未验证 提交 5a5649c2 编写于 作者: C Chenxiao Niu 提交者: GitHub

[MLU] add truncated_gaussian_random kernel. (#43575)

上级 19e866f9
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <limits>
#include <random>
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/truncated_gaussian_random_op.h"
namespace paddle {
namespace operators {
template <typename T>
class TruncatedGaussianRandomMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
float mean = context.Attr<float>("mean");
float std = context.Attr<float>("std");
auto* tensor = context.Output<framework::Tensor>("Out");
tensor->mutable_data<T>(context.GetPlace());
framework::Tensor cpu_tensor(tensor->dtype());
cpu_tensor.Resize(tensor->dims());
T* data_cpu = cpu_tensor.mutable_data<T>(platform::CPUPlace());
std::uniform_real_distribution<T> dist(std::numeric_limits<float>::min(),
1.0);
TruncatedNormal<T> truncated_normal(mean, std);
int64_t size = tensor->numel();
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
auto engine = framework::GetCPURandomEngine(seed);
for (int64_t i = 0; i < size; ++i) {
data_cpu[i] = truncated_normal(dist(*engine));
}
auto& dev_ctx =
context.template device_context<platform::MLUDeviceContext>();
framework::TensorCopy(cpu_tensor, context.GetPlace(), dev_ctx, tensor);
dev_ctx.Wait();
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_MLU_KERNEL(truncated_gaussian_random,
ops::TruncatedGaussianRandomMLUKernel<float>);
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import sys
sys.path.append("..")
from op_test import OpTest
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
from paddle.fluid.framework import _test_eager_guard
paddle.enable_static()
class TestTrunctedGaussianRandomOp(unittest.TestCase):
def setUp(self):
self.op_type = "truncated_gaussian_random"
self.inputs = {}
self.attrs = {
"shape": [10000],
"mean": .0,
"std": 1.,
"seed": 10,
}
self.outputs = ["Out"]
def test_cpu(self):
self.gaussian_random_test(place=fluid.CPUPlace())
self.gaussian_random_test_eager(place=fluid.CPUPlace())
def test_mlu(self):
if core.is_compiled_with_mlu():
self.gaussian_random_test(place=fluid.MLUPlace(0))
# self.gaussian_random_test_eager(place=fluid.MLUPlace(0))
def gaussian_random_test(self, place):
program = fluid.Program()
block = program.global_block()
vout = block.create_var(name="Out")
op = block.append_op(type=self.op_type,
outputs={"Out": vout},
attrs=self.attrs)
op.desc.infer_var_type(block.desc)
op.desc.infer_shape(block.desc)
fetch_list = []
for var_name in self.outputs:
fetch_list.append(block.var(var_name))
exe = Executor(place)
outs = exe.run(program, fetch_list=fetch_list)
tensor = outs[0]
self.assertAlmostEqual(numpy.mean(tensor), .0, delta=0.1)
self.assertAlmostEqual(numpy.var(tensor), 0.773, delta=0.1)
# TruncatedNormal.__call__ has no return value, so here call _C_ops api
# directly
def gaussian_random_test_eager(self, place):
with fluid.dygraph.guard(place):
with _test_eager_guard():
out = paddle._C_ops.final_state_truncated_gaussian_random(
self.attrs["shape"], self.attrs["mean"], self.attrs["std"],
self.attrs["seed"], core.VarDesc.VarType.FP32, place)
self.assertAlmostEqual(numpy.mean(out.numpy()), .0, delta=0.1)
self.assertAlmostEqual(numpy.var(out.numpy()), 0.773, delta=0.1)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册