Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
5c66338f
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5c66338f
编写于
2月 18, 2022
作者:
X
xiongkun
提交者:
GitHub
2月 18, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[pten] trans diagonal kernel into pten (#39575)
* trans diagonal kernel into pten * fix by code review
上级
7d6d3848
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
687 addition
and
446 deletion
+687
-446
paddle/fluid/operators/diagonal_op.cc
paddle/fluid/operators/diagonal_op.cc
+2
-10
paddle/fluid/operators/diagonal_op.cu
paddle/fluid/operators/diagonal_op.cu
+0
-273
paddle/fluid/operators/diagonal_op.h
paddle/fluid/operators/diagonal_op.h
+0
-163
paddle/pten/kernels/cpu/diagonal_grad_kernel.cc
paddle/pten/kernels/cpu/diagonal_grad_kernel.cc
+92
-0
paddle/pten/kernels/cpu/diagonal_kernel.cc
paddle/pten/kernels/cpu/diagonal_kernel.cc
+90
-0
paddle/pten/kernels/diagonal_grad_kernel.h
paddle/pten/kernels/diagonal_grad_kernel.h
+29
-0
paddle/pten/kernels/diagonal_kernel.h
paddle/pten/kernels/diagonal_kernel.h
+28
-0
paddle/pten/kernels/funcs/diagonal.h
paddle/pten/kernels/funcs/diagonal.h
+85
-0
paddle/pten/kernels/gpu/diagonal_grad_kernel.cu
paddle/pten/kernels/gpu/diagonal_grad_kernel.cu
+168
-0
paddle/pten/kernels/gpu/diagonal_kernel.cu
paddle/pten/kernels/gpu/diagonal_kernel.cu
+165
-0
paddle/pten/ops/compat/diagonal_sig.cc
paddle/pten/ops/compat/diagonal_sig.cc
+28
-0
未找到文件。
paddle/fluid/operators/diagonal_op.cc
浏览文件 @
5c66338f
...
...
@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/
operators/diagonal_op
.h"
#include "paddle/fluid/
framework/op_registry
.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -169,18 +169,10 @@ DECLARE_NO_NEED_BUFFER_VARS_INFERER(DiagonalGradNoNeedBufferVarsInferer,
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
diagonal
,
ops
::
DiagonalOp
,
ops
::
DiagonalOpMaker
,
ops
::
DiagonalGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
DiagonalGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
diagonal_grad
,
ops
::
DiagonalGradOp
,
ops
::
DiagonalGradNoNeedBufferVarsInferer
)
REGISTER_OP_CPU_KERNEL
(
diagonal
,
ops
::
DiagonalKernel
<
int
>
,
ops
::
DiagonalKernel
<
int64_t
>
,
ops
::
DiagonalKernel
<
float
>
,
ops
::
DiagonalKernel
<
double
>
,
ops
::
DiagonalKernel
<
bool
>
);
REGISTER_OP_CPU_KERNEL
(
diagonal_grad
,
ops
::
DiagonalGradKernel
<
int
>
,
ops
::
DiagonalGradKernel
<
int64_t
>
,
ops
::
DiagonalGradKernel
<
float
>
,
ops
::
DiagonalGradKernel
<
double
>
);
paddle/fluid/operators/diagonal_op.cu
已删除
100644 → 0
浏览文件 @
7d6d3848
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/diagonal_op.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
namespace
paddle
{
namespace
operators
{
using
platform
::
PADDLE_CUDA_NUM_THREADS
;
template
<
typename
T
,
int
X_DIM_SIZE
,
int
OUT_DIM_SIZE
>
__global__
void
Diagonal
(
const
T
*
data1
,
T
*
data2
,
const
int64_t
offset_
,
int64_t
axis1_
,
int64_t
axis2_
,
int64_t
*
x_stride
,
int64_t
*
out_stride
,
int64_t
numel
,
bool
is_grad
)
{
CUDA_KERNEL_LOOP
(
idx
,
numel
)
{
int64_t
idx_dim
[
X_DIM_SIZE
]
=
{
0
};
int64_t
temp
=
0
;
for
(
size_t
i
=
0
;
i
<
X_DIM_SIZE
-
1
;
i
++
)
{
idx_dim
[
i
]
=
(
idx
-
temp
)
/
x_stride
[
i
];
temp
=
temp
+
idx_dim
[
i
]
*
x_stride
[
i
];
}
idx_dim
[
X_DIM_SIZE
-
1
]
=
idx
-
temp
;
int64_t
axis1_dim
=
idx_dim
[
axis1_
];
int64_t
axis2_dim
=
idx_dim
[
axis2_
];
int64_t
out_dim
[
OUT_DIM_SIZE
]
=
{
0
};
int
temp_pos
=
0
;
for
(
int
i
=
0
;
i
<
X_DIM_SIZE
;
i
++
)
{
if
(
i
!=
axis1_
&&
i
!=
axis2_
)
{
out_dim
[
temp_pos
]
=
idx_dim
[
i
];
temp_pos
++
;
}
}
bool
flag
=
false
;
if
(
offset_
==
0
&&
axis1_dim
==
axis2_dim
)
{
out_dim
[
temp_pos
]
=
axis1_dim
;
flag
=
true
;
}
else
if
(
offset_
>
0
&&
(
axis1_dim
+
offset_
)
==
axis2_dim
)
{
out_dim
[
temp_pos
]
=
axis1_dim
;
flag
=
true
;
}
else
if
(
offset_
<
0
&&
(
axis1_dim
+
offset_
)
==
axis2_dim
)
{
out_dim
[
temp_pos
]
=
axis2_dim
;
flag
=
true
;
}
if
(
!
is_grad
)
{
if
(
flag
)
{
int64_t
idx_output
=
0
;
for
(
size_t
i
=
0
;
i
<
OUT_DIM_SIZE
-
1
;
i
++
)
{
idx_output
=
idx_output
+
out_dim
[
i
]
*
out_stride
[
i
];
}
idx_output
=
idx_output
+
out_dim
[
OUT_DIM_SIZE
-
1
];
data2
[
idx_output
]
=
data1
[
idx
];
}
}
else
{
if
(
flag
)
{
int64_t
idx_output
=
0
;
for
(
size_t
i
=
0
;
i
<
OUT_DIM_SIZE
-
1
;
i
++
)
{
idx_output
=
idx_output
+
out_dim
[
i
]
*
out_stride
[
i
];
}
idx_output
=
idx_output
+
out_dim
[
OUT_DIM_SIZE
-
1
];
data2
[
idx
]
=
data1
[
idx_output
];
}
else
{
data2
[
idx
]
=
static_cast
<
T
>
(
0
);
}
}
}
}
template
<
typename
T
>
class
DiagonalCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
input
=
context
.
Input
<
framework
::
Tensor
>
(
"Input"
);
const
auto
*
input_data
=
input
->
data
<
T
>
();
auto
input_dim
=
input
->
dims
().
Get
();
auto
input_dim_size
=
input
->
dims
().
size
();
std
::
vector
<
int64_t
>
res_in
=
vectorize
(
framework
::
stride
(
input
->
dims
()));
paddle
::
framework
::
Tensor
input_stride_tensor
;
framework
::
TensorFromVector
<
int64_t
>
(
res_in
,
context
.
device_context
(),
&
input_stride_tensor
);
int64_t
*
input_stride
=
input_stride_tensor
.
data
<
int64_t
>
();
auto
*
output
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
output_dim
=
output
->
dims
().
Get
();
auto
output_dim_size
=
output
->
dims
().
size
();
std
::
vector
<
int64_t
>
res_out
=
vectorize
(
framework
::
stride
(
output
->
dims
()));
paddle
::
framework
::
Tensor
output_stride_tensor
;
framework
::
TensorFromVector
<
int64_t
>
(
res_out
,
context
.
device_context
(),
&
output_stride_tensor
);
int64_t
*
output_stride
=
output_stride_tensor
.
data
<
int64_t
>
();
const
int64_t
offset_
=
context
.
Attr
<
int
>
(
"offset"
);
const
int64_t
axis1
=
context
.
Attr
<
int
>
(
"axis1"
);
int64_t
axis1_
=
axis1
<
0
?
input_dim_size
+
axis1
:
axis1
;
const
int64_t
axis2
=
context
.
Attr
<
int
>
(
"axis2"
);
int64_t
axis2_
=
axis2
<
0
?
input_dim_size
+
axis2
:
axis2
;
int64_t
numel
=
input
->
numel
();
int
threads
=
PADDLE_CUDA_NUM_THREADS
;
int
blocks
=
(
numel
+
threads
-
1
)
/
threads
;
switch
(
input_dim_size
)
{
case
2
:
Diagonal
<
T
,
2
,
1
><<<
blocks
,
threads
>>>
(
input_data
,
output_data
,
offset_
,
axis1_
,
axis2_
,
input_stride
,
output_stride
,
numel
,
false
);
break
;
case
3
:
Diagonal
<
T
,
3
,
2
><<<
blocks
,
threads
>>>
(
input_data
,
output_data
,
offset_
,
axis1_
,
axis2_
,
input_stride
,
output_stride
,
numel
,
false
);
break
;
case
4
:
Diagonal
<
T
,
4
,
3
><<<
blocks
,
threads
>>>
(
input_data
,
output_data
,
offset_
,
axis1_
,
axis2_
,
input_stride
,
output_stride
,
numel
,
false
);
break
;
case
5
:
Diagonal
<
T
,
5
,
4
><<<
blocks
,
threads
>>>
(
input_data
,
output_data
,
offset_
,
axis1_
,
axis2_
,
input_stride
,
output_stride
,
numel
,
false
);
break
;
case
6
:
Diagonal
<
T
,
6
,
5
><<<
blocks
,
threads
>>>
(
input_data
,
output_data
,
offset_
,
axis1_
,
axis2_
,
input_stride
,
output_stride
,
numel
,
false
);
break
;
case
7
:
Diagonal
<
T
,
7
,
6
><<<
blocks
,
threads
>>>
(
input_data
,
output_data
,
offset_
,
axis1_
,
axis2_
,
input_stride
,
output_stride
,
numel
,
false
);
break
;
case
8
:
Diagonal
<
T
,
8
,
7
><<<
blocks
,
threads
>>>
(
input_data
,
output_data
,
offset_
,
axis1_
,
axis2_
,
input_stride
,
output_stride
,
numel
,
false
);
break
;
case
9
:
Diagonal
<
T
,
9
,
8
><<<
blocks
,
threads
>>>
(
input_data
,
output_data
,
offset_
,
axis1_
,
axis2_
,
input_stride
,
output_stride
,
numel
,
false
);
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"The rank of input should be less than 10, but received %d."
,
input_dim_size
));
}
}
};
template
<
typename
T
>
class
DiagonalGradCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
auto
*
dout
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
const
auto
*
dout_data
=
dout
->
data
<
T
>
();
auto
dout_dim
=
dout
->
dims
().
Get
();
auto
dout_dim_size
=
dout
->
dims
().
size
();
std
::
vector
<
int64_t
>
res_dout
=
vectorize
(
framework
::
stride
(
dout
->
dims
()));
paddle
::
framework
::
Tensor
dout_stride_tensor
;
framework
::
TensorFromVector
<
int64_t
>
(
res_dout
,
context
.
device_context
(),
&
dout_stride_tensor
);
int64_t
*
dout_stride
=
dout_stride_tensor
.
data
<
int64_t
>
();
auto
*
dx
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
*
dx_data
=
dx
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dx_dim
=
dx
->
dims
().
Get
();
auto
dx_dim_size
=
dx
->
dims
().
size
();
std
::
vector
<
int64_t
>
res_dx
=
vectorize
(
framework
::
stride
(
dx
->
dims
()));
paddle
::
framework
::
Tensor
dx_stride_tensor
;
framework
::
TensorFromVector
<
int64_t
>
(
res_dx
,
context
.
device_context
(),
&
dx_stride_tensor
);
int64_t
*
dx_stride
=
dx_stride_tensor
.
data
<
int64_t
>
();
const
int64_t
offset_
=
context
.
Attr
<
int
>
(
"offset"
);
const
int64_t
axis1
=
context
.
Attr
<
int
>
(
"axis1"
);
int64_t
axis1_
=
axis1
<
0
?
dx_dim_size
+
axis1
:
axis1
;
const
int64_t
axis2
=
context
.
Attr
<
int
>
(
"axis2"
);
int64_t
axis2_
=
axis2
<
0
?
dx_dim_size
+
axis2
:
axis2
;
int64_t
numel
=
dx
->
numel
();
int
threads
=
PADDLE_CUDA_NUM_THREADS
;
int
blocks
=
(
numel
+
threads
-
1
)
/
threads
;
switch
(
dx_dim_size
)
{
case
2
:
Diagonal
<
T
,
2
,
1
><<<
blocks
,
threads
>>>
(
dout_data
,
dx_data
,
offset_
,
axis1_
,
axis2_
,
dx_stride
,
dout_stride
,
numel
,
true
);
break
;
case
3
:
Diagonal
<
T
,
3
,
2
><<<
blocks
,
threads
>>>
(
dout_data
,
dx_data
,
offset_
,
axis1_
,
axis2_
,
dx_stride
,
dout_stride
,
numel
,
true
);
break
;
case
4
:
Diagonal
<
T
,
4
,
3
><<<
blocks
,
threads
>>>
(
dout_data
,
dx_data
,
offset_
,
axis1_
,
axis2_
,
dx_stride
,
dout_stride
,
numel
,
true
);
break
;
case
5
:
Diagonal
<
T
,
5
,
4
><<<
blocks
,
threads
>>>
(
dout_data
,
dx_data
,
offset_
,
axis1_
,
axis2_
,
dx_stride
,
dout_stride
,
numel
,
true
);
break
;
case
6
:
Diagonal
<
T
,
6
,
5
><<<
blocks
,
threads
>>>
(
dout_data
,
dx_data
,
offset_
,
axis1_
,
axis2_
,
dx_stride
,
dout_stride
,
numel
,
true
);
break
;
case
7
:
Diagonal
<
T
,
7
,
6
><<<
blocks
,
threads
>>>
(
dout_data
,
dx_data
,
offset_
,
axis1_
,
axis2_
,
dx_stride
,
dout_stride
,
numel
,
true
);
break
;
case
8
:
Diagonal
<
T
,
8
,
7
><<<
blocks
,
threads
>>>
(
dout_data
,
dx_data
,
offset_
,
axis1_
,
axis2_
,
dx_stride
,
dout_stride
,
numel
,
true
);
break
;
case
9
:
Diagonal
<
T
,
9
,
8
><<<
blocks
,
threads
>>>
(
dout_data
,
dx_data
,
offset_
,
axis1_
,
axis2_
,
dx_stride
,
dout_stride
,
numel
,
true
);
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"The rank of output(input@Grad) should be less than 10, but "
"received %d."
,
dx_dim_size
));
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
diagonal
,
ops
::
DiagonalCUDAKernel
<
int
>
,
ops
::
DiagonalCUDAKernel
<
int64_t
>
,
ops
::
DiagonalCUDAKernel
<
float
>
,
ops
::
DiagonalCUDAKernel
<
double
>
,
ops
::
DiagonalCUDAKernel
<
plat
::
float16
>
,
ops
::
DiagonalCUDAKernel
<
bool
>
);
REGISTER_OP_CUDA_KERNEL
(
diagonal_grad
,
ops
::
DiagonalGradCUDAKernel
<
int
>
,
ops
::
DiagonalGradCUDAKernel
<
int64_t
>
,
ops
::
DiagonalGradCUDAKernel
<
float
>
,
ops
::
DiagonalGradCUDAKernel
<
double
>
,
ops
::
DiagonalGradCUDAKernel
<
plat
::
float16
>
);
paddle/fluid/operators/diagonal_op.h
已删除
100644 → 0
浏览文件 @
7d6d3848
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
std
::
vector
<
T
>
ComputeDimStride
(
const
std
::
vector
<
T
>
dim
)
{
size_t
dim_size
=
dim
.
size
();
std
::
vector
<
T
>
dim_strides
;
dim_strides
.
resize
(
dim_size
);
for
(
size_t
i
=
0
;
i
<
dim_size
-
1
;
i
++
)
{
size_t
temp_stride
=
1
;
for
(
size_t
j
=
i
+
1
;
j
<
dim_size
;
j
++
)
{
temp_stride
=
temp_stride
*
dim
[
j
];
}
dim_strides
[
i
]
=
temp_stride
;
}
dim_strides
[
dim_size
-
1
]
=
1
;
return
dim_strides
;
}
template
<
typename
T
>
class
DiagonalKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
input
=
context
.
Input
<
framework
::
Tensor
>
(
"Input"
);
const
T
*
input_data
=
input
->
data
<
T
>
();
auto
input_dim
=
vectorize
(
input
->
dims
());
auto
input_dim_size
=
input_dim
.
size
();
auto
*
output
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
output_dim
=
vectorize
(
output
->
dims
());
const
int64_t
offset_
=
context
.
Attr
<
int
>
(
"offset"
);
const
int64_t
axis1
=
context
.
Attr
<
int
>
(
"axis1"
);
int64_t
axis1_
=
axis1
<
0
?
input_dim_size
+
axis1
:
axis1
;
const
int64_t
axis2
=
context
.
Attr
<
int
>
(
"axis2"
);
int64_t
axis2_
=
axis2
<
0
?
input_dim_size
+
axis2
:
axis2
;
std
::
vector
<
int64_t
>
input_stride
=
ComputeDimStride
(
input_dim
);
std
::
vector
<
int64_t
>
output_stride
=
ComputeDimStride
(
output_dim
);
int64_t
numel
=
input
->
numel
();
for
(
int64_t
idx
=
0
;
idx
<
numel
;
idx
++
)
{
std
::
vector
<
int64_t
>
idx_dim
(
input_dim_size
);
int64_t
temp
=
0
;
for
(
size_t
i
=
0
;
i
<
input_dim_size
;
i
++
)
{
idx_dim
[
i
]
=
(
idx
-
temp
)
/
input_stride
[
i
];
temp
=
temp
+
idx_dim
[
i
]
*
input_stride
[
i
];
}
int64_t
axis1_dim
=
idx_dim
[
axis1_
];
int64_t
axis2_dim
=
idx_dim
[
axis2_
];
idx_dim
.
erase
(
idx_dim
.
begin
()
+
std
::
max
(
axis1_
,
axis2_
));
idx_dim
.
erase
(
idx_dim
.
begin
()
+
std
::
min
(
axis1_
,
axis2_
));
bool
flag
=
false
;
if
(
offset_
==
0
&&
axis1_dim
==
axis2_dim
)
{
idx_dim
.
push_back
(
axis1_dim
);
flag
=
true
;
}
else
if
(
offset_
>
0
&&
(
axis1_dim
+
offset_
)
==
axis2_dim
)
{
idx_dim
.
push_back
(
axis1_dim
);
flag
=
true
;
}
else
if
(
offset_
<
0
&&
(
axis1_dim
+
offset_
)
==
axis2_dim
)
{
idx_dim
.
push_back
(
axis2_dim
);
flag
=
true
;
}
if
(
flag
)
{
int64_t
idx_output
=
0
;
for
(
size_t
i
=
0
;
i
<
idx_dim
.
size
();
i
++
)
{
idx_output
=
idx_output
+
idx_dim
[
i
]
*
output_stride
[
i
];
}
output_data
[
idx_output
]
=
input_data
[
idx
];
}
}
}
};
template
<
typename
T
>
class
DiagonalGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
auto
*
dout
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
const
T
*
dout_data
=
dout
->
data
<
T
>
();
auto
dout_dim
=
vectorize
(
dout
->
dims
());
auto
*
dx
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
T
*
dx_data
=
dx
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dx_dim
=
vectorize
(
dx
->
dims
());
auto
dx_dim_size
=
dx_dim
.
size
();
const
int64_t
offset_
=
context
.
Attr
<
int
>
(
"offset"
);
const
int64_t
axis1
=
context
.
Attr
<
int
>
(
"axis1"
);
int64_t
axis1_
=
axis1
<
0
?
dx_dim_size
+
axis1
:
axis1
;
const
int64_t
axis2
=
context
.
Attr
<
int
>
(
"axis2"
);
int64_t
axis2_
=
axis2
<
0
?
dx_dim_size
+
axis2
:
axis2
;
std
::
vector
<
int64_t
>
dout_stride
=
ComputeDimStride
(
dout_dim
);
std
::
vector
<
int64_t
>
dx_stride
=
ComputeDimStride
(
dx_dim
);
int64_t
numel
=
dx
->
numel
();
for
(
int64_t
idx
=
0
;
idx
<
numel
;
idx
++
)
{
std
::
vector
<
int64_t
>
idx_dim
(
dx_dim_size
);
int64_t
temp
=
0
;
for
(
size_t
i
=
0
;
i
<
dx_dim_size
;
i
++
)
{
idx_dim
[
i
]
=
(
idx
-
temp
)
/
dx_stride
[
i
];
temp
=
temp
+
idx_dim
[
i
]
*
dx_stride
[
i
];
}
int64_t
axis1_dim
=
idx_dim
[
axis1_
];
int64_t
axis2_dim
=
idx_dim
[
axis2_
];
idx_dim
.
erase
(
idx_dim
.
begin
()
+
std
::
max
(
axis1_
,
axis2_
));
idx_dim
.
erase
(
idx_dim
.
begin
()
+
std
::
min
(
axis1_
,
axis2_
));
bool
flag
=
false
;
if
(
offset_
==
0
&&
axis1_dim
==
axis2_dim
)
{
idx_dim
.
push_back
(
axis1_dim
);
flag
=
true
;
}
else
if
(
offset_
>
0
&&
(
axis1_dim
+
offset_
)
==
axis2_dim
)
{
idx_dim
.
push_back
(
axis1_dim
);
flag
=
true
;
}
else
if
(
offset_
<
0
&&
(
axis1_dim
+
offset_
)
==
axis2_dim
)
{
idx_dim
.
push_back
(
axis2_dim
);
flag
=
true
;
}
if
(
flag
)
{
int64_t
idx_output
=
0
;
for
(
size_t
i
=
0
;
i
<
idx_dim
.
size
();
i
++
)
{
idx_output
=
idx_output
+
idx_dim
[
i
]
*
dout_stride
[
i
];
}
dx_data
[
idx
]
=
dout_data
[
idx_output
];
}
else
{
dx_data
[
idx
]
=
static_cast
<
T
>
(
0
);
}
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/pten/kernels/cpu/diagonal_grad_kernel.cc
0 → 100644
浏览文件 @
5c66338f
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/pten/kernels/diagonal_grad_kernel.h"
#include "paddle/pten/backends/cpu/cpu_context.h"
#include "paddle/pten/core/kernel_registry.h"
#include "paddle/pten/kernels/funcs/diagonal.h"
namespace
pten
{
template
<
typename
T
,
typename
Context
>
void
DiagonalGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out_grad
,
int
offset
,
int
axis1
,
int
axis2
,
DenseTensor
*
in_grad
)
{
const
auto
*
dout
=
&
out_grad
;
const
T
*
dout_data
=
dout
->
data
<
T
>
();
auto
dout_dim
=
vectorize
(
dout
->
dims
());
auto
*
dx
=
in_grad
;
T
*
dx_data
=
dev_ctx
.
template
Alloc
<
T
>(
dx
);
auto
dx_dim
=
vectorize
(
dx
->
dims
());
auto
dx_dim_size
=
dx_dim
.
size
();
const
int64_t
offset_
=
offset
;
int64_t
axis1_
=
axis1
<
0
?
dx_dim_size
+
axis1
:
axis1
;
int64_t
axis2_
=
axis2
<
0
?
dx_dim_size
+
axis2
:
axis2
;
std
::
vector
<
int64_t
>
dout_stride
=
funcs
::
ComputeDimStride
(
dout_dim
);
std
::
vector
<
int64_t
>
dx_stride
=
funcs
::
ComputeDimStride
(
dx_dim
);
int64_t
numel
=
dx
->
numel
();
for
(
int64_t
idx
=
0
;
idx
<
numel
;
idx
++
)
{
std
::
vector
<
int64_t
>
idx_dim
(
dx_dim_size
);
int64_t
temp
=
0
;
for
(
size_t
i
=
0
;
i
<
dx_dim_size
;
i
++
)
{
idx_dim
[
i
]
=
(
idx
-
temp
)
/
dx_stride
[
i
];
temp
=
temp
+
idx_dim
[
i
]
*
dx_stride
[
i
];
}
int64_t
axis1_dim
=
idx_dim
[
axis1_
];
int64_t
axis2_dim
=
idx_dim
[
axis2_
];
idx_dim
.
erase
(
idx_dim
.
begin
()
+
std
::
max
(
axis1_
,
axis2_
));
idx_dim
.
erase
(
idx_dim
.
begin
()
+
std
::
min
(
axis1_
,
axis2_
));
bool
flag
=
false
;
if
(
offset_
==
0
&&
axis1_dim
==
axis2_dim
)
{
idx_dim
.
push_back
(
axis1_dim
);
flag
=
true
;
}
else
if
(
offset_
>
0
&&
(
axis1_dim
+
offset_
)
==
axis2_dim
)
{
idx_dim
.
push_back
(
axis1_dim
);
flag
=
true
;
}
else
if
(
offset_
<
0
&&
(
axis1_dim
+
offset_
)
==
axis2_dim
)
{
idx_dim
.
push_back
(
axis2_dim
);
flag
=
true
;
}
if
(
flag
)
{
int64_t
idx_output
=
0
;
for
(
size_t
i
=
0
;
i
<
idx_dim
.
size
();
i
++
)
{
idx_output
=
idx_output
+
idx_dim
[
i
]
*
dout_stride
[
i
];
}
dx_data
[
idx
]
=
dout_data
[
idx_output
];
}
else
{
dx_data
[
idx
]
=
static_cast
<
T
>
(
0
);
}
}
}
}
// namespace pten
PT_REGISTER_KERNEL
(
diagonal_grad
,
CPU
,
ALL_LAYOUT
,
pten
::
DiagonalGradKernel
,
float
,
double
,
int
,
int64_t
)
{}
paddle/pten/kernels/cpu/diagonal_kernel.cc
0 → 100644
浏览文件 @
5c66338f
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/pten/kernels/diagonal_kernel.h"
#include "paddle/pten/backends/cpu/cpu_context.h"
#include "paddle/pten/core/kernel_registry.h"
#include "paddle/pten/kernels/funcs/diagonal.h"
namespace
pten
{
template
<
typename
T
,
typename
Context
>
void
DiagonalKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
int
offset
,
int
axis1
,
int
axis2
,
DenseTensor
*
out
)
{
auto
*
input
=
&
x
;
const
T
*
input_data
=
input
->
data
<
T
>
();
auto
input_dim
=
vectorize
(
input
->
dims
());
auto
input_dim_size
=
input_dim
.
size
();
auto
*
output
=
out
;
T
*
output_data
=
dev_ctx
.
template
Alloc
<
T
>(
output
);
auto
output_dim
=
vectorize
(
output
->
dims
());
const
int64_t
offset_
=
offset
;
int64_t
axis1_
=
axis1
<
0
?
input_dim_size
+
axis1
:
axis1
;
int64_t
axis2_
=
axis2
<
0
?
input_dim_size
+
axis2
:
axis2
;
std
::
vector
<
int64_t
>
input_stride
=
funcs
::
ComputeDimStride
(
input_dim
);
std
::
vector
<
int64_t
>
output_stride
=
funcs
::
ComputeDimStride
(
output_dim
);
int64_t
numel
=
input
->
numel
();
for
(
int64_t
idx
=
0
;
idx
<
numel
;
idx
++
)
{
std
::
vector
<
int64_t
>
idx_dim
(
input_dim_size
);
int64_t
temp
=
0
;
for
(
size_t
i
=
0
;
i
<
input_dim_size
;
i
++
)
{
idx_dim
[
i
]
=
(
idx
-
temp
)
/
input_stride
[
i
];
temp
=
temp
+
idx_dim
[
i
]
*
input_stride
[
i
];
}
int64_t
axis1_dim
=
idx_dim
[
axis1_
];
int64_t
axis2_dim
=
idx_dim
[
axis2_
];
idx_dim
.
erase
(
idx_dim
.
begin
()
+
std
::
max
(
axis1_
,
axis2_
));
idx_dim
.
erase
(
idx_dim
.
begin
()
+
std
::
min
(
axis1_
,
axis2_
));
bool
flag
=
false
;
if
(
offset_
==
0
&&
axis1_dim
==
axis2_dim
)
{
idx_dim
.
push_back
(
axis1_dim
);
flag
=
true
;
}
else
if
(
offset_
>
0
&&
(
axis1_dim
+
offset_
)
==
axis2_dim
)
{
idx_dim
.
push_back
(
axis1_dim
);
flag
=
true
;
}
else
if
(
offset_
<
0
&&
(
axis1_dim
+
offset_
)
==
axis2_dim
)
{
idx_dim
.
push_back
(
axis2_dim
);
flag
=
true
;
}
if
(
flag
)
{
int64_t
idx_output
=
0
;
for
(
size_t
i
=
0
;
i
<
idx_dim
.
size
();
i
++
)
{
idx_output
=
idx_output
+
idx_dim
[
i
]
*
output_stride
[
i
];
}
output_data
[
idx_output
]
=
input_data
[
idx
];
}
}
}
}
// namespace pten
PT_REGISTER_KERNEL
(
diagonal
,
CPU
,
ALL_LAYOUT
,
pten
::
DiagonalKernel
,
float
,
double
,
int
,
int64_t
,
bool
)
{}
paddle/pten/kernels/diagonal_grad_kernel.h
0 → 100644
浏览文件 @
5c66338f
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/pten/core/dense_tensor.h"
namespace
pten
{
template
<
typename
T
,
typename
Context
>
void
DiagonalGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out_grad
,
int
offset
,
int
axis1
,
int
axis2
,
DenseTensor
*
in_grad
);
}
// namespace pten
paddle/pten/kernels/diagonal_kernel.h
0 → 100644
浏览文件 @
5c66338f
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/pten/core/dense_tensor.h"
namespace
pten
{
template
<
typename
T
,
typename
Context
>
void
DiagonalKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
int
offset
,
int
axis1
,
int
axis2
,
DenseTensor
*
out
);
}
// pten
paddle/pten/kernels/funcs/diagonal.h
浏览文件 @
5c66338f
...
...
@@ -17,11 +17,13 @@
#if defined(__NVCC__) || defined(__HIPCC__)
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include "paddle/pten/kernels/primitive/kernel_primitives.h"
#endif
#include <algorithm>
#include "paddle/fluid/platform/for_range.h"
#include "paddle/pten/core/dense_tensor.h"
namespace
pten
{
namespace
funcs
{
...
...
@@ -126,5 +128,88 @@ DenseTensor Diagonal(const DeviceContext& context,
}
}
template
<
typename
T
>
std
::
vector
<
T
>
ComputeDimStride
(
const
std
::
vector
<
T
>
dim
)
{
size_t
dim_size
=
dim
.
size
();
std
::
vector
<
T
>
dim_strides
;
dim_strides
.
resize
(
dim_size
);
for
(
size_t
i
=
0
;
i
<
dim_size
-
1
;
i
++
)
{
size_t
temp_stride
=
1
;
for
(
size_t
j
=
i
+
1
;
j
<
dim_size
;
j
++
)
{
temp_stride
=
temp_stride
*
dim
[
j
];
}
dim_strides
[
i
]
=
temp_stride
;
}
dim_strides
[
dim_size
-
1
]
=
1
;
return
dim_strides
;
}
#if defined(__NVCC__) || defined(__HIPCC__)
template
<
typename
T
,
int
X_DIM_SIZE
,
int
OUT_DIM_SIZE
>
__global__
void
DiagonalCuda
(
const
T
*
data1
,
T
*
data2
,
const
int64_t
offset_
,
int64_t
axis1_
,
int64_t
axis2_
,
int64_t
*
x_stride
,
int64_t
*
out_stride
,
int64_t
numel
,
bool
is_grad
)
{
CUDA_KERNEL_LOOP
(
idx
,
numel
)
{
int64_t
idx_dim
[
X_DIM_SIZE
]
=
{
0
};
int64_t
temp
=
0
;
for
(
size_t
i
=
0
;
i
<
X_DIM_SIZE
-
1
;
i
++
)
{
idx_dim
[
i
]
=
(
idx
-
temp
)
/
x_stride
[
i
];
temp
=
temp
+
idx_dim
[
i
]
*
x_stride
[
i
];
}
idx_dim
[
X_DIM_SIZE
-
1
]
=
idx
-
temp
;
int64_t
axis1_dim
=
idx_dim
[
axis1_
];
int64_t
axis2_dim
=
idx_dim
[
axis2_
];
int64_t
out_dim
[
OUT_DIM_SIZE
]
=
{
0
};
int
temp_pos
=
0
;
for
(
int
i
=
0
;
i
<
X_DIM_SIZE
;
i
++
)
{
if
(
i
!=
axis1_
&&
i
!=
axis2_
)
{
out_dim
[
temp_pos
]
=
idx_dim
[
i
];
temp_pos
++
;
}
}
bool
flag
=
false
;
if
(
offset_
==
0
&&
axis1_dim
==
axis2_dim
)
{
out_dim
[
temp_pos
]
=
axis1_dim
;
flag
=
true
;
}
else
if
(
offset_
>
0
&&
(
axis1_dim
+
offset_
)
==
axis2_dim
)
{
out_dim
[
temp_pos
]
=
axis1_dim
;
flag
=
true
;
}
else
if
(
offset_
<
0
&&
(
axis1_dim
+
offset_
)
==
axis2_dim
)
{
out_dim
[
temp_pos
]
=
axis2_dim
;
flag
=
true
;
}
if
(
!
is_grad
)
{
if
(
flag
)
{
int64_t
idx_output
=
0
;
for
(
size_t
i
=
0
;
i
<
OUT_DIM_SIZE
-
1
;
i
++
)
{
idx_output
=
idx_output
+
out_dim
[
i
]
*
out_stride
[
i
];
}
idx_output
=
idx_output
+
out_dim
[
OUT_DIM_SIZE
-
1
];
data2
[
idx_output
]
=
data1
[
idx
];
}
}
else
{
if
(
flag
)
{
int64_t
idx_output
=
0
;
for
(
size_t
i
=
0
;
i
<
OUT_DIM_SIZE
-
1
;
i
++
)
{
idx_output
=
idx_output
+
out_dim
[
i
]
*
out_stride
[
i
];
}
idx_output
=
idx_output
+
out_dim
[
OUT_DIM_SIZE
-
1
];
data2
[
idx
]
=
data1
[
idx_output
];
}
else
{
data2
[
idx
]
=
static_cast
<
T
>
(
0
);
}
}
}
}
#endif
}
// namespace funcs
}
// namespace pten
paddle/pten/kernels/gpu/diagonal_grad_kernel.cu
0 → 100644
浏览文件 @
5c66338f
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/pten/core/kernel_registry.h"
#include "paddle/pten/kernels/diagonal_grad_kernel.h"
#include "paddle/pten/kernels/funcs/diagonal.h"
namespace
pten
{
using
paddle
::
platform
::
PADDLE_CUDA_NUM_THREADS
;
template
<
typename
T
,
typename
Context
>
void
DiagonalGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out_grad
,
int
offset
,
int
axis1
,
int
axis2
,
DenseTensor
*
in_grad
)
{
const
auto
*
dout
=
&
out_grad
;
const
auto
*
dout_data
=
dout
->
data
<
T
>
();
auto
dout_dim
=
dout
->
dims
().
Get
();
auto
dout_dim_size
=
dout
->
dims
().
size
();
std
::
vector
<
int64_t
>
res_dout
=
vectorize
(
framework
::
stride
(
dout
->
dims
()));
DenseTensor
dout_stride_tensor
;
paddle
::
framework
::
TensorFromVector
<
int64_t
>
(
res_dout
,
dev_ctx
,
&
dout_stride_tensor
);
int64_t
*
dout_stride
=
dout_stride_tensor
.
data
<
int64_t
>
();
auto
*
dx
=
in_grad
;
auto
*
dx_data
=
dev_ctx
.
template
Alloc
<
T
>(
dx
);
auto
dx_dim
=
dx
->
dims
().
Get
();
auto
dx_dim_size
=
dx
->
dims
().
size
();
std
::
vector
<
int64_t
>
res_dx
=
vectorize
(
framework
::
stride
(
dx
->
dims
()));
DenseTensor
dx_stride_tensor
;
paddle
::
framework
::
TensorFromVector
<
int64_t
>
(
res_dx
,
dev_ctx
,
&
dx_stride_tensor
);
int64_t
*
dx_stride
=
dx_stride_tensor
.
data
<
int64_t
>
();
const
int64_t
offset_
=
offset
;
int64_t
axis1_
=
axis1
<
0
?
dx_dim_size
+
axis1
:
axis1
;
int64_t
axis2_
=
axis2
<
0
?
dx_dim_size
+
axis2
:
axis2
;
int64_t
numel
=
dx
->
numel
();
int
threads
=
PADDLE_CUDA_NUM_THREADS
;
int
blocks
=
(
numel
+
threads
-
1
)
/
threads
;
switch
(
dx_dim_size
)
{
case
2
:
funcs
::
DiagonalCuda
<
T
,
2
,
1
><<<
blocks
,
threads
>>>
(
dout_data
,
dx_data
,
offset_
,
axis1_
,
axis2_
,
dx_stride
,
dout_stride
,
numel
,
true
);
break
;
case
3
:
funcs
::
DiagonalCuda
<
T
,
3
,
2
><<<
blocks
,
threads
>>>
(
dout_data
,
dx_data
,
offset_
,
axis1_
,
axis2_
,
dx_stride
,
dout_stride
,
numel
,
true
);
break
;
case
4
:
funcs
::
DiagonalCuda
<
T
,
4
,
3
><<<
blocks
,
threads
>>>
(
dout_data
,
dx_data
,
offset_
,
axis1_
,
axis2_
,
dx_stride
,
dout_stride
,
numel
,
true
);
break
;
case
5
:
funcs
::
DiagonalCuda
<
T
,
5
,
4
><<<
blocks
,
threads
>>>
(
dout_data
,
dx_data
,
offset_
,
axis1_
,
axis2_
,
dx_stride
,
dout_stride
,
numel
,
true
);
break
;
case
6
:
funcs
::
DiagonalCuda
<
T
,
6
,
5
><<<
blocks
,
threads
>>>
(
dout_data
,
dx_data
,
offset_
,
axis1_
,
axis2_
,
dx_stride
,
dout_stride
,
numel
,
true
);
break
;
case
7
:
funcs
::
DiagonalCuda
<
T
,
7
,
6
><<<
blocks
,
threads
>>>
(
dout_data
,
dx_data
,
offset_
,
axis1_
,
axis2_
,
dx_stride
,
dout_stride
,
numel
,
true
);
break
;
case
8
:
funcs
::
DiagonalCuda
<
T
,
8
,
7
><<<
blocks
,
threads
>>>
(
dout_data
,
dx_data
,
offset_
,
axis1_
,
axis2_
,
dx_stride
,
dout_stride
,
numel
,
true
);
break
;
case
9
:
funcs
::
DiagonalCuda
<
T
,
9
,
8
><<<
blocks
,
threads
>>>
(
dout_data
,
dx_data
,
offset_
,
axis1_
,
axis2_
,
dx_stride
,
dout_stride
,
numel
,
true
);
break
;
default:
PADDLE_THROW
(
errors
::
InvalidArgument
(
"The rank of output(input@Grad) should be less than 10, but "
"received %d."
,
dx_dim_size
));
}
}
}
// namespace pten
PT_REGISTER_KERNEL
(
diagonal_grad
,
GPU
,
ALL_LAYOUT
,
pten
::
DiagonalGradKernel
,
float
,
double
,
int
,
int64_t
)
{}
paddle/pten/kernels/gpu/diagonal_kernel.cu
0 → 100644
浏览文件 @
5c66338f
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/pten/core/kernel_registry.h"
#include "paddle/pten/kernels/diagonal_kernel.h"
#include "paddle/pten/kernels/funcs/diagonal.h"
namespace
pten
{
using
paddle
::
platform
::
PADDLE_CUDA_NUM_THREADS
;
template
<
typename
T
,
typename
Context
>
void
DiagonalKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
int
offset
,
int
axis1
,
int
axis2
,
DenseTensor
*
out
)
{
auto
*
input
=
&
x
;
const
auto
*
input_data
=
input
->
data
<
T
>
();
auto
input_dim
=
input
->
dims
().
Get
();
auto
input_dim_size
=
input
->
dims
().
size
();
std
::
vector
<
int64_t
>
res_in
=
vectorize
(
framework
::
stride
(
input
->
dims
()));
DenseTensor
input_stride_tensor
;
paddle
::
framework
::
TensorFromVector
<
int64_t
>
(
res_in
,
dev_ctx
,
&
input_stride_tensor
);
int64_t
*
input_stride
=
input_stride_tensor
.
data
<
int64_t
>
();
auto
*
output
=
out
;
auto
*
output_data
=
dev_ctx
.
template
Alloc
<
T
>(
out
);
auto
output_dim
=
output
->
dims
().
Get
();
auto
output_dim_size
=
output
->
dims
().
size
();
std
::
vector
<
int64_t
>
res_out
=
vectorize
(
framework
::
stride
(
output
->
dims
()));
DenseTensor
output_stride_tensor
;
paddle
::
framework
::
TensorFromVector
<
int64_t
>
(
res_out
,
dev_ctx
,
&
output_stride_tensor
);
int64_t
*
output_stride
=
output_stride_tensor
.
data
<
int64_t
>
();
const
int64_t
offset_
=
offset
;
int64_t
axis1_
=
axis1
<
0
?
input_dim_size
+
axis1
:
axis1
;
int64_t
axis2_
=
axis2
<
0
?
input_dim_size
+
axis2
:
axis2
;
int64_t
numel
=
input
->
numel
();
int
threads
=
PADDLE_CUDA_NUM_THREADS
;
int
blocks
=
(
numel
+
threads
-
1
)
/
threads
;
switch
(
input_dim_size
)
{
case
2
:
funcs
::
DiagonalCuda
<
T
,
2
,
1
><<<
blocks
,
threads
>>>
(
input_data
,
output_data
,
offset_
,
axis1_
,
axis2_
,
input_stride
,
output_stride
,
numel
,
false
);
break
;
case
3
:
funcs
::
DiagonalCuda
<
T
,
3
,
2
><<<
blocks
,
threads
>>>
(
input_data
,
output_data
,
offset_
,
axis1_
,
axis2_
,
input_stride
,
output_stride
,
numel
,
false
);
break
;
case
4
:
funcs
::
DiagonalCuda
<
T
,
4
,
3
><<<
blocks
,
threads
>>>
(
input_data
,
output_data
,
offset_
,
axis1_
,
axis2_
,
input_stride
,
output_stride
,
numel
,
false
);
break
;
case
5
:
funcs
::
DiagonalCuda
<
T
,
5
,
4
><<<
blocks
,
threads
>>>
(
input_data
,
output_data
,
offset_
,
axis1_
,
axis2_
,
input_stride
,
output_stride
,
numel
,
false
);
break
;
case
6
:
funcs
::
DiagonalCuda
<
T
,
6
,
5
><<<
blocks
,
threads
>>>
(
input_data
,
output_data
,
offset_
,
axis1_
,
axis2_
,
input_stride
,
output_stride
,
numel
,
false
);
break
;
case
7
:
funcs
::
DiagonalCuda
<
T
,
7
,
6
><<<
blocks
,
threads
>>>
(
input_data
,
output_data
,
offset_
,
axis1_
,
axis2_
,
input_stride
,
output_stride
,
numel
,
false
);
break
;
case
8
:
funcs
::
DiagonalCuda
<
T
,
8
,
7
><<<
blocks
,
threads
>>>
(
input_data
,
output_data
,
offset_
,
axis1_
,
axis2_
,
input_stride
,
output_stride
,
numel
,
false
);
break
;
case
9
:
funcs
::
DiagonalCuda
<
T
,
9
,
8
><<<
blocks
,
threads
>>>
(
input_data
,
output_data
,
offset_
,
axis1_
,
axis2_
,
input_stride
,
output_stride
,
numel
,
false
);
break
;
default:
PADDLE_THROW
(
errors
::
InvalidArgument
(
"The rank of input should be less than 10, but received %d."
,
input_dim_size
));
}
}
}
// namespace pten
PT_REGISTER_KERNEL
(
diagonal
,
GPU
,
ALL_LAYOUT
,
pten
::
DiagonalKernel
,
float
,
double
,
int
,
int64_t
,
bool
)
{}
paddle/pten/ops/compat/diagonal_sig.cc
0 → 100644
浏览文件 @
5c66338f
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/pten/core/compat/op_utils.h"
namespace
pten
{
KernelSignature
DiagonalGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"diagonal_grad"
,
{
"Input"
,
GradVarName
(
"Out"
)},
{
"offset"
,
"axis1"
,
"axis2"
},
{
GradVarName
(
"Input"
)});
}
}
// namespace pten
PT_REGISTER_ARG_MAPPING_FN
(
diagonal_grad
,
pten
::
DiagonalGradOpArgumentMapping
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录