtr out,
int inIdx, int startIdx) { int inIdx, int startIdx) {
int subM = subM_[inIdx]; int subM = subM_[inIdx];
int subN = subN_[inIdx]; int subN = subN_[inIdx];
...@@ -109,7 +110,7 @@ void ConvBaseLayerCpu::expandFwdOnce(MatrixPtr image, MatrixPtr out, ...@@ -109,7 +110,7 @@ void ConvBaseLayerCpu::expandFwdOnce(MatrixPtr image, MatrixPtr out,
expandOneFrame(image, startIdx, inIdx); expandOneFrame(image, startIdx, inIdx);
int nf = isConv_ ? numFilters_ : channels_[inIdx]; int nf = (!isDeconv_) ? numFilters_ : channels_[inIdx];
real *outData = real *outData =
out->getData() + startIdx * subN * nf; out->getData() + startIdx * subN * nf;
...@@ -132,8 +133,9 @@ void ConvBaseLayerCpu::expandFwdOnce(MatrixPtr image, MatrixPtr out, ...@@ -132,8 +133,9 @@ void ConvBaseLayerCpu::expandFwdOnce(MatrixPtr image, MatrixPtr out,
} }
} }
void ConvBaseLayerCpu::bpropActs(MatrixPtr out, MatrixPtr image, int inpIdx) { void ExpandConvBaseLayer::bpropActs(MatrixPtr out, MatrixPtr image,
int channel = isConv_ ? channels_[inpIdx] : numFilters_; int inpIdx) {
int channel = (!isDeconv_) ? channels_[inpIdx] : numFilters_;
int subM = subM_[inpIdx]; int subM = subM_[inpIdx];
int subN = subN_[inpIdx]; int subN = subN_[inpIdx];
...@@ -186,7 +188,7 @@ void ConvBaseLayerCpu::bpropActs(MatrixPtr out, MatrixPtr image, int inpIdx) { ...@@ -186,7 +188,7 @@ void ConvBaseLayerCpu::bpropActs(MatrixPtr out, MatrixPtr image, int inpIdx) {
} }
} }
void ConvBaseLayerCpu::bpropWeights(MatrixPtr image, MatrixPtr out, void ExpandConvBaseLayer::bpropWeights(MatrixPtr image, MatrixPtr out,
int inpIdx) { int inpIdx) {
MatrixPtr weightGrad = weights_[inpIdx]->getWGrad(); MatrixPtr weightGrad = weights_[inpIdx]->getWGrad();
...@@ -221,7 +223,7 @@ void ConvBaseLayerCpu::bpropWeights(MatrixPtr image, MatrixPtr out, ...@@ -221,7 +223,7 @@ void ConvBaseLayerCpu::bpropWeights(MatrixPtr image, MatrixPtr out,
} }
} }
void ConvBaseLayerCpu::bpropSharedBias(MatrixPtr biases, MatrixPtr v) { void ExpandConvBaseLayer::bpropSharedBias(MatrixPtr biases, MatrixPtr v) {
size_t mapW = getSize() / numFilters_; size_t mapW = getSize() / numFilters_;
size_t mapH = v->getElementCnt() / mapW; size_t mapH = v->getElementCnt() / mapW;
MatrixPtr vTmp = Matrix::create(v->getData(), mapH, mapW, false, useGpu_); MatrixPtr vTmp = Matrix::create(v->getData(), mapH, mapW, false, useGpu_);
...@@ -234,7 +236,7 @@ void ConvBaseLayerCpu::bpropSharedBias(MatrixPtr biases, MatrixPtr v) { ...@@ -234,7 +236,7 @@ void ConvBaseLayerCpu::bpropSharedBias(MatrixPtr biases, MatrixPtr v) {
biases->collectBias(*transOutValue_, 1.0f); biases->collectBias(*transOutValue_, 1.0f);
} }
void ConvBaseLayerCpu::bpropBiases(MatrixPtr v) { void ExpandConvBaseLayer::bpropBiases(MatrixPtr v) {
MatrixPtr biases = MatrixPtr biases =
Matrix::create(biases_->getWGrad()->getData(), 1, Matrix::create(biases_->getWGrad()->getData(), 1,
biases_->getWGrad()->getElementCnt(), false, useGpu_); biases_->getWGrad()->getElementCnt(), false, useGpu_);
......
...@@ -25,7 +25,7 @@ namespace paddle { ...@@ -25,7 +25,7 @@ namespace paddle {
* @brief A subclass of ConvBaseLayer that is a superclass of both * @brief A subclass of ConvBaseLayer that is a superclass of both
* ExpandConvLayer and ExpandConvTransLayer * ExpandConvLayer and ExpandConvTransLayer
*/ */
class ConvBaseLayerCpu : public ConvBaseLayer { class ExpandConvBaseLayer : public ConvBaseLayer {
protected: protected:
/// For expand convolution. /// For expand convolution.
/// subM_ = numFilters_ / groups_. /// subM_ = numFilters_ / groups_.
...@@ -43,18 +43,19 @@ protected: ...@@ -43,18 +43,19 @@ protected:
/// The spatial dimensions of width of output feature map. /// The spatial dimensions of width of output feature map.
IntV outputW_; IntV outputW_;
/*The expandInput_ and transOutValue_ are used for CPU expand conv calc*/ /*The expandInput_ and transOutValue_ are used for CPU expand conv calc
/// Expand one sample at a time. shape: * Expand one sample at a time. shape:
/// (numChannels * filterPixels_, outputSizeH * outputSizeW) * (numChannels * filterPixels_, outputSizeH * outputSizeW)
* */
MatrixPtr expandInput_; MatrixPtr expandInput_;
/// The transpose of output, which is an auxiliary matrix. /// The transpose of output, which is an auxiliary matrix.
MatrixPtr transOutValue_; MatrixPtr transOutValue_;
public: public:
explicit ConvBaseLayerCpu(const LayerConfig& config) explicit ExpandConvBaseLayer(const LayerConfig& config)
: ConvBaseLayer(config) {} : ConvBaseLayer(config) {}
~ConvBaseLayerCpu() {} ~ExpandConvBaseLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap); bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
......
...@@ -24,7 +24,7 @@ REGISTER_LAYER(exconv, ExpandConvLayer); ...@@ -24,7 +24,7 @@ REGISTER_LAYER(exconv, ExpandConvLayer);
bool ExpandConvLayer::init(const LayerMap &layerMap, bool ExpandConvLayer::init(const LayerMap &layerMap,
const ParameterMap &parameterMap) { const ParameterMap &parameterMap) {
/* Initialize the basic convolutional parent class */ /* Initialize the basic convolutional parent class */
ConvBaseLayerCpu::init(layerMap, parameterMap); ExpandConvBaseLayer::init(layerMap, parameterMap);
return true; return true;
} }
...@@ -49,16 +49,17 @@ void ExpandConvLayer::forward(PassType passType) { ...@@ -49,16 +49,17 @@ void ExpandConvLayer::forward(PassType passType) {
resetOutput(batchSize, getOutputSize()); resetOutput(batchSize, getOutputSize());
MatrixPtr image = nullptr; MatrixPtr image = nullptr;
for (size_t i = 0; i != inputLayers_.size(); ++i) { MatrixPtr outV = getOutputValue();
for (size_t i = 0; i < inputLayers_.size(); ++i) {
LayerPtr prevLayer = getPrev(i); LayerPtr prevLayer = getPrev(i);
image = prevLayer->getOutputValue(); image = prevLayer->getOutputValue();
for (size_t off = 0; off < image->getHeight(); off++) { for (size_t off = 0; off < image->getHeight(); off++) {
REGISTER_TIMER_INFO("expandFwdOnce", getName().c_str()); REGISTER_TIMER_INFO("expandFwdOnce", getName().c_str());
expandFwdOnce(image, getOutputValue(), i, off); expandFwdOnce(image, outV, i, off);
} }
} }
/* add the bias-vector */ /* add the bias-vector */
if (biases_.get() != NULL) { if (biases_.get()) {
if (sharedBiases_) { if (sharedBiases_) {
addSharedBias(); addSharedBias();
} else { } else {
...@@ -81,9 +82,9 @@ void ExpandConvLayer::backward(const UpdateCallback &callback) { ...@@ -81,9 +82,9 @@ void ExpandConvLayer::backward(const UpdateCallback &callback) {
biases_->getParameterPtr()->incUpdate(callback); biases_->getParameterPtr()->incUpdate(callback);
} }
for (size_t i = 0; i != inputLayers_.size(); ++i) { for (size_t i = 0; i < inputLayers_.size(); ++i) {
/* First, calculate the input layers error */ /* First, calculate the input layers error */
if (NULL != getPrev(i)->getOutputGrad()) { if (getPrev(i)->getOutputGrad()) {
bpropActs(outGrad, getPrev(i)->getOutputGrad(), i); bpropActs(outGrad, getPrev(i)->getOutputGrad(), i);
} }
if (weights_[i]->getWGrad()) { if (weights_[i]->getWGrad()) {
......
...@@ -15,9 +15,9 @@ limitations under the License. */ ...@@ -15,9 +15,9 @@ limitations under the License. */
#pragma once #pragma once
#include "ConvBaseLayerCpu.h"
#include "paddle/math/Matrix.h" #include "paddle/math/Matrix.h"
#include <vector> #include <vector>
#include "ExpandConvBaseLayer.h"
namespace paddle { namespace paddle {
...@@ -29,10 +29,10 @@ namespace paddle { ...@@ -29,10 +29,10 @@ namespace paddle {
* The config file api is img_conv_layer. * The config file api is img_conv_layer.
*/ */
class ExpandConvLayer : public ConvBaseLayerCpu { class ExpandConvLayer : public ExpandConvBaseLayer {
public: public:
explicit ExpandConvLayer(const LayerConfig& config) : explicit ExpandConvLayer(const LayerConfig& config) :
ConvBaseLayerCpu(config) {} ExpandConvBaseLayer(config) {}
~ExpandConvLayer() {} ~ExpandConvLayer() {}
......
...@@ -29,7 +29,7 @@ REGISTER_LAYER(exconvt, ExpandConvTransLayer); ...@@ -29,7 +29,7 @@ REGISTER_LAYER(exconvt, ExpandConvTransLayer);
bool ExpandConvTransLayer::init(const LayerMap &layerMap, bool ExpandConvTransLayer::init(const LayerMap &layerMap,
const ParameterMap &parameterMap) { const ParameterMap &parameterMap) {
/* Initialize the basic convolutional parent class */ /* Initialize the basic convolutional parent class */
ConvBaseLayerCpu::init(layerMap, parameterMap); ExpandConvBaseLayer::init(layerMap, parameterMap);
return true; return true;
} }
...@@ -72,7 +72,7 @@ void ExpandConvTransLayer::forward(PassType passType) { ...@@ -72,7 +72,7 @@ void ExpandConvTransLayer::forward(PassType passType) {
resetOutput(batchSize, getSize()); resetOutput(batchSize, getSize());
MatrixPtr output = nullptr; MatrixPtr output = nullptr;
for (size_t i = 0; i != inputLayers_.size(); ++i) { for (size_t i = 0; i < inputLayers_.size(); ++i) {
LayerPtr prevLayer = getPrev(i); LayerPtr prevLayer = getPrev(i);
output = prevLayer->getOutputValue(); output = prevLayer->getOutputValue();
REGISTER_TIMER_INFO("shrinkFwd", getName().c_str()); REGISTER_TIMER_INFO("shrinkFwd", getName().c_str());
...@@ -80,7 +80,7 @@ void ExpandConvTransLayer::forward(PassType passType) { ...@@ -80,7 +80,7 @@ void ExpandConvTransLayer::forward(PassType passType) {
} }
/* add the bias-vector */ /* add the bias-vector */
if (biases_.get() != NULL) { if (biases_.get()) {
if (sharedBiases_) { if (sharedBiases_) {
addSharedBias(); addSharedBias();
} else { } else {
...@@ -102,10 +102,10 @@ void ExpandConvTransLayer::backward(const UpdateCallback &callback) { ...@@ -102,10 +102,10 @@ void ExpandConvTransLayer::backward(const UpdateCallback &callback) {
biases_->getParameterPtr()->incUpdate(callback); biases_->getParameterPtr()->incUpdate(callback);
} }
for (size_t i = 0; i != inputLayers_.size(); ++i) { for (size_t i = 0; i < inputLayers_.size(); ++i) {
/* First, calculate the input layers error */ /* First, calculate the input layers error */
for (size_t off = 0; off < imageGrad->getHeight(); off++) { for (size_t off = 0; off < imageGrad->getHeight(); off++) {
if (NULL != getPrev(i)->getOutputGrad()) { if (getPrev(i)->getOutputGrad()) {
expandFwdOnce(imageGrad, getPrev(i)->getOutputGrad(), i, off); expandFwdOnce(imageGrad, getPrev(i)->getOutputGrad(), i, off);
} }
} }
......
...@@ -15,9 +15,9 @@ limitations under the License. */ ...@@ -15,9 +15,9 @@ limitations under the License. */
#pragma once #pragma once
#include "ConvBaseLayerCpu.h"
#include "paddle/math/Matrix.h" #include "paddle/math/Matrix.h"
#include <vector> #include <vector>
#include "ExpandConvBaseLayer.h"
namespace paddle { namespace paddle {
...@@ -28,10 +28,10 @@ namespace paddle { ...@@ -28,10 +28,10 @@ namespace paddle {
* *
* The config file api is img_convTrans_layer. * The config file api is img_convTrans_layer.
*/ */
class ExpandConvTransLayer : public ConvBaseLayerCpu { class ExpandConvTransLayer : public ExpandConvBaseLayer {
public: public:
explicit ExpandConvTransLayer(const LayerConfig& config) : explicit ExpandConvTransLayer(const LayerConfig& config) :
ConvBaseLayerCpu(config) {} ExpandConvBaseLayer(config) {}
~ExpandConvTransLayer() {} ~ExpandConvTransLayer() {}
......
...@@ -1107,7 +1107,7 @@ def parse_conv(conv, input_layer_name, conv_conf): ...@@ -1107,7 +1107,7 @@ def parse_conv(conv, input_layer_name, conv_conf):
conv_conf.caffe_mode) conv_conf.caffe_mode)
def parse_convt(conv, input_layer_name, conv_conf, num_filters): def parse_conv_trans(conv, input_layer_name, conv_conf, num_filters):
conv_conf.filter_size = conv.filter_size conv_conf.filter_size = conv.filter_size
conv_conf.filter_size_y = conv.filter_size_y conv_conf.filter_size_y = conv.filter_size_y
conv_conf.channels = conv.channels conv_conf.channels = conv.channels
...@@ -1683,7 +1683,7 @@ class ConvTransLayerBase(LayerBase): ...@@ -1683,7 +1683,7 @@ class ConvTransLayerBase(LayerBase):
for input_index in xrange(len(self.inputs)): for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index) input_layer = self.get_input_layer(input_index)
parse_convt( parse_conv_trans(
self.inputs[input_index].conv, self.inputs[input_index].conv,
input_layer.name, input_layer.name,
self.config.inputs[input_index].conv_conf, num_filters) self.config.inputs[input_index].conv_conf, num_filters)
......
...@@ -1515,7 +1515,8 @@ def img_conv_layer(input, filter_size, num_filters, ...@@ -1515,7 +1515,8 @@ def img_conv_layer(input, filter_size, num_filters,
name=None, num_channels=None, name=None, num_channels=None,
act=None, groups=1, stride=1, padding=0, bias_attr=None, act=None, groups=1, stride=1, padding=0, bias_attr=None,
param_attr=None, shared_biases=True, layer_attr=None, param_attr=None, shared_biases=True, layer_attr=None,
filter_size_y=None, stride_y=None, padding_y=None): filter_size_y=None, stride_y=None, padding_y=None,
trans=False):
""" """
Convolution layer for image. Paddle only support square input currently and Convolution layer for image. Paddle only support square input currently and
thus input image's width equals height. thus input image's width equals height.
...@@ -1523,120 +1524,7 @@ def img_conv_layer(input, filter_size, num_filters, ...@@ -1523,120 +1524,7 @@ def img_conv_layer(input, filter_size, num_filters,
The details of convolution layer, please refer UFLDL's `convolution The details of convolution layer, please refer UFLDL's `convolution
<http://ufldl.stanford.edu/tutorial/supervised/ <http://ufldl.stanford.edu/tutorial/supervised/
FeatureExtractionUsingConvolution/>`_ . FeatureExtractionUsingConvolution/>`_ .
The num_channel means input image's channel number. It may be 1 or 3 when
input is raw pixels of image(mono or RGB), or it may be the previous layer's
num_filters * num_group.
There are several group of filter in PaddlePaddle implementation.
Each group will process some channel of the inputs. For example, if an input
num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
32*4 = 128 filters to process inputs. The channels will be split into 4
pieces. First 256/4 = 64 channels will process by first 32 filters. The
rest channels will be processed by rest group of filters.
:param name: Layer name.
:type name: basestring
:param input: Layer Input.
:type input: LayerOutput
:param filter_size: The x dimension of a filter kernel. Or input a tuple for
two image dimension.
:type filter_size: int|tuple|list
:param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
currently supports rectangular filters, the filter's
shape will be (filter_size, filter_size_y).
:type filter_size_y: int|None
:param num_filters: Each filter group's number of filter
:param act: Activation type. Default is tanh
:type act: BaseActivation
:param groups: Group size of filters.
:type groups: int
:param stride: The x dimension of the stride. Or input a tuple for two image
dimension.
:type stride: int|tuple|list
:param stride_y: The y dimension of the stride.
:type stride_y: int
:param padding: The x dimension of the padding. Or input a tuple for two
image dimension
:type padding: int|tuple|list
:param padding_y: The y dimension of the padding.
:type padding_y: int
:param bias_attr: Convolution bias attribute. None means default bias.
False means no bias.
:type bias_attr: ParameterAttribute|False
:param num_channels: number of input channels. If None will be set
automatically from previous output.
:type num_channels: int
:param param_attr: Convolution param attribute. None means default attribute
:type param_attr: ParameterAttribute
:param shared_biases: Is biases will be shared between filters or not.
:type shared_biases: bool
:param layer_attr: Layer Extra Attribute.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
:rtype: LayerOutput
"""
if num_channels is None:
assert input.num_filters is not None
num_channels = input.num_filters
if filter_size_y is None:
if isinstance(filter_size, collections.Sequence):
assert len(filter_size) == 2
filter_size, filter_size_y = filter_size
else:
filter_size_y = filter_size
if stride_y is None:
if isinstance(stride, collections.Sequence):
assert len(stride) == 2
stride, stride_y = stride
else:
stride_y = stride
if padding_y is None:
if isinstance(padding, collections.Sequence):
assert len(padding) == 2
padding, padding_y = padding
else:
padding_y = padding
if param_attr.attr.get('initial_smart'):
# special initial for conv layers.
init_w = (2.0 / (filter_size ** 2 * num_channels)) ** 0.5
param_attr.attr["initial_mean"] = 0.0
param_attr.attr["initial_std"] = init_w
param_attr.attr["initial_strategy"] = 0
param_attr.attr["initial_smart"] = False
Layer(
name=name,
inputs=Input(input.name, conv=Conv(
filter_size=filter_size, padding=padding, stride=stride,
channels=num_channels, groups=groups,
filter_size_y=filter_size_y, padding_y=padding_y,
stride_y=stride_y),
**param_attr.attr),
active_type=act.name,
num_filters=num_filters,
bias=ParamAttr.to_bias(bias_attr),
shared_biases=shared_biases,
type=LayerType.CONV_LAYER,
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
return LayerOutput(name, LayerType.CONV_LAYER, parents=[input],
activation=act, num_filters=num_filters)
@wrap_name_default("convt")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_convTrans_layer(input, filter_size, num_filters,
name=None, num_channels=None,
act=None, groups=1, stride=1, padding=0, bias_attr=None,
param_attr=None, shared_biases=True, layer_attr=None,
filter_size_y=None, stride_y=None, padding_y=None):
"""
Convolution Transpose (deconv) layer for image. Paddle only support square Convolution Transpose (deconv) layer for image. Paddle only support square
input currently and thus input image's width equals height. input currently and thus input image's width equals height.
...@@ -1644,7 +1532,6 @@ def img_convTrans_layer(input, filter_size, num_filters, ...@@ -1644,7 +1532,6 @@ def img_convTrans_layer(input, filter_size, num_filters,
please refer to the following explanation and references therein please refer to the following explanation and references therein
<http://datascience.stackexchange.com/questions/6107/ <http://datascience.stackexchange.com/questions/6107/
what-are-deconvolutional-layers/>`_ . what-are-deconvolutional-layers/>`_ .
The num_channel means input image's channel number. It may be 1 or 3 when The num_channel means input image's channel number. It may be 1 or 3 when
input is raw pixels of image(mono or RGB), or it may be the previous layer's input is raw pixels of image(mono or RGB), or it may be the previous layer's
num_filters * num_group. num_filters * num_group.
...@@ -1694,6 +1581,8 @@ def img_convTrans_layer(input, filter_size, num_filters, ...@@ -1694,6 +1581,8 @@ def img_convTrans_layer(input, filter_size, num_filters,
:type shared_biases: bool :type shared_biases: bool
:param layer_attr: Layer Extra Attribute. :param layer_attr: Layer Extra Attribute.
:type layer_attr: ExtraLayerAttribute :type layer_attr: ExtraLayerAttribute
:param trans: true if it is a convTransLayer, false if it is a convLayer
:type trans: bool
:return: LayerOutput object. :return: LayerOutput object.
:rtype: LayerOutput :rtype: LayerOutput
""" """
...@@ -1729,6 +1618,12 @@ def img_convTrans_layer(input, filter_size, num_filters, ...@@ -1729,6 +1618,12 @@ def img_convTrans_layer(input, filter_size, num_filters,
param_attr.attr["initial_std"] = init_w param_attr.attr["initial_std"] = init_w
param_attr.attr["initial_strategy"] = 0 param_attr.attr["initial_strategy"] = 0
param_attr.attr["initial_smart"] = False param_attr.attr["initial_smart"] = False
if trans:
lt = LayerType.CONVTRANS_LAYER
else:
lt = LayerType.CONV_LAYER
Layer( Layer(
name=name, name=name,
inputs=Input(input.name, conv=Conv( inputs=Input(input.name, conv=Conv(
...@@ -1741,14 +1636,13 @@ def img_convTrans_layer(input, filter_size, num_filters, ...@@ -1741,14 +1636,13 @@ def img_convTrans_layer(input, filter_size, num_filters,
num_filters=num_filters, num_filters=num_filters,
bias=ParamAttr.to_bias(bias_attr), bias=ParamAttr.to_bias(bias_attr),
shared_biases=shared_biases, shared_biases=shared_biases,
type=LayerType.CONVTRANS_LAYER, type=lt,
**ExtraLayerAttribute.to_kwargs(layer_attr) **ExtraLayerAttribute.to_kwargs(layer_attr)
) )
return LayerOutput(name, LayerType.CONVTRANS_LAYER, parents=[input], return LayerOutput(name, lt, parents=[input],
activation=act, num_filters=num_filters) activation=act, num_filters=num_filters)
@wrap_name_default("pool") @wrap_name_default("pool")
@layer_support() @layer_support()
def img_pool_layer(input, pool_size, name=None, def img_pool_layer(input, pool_size, name=None,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册