未验证 提交 5b77b259 编写于 作者: G gongweibao 提交者: GitHub

cleanup (#30646)

cleanup test_ascend_group.py
上级 7158061a
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import time
import paddle.fluid as fluid
from paddle.fluid import unique_name
import paddle.fluid.core as core
import paddle
from paddle.fluid.layer_helper import LayerHelper
paddle.enable_static()
OpRole = core.op_proto_and_checker_maker.OpRole
OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
OP_ROLE_VAR_KEY = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
def init_communicator(startup_program, main_program, current_endpoint, endpoints, ring_id):
nranks = len(endpoints)
other_endpoints = endpoints[:]
other_endpoints.remove(current_endpoint)
group_rank=endpoints.index(current_endpoint)
assert group_rank >=0
block = startup_program.global_block()
nccl_id_var = block.create_var(
name=unique_name.generate('nccl_id'),
persistable=True,
type=core.VarDesc.VarType.RAW)
block.append_op(
type='c_gen_nccl_id',
inputs={},
outputs={'Out': nccl_id_var},
attrs={
'rank': group_rank,
'endpoint': current_endpoint,
'other_endpoints': other_endpoints,
OP_ROLE_KEY: OpRole.Forward,
})
block.append_op(
type='c_comm_init',
inputs={'X': nccl_id_var},
outputs={},
attrs={
'nranks': nranks,
'rank': group_rank,
'ring_id': ring_id,
OP_ROLE_KEY: OpRole.Forward,
})
block.create_var(
name="data",
persistable=True,
dtype='float32')
with fluid.program_guard(main_program):
op_type="c_allreduce_sum"
data=fluid.layers.fill_constant(shape=[1], dtype='float32', value=2.5)
helper = LayerHelper(op_type, **locals())
helper.append_op(
type=op_type,
inputs={'X': [data]},
outputs={'Out': [data]},
attrs={'ring_id': ring_id,
'use_calc_stream': True})
def train():
startup_programs=[]
main_programs=[]
trainer_endpoints=["127.0.0.1:6071","127.0.0.1:6072","127.0.0.1:6073","127.0.0.1:6074"]
groups=[[], [], []]
groups[0]=[trainer_endpoints[0], trainer_endpoints[1]]
groups[1]=[trainer_endpoints[2], trainer_endpoints[3]]
groups[2]=[trainer_endpoints[0], trainer_endpoints[2]]
for i in range(len(trainer_endpoints)):
startup_programs.append(fluid.Program())
main_programs.append(fluid.Program())
for idx, group in enumerate(groups):
for te in group:
te_idx = trainer_endpoints.index(te)
startup_program = startup_programs[te_idx]
main_program=main_programs[te_idx]
init_communicator(startup_program, main_program, te, group, idx)
print(len(startup_programs))
print(startup_programs[0])
print(main_programs[0])
train()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册