未验证 提交 5d22e15b 编写于 作者: Z zhang wenhui 提交者: GitHub

【NPU】Suppert npu kernel for reshape2 op (#31524)

* add reshape2 npu

* add reshpe2
上级 581e5460
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class Reshape2NPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<framework::Tensor>("X");
auto* shape = ctx.Attr<std::vector<int>>> ("shape");
auto* out = ctx.Output<framework::Tensor>("Out");
auto org_shape = framework::vectorize(x->dims());
// reshape
int64_t shape_all = 1;
int64_t org_shape_all = 1;
int index = -1;
for (int i = 0; i < shape.size(); i++) {
if (shape[i] == 0) {
shape[i] = org_shape[i];
}
if (shape[i] == -1) {
index = i;
} else {
shape_all *= shape[i];
}
org_shape_all *= org_shape[i];
}
if (index >= 0) {
shape[index] = org_shape_all / shape_all;
}
out.Resize(framework::make_ddim(shape));
out->mutable_data(ctx.GetPlace(), x->type());
framework::TensorCopy(
*x, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), out);
out.Resize(framework::make_ddim(shape));
}
};
template <typename DeviceContext, typename T>
class Reshape2GradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto in_dims = d_x->dims();
d_x->mutable_data(ctx.GetPlace(), d_out->type());
framework::TensorCopy(
*d_out, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), d_x);
d_x->Resize(in_dims);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
reshpe2, ops::Reshape2NPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::Reshape2NPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
reshpe2_grad,
ops::Reshape2GradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::Reshape2GradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
paddle.enable_static()
SEED = 2021
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestReshape2(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "reshape2"
self.place = paddle.NPUPlace(0)
self.init_data()
self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
self.attrs = {"shape": self.new_shape}
self.outputs = {
"Out": self.inputs["X"].reshape(self.infered_shape),
'XShape': np.random.random(self.ori_shape).astype("float32")
}
def set_npu(self):
self.__class__.use_npu = True
def init_data(self):
self.ori_shape = (2, 60)
self.new_shape = (12, 10)
self.infered_shape = (12, 10)
def test_check_output(self):
self.check_output(
self.place, check_dygraph=False, no_check_set=['XShape'])
class TestReshape2_case2(TestReshape2):
def init_data(self):
self.ori_shape = (2, 60)
self.new_shape = (-1, 10)
self.infered_shape = (12, 10)
class TestReshape2_case3(TestReshape2):
def init_data(self):
self.ori_shape = (2, 5, 6)
self.new_shape = (-1, 0, 3)
self.infered_shape = (4, 5, 3)
# TODO(ascendrc): Add grad test
# def test_check_grad(self):
# if self.dtype == np.float16:
# return
# self.check_grad(['X'], 'Out')
#
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestReshapeNet(unittest.TestCase):
def _test(self, run_npu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)
a_np = np.random.random(size=(32, 32)).astype('float32')
b_np = np.random.random(size=(32, 32)).astype('float32')
label_np = np.random.randint(2, size=(32, 1)).astype('int64')
with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
label = paddle.static.data(
name="label", shape=[32, 1], dtype='int64')
sum = paddle.add(a, b)
z = paddle.reshape(sum, shape=[32, 32])
fc_1 = fluid.layers.fc(input=z, size=128)
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.reduce_mean(cost)
sgd = fluid.optimizer.SGD(learning_rate=0.01)
sgd.minimize(loss)
if run_npu:
place = paddle.NPUPlace(0)
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
print("Start run on {}".format(place))
for epoch in range(100):
pred_res, loss_res = exe.run(
main_prog,
feed={"a": a_np,
"b": b_np,
"label": label_np},
fetch_list=[prediction, loss])
if epoch % 10 == 0:
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
epoch, pred_res[0], loss_res))
return pred_res, loss_res
def test_npu(self):
cpu_pred, cpu_loss = self._test(False)
npu_pred, npu_loss = self._test(True)
self.assertTrue(np.allclose(npu_pred, cpu_pred))
self.assertTrue(np.allclose(npu_loss, cpu_loss))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册