Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
5a3d1362
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5a3d1362
编写于
11月 29, 2017
作者:
C
chengduo
提交者:
GitHub
11月 29, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #5951 from chengduoZH/fix_conv_doc
fix conv and conv_trans op doc
上级
1b6dcc2f
c339e1b7
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
104 addition
and
82 deletion
+104
-82
paddle/operators/conv_op.cc
paddle/operators/conv_op.cc
+36
-25
paddle/operators/conv_transpose_op.cc
paddle/operators/conv_transpose_op.cc
+47
-35
paddle/operators/conv_transpose_op.h
paddle/operators/conv_transpose_op.h
+0
-1
paddle/operators/pool_op.cc
paddle/operators/pool_op.cc
+12
-12
paddle/operators/pool_with_index_op.cc
paddle/operators/pool_with_index_op.cc
+9
-9
未找到文件。
paddle/operators/conv_op.cc
浏览文件 @
5a3d1362
...
@@ -97,7 +97,7 @@ Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
...
@@ -97,7 +97,7 @@ Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
.
SetDefault
({
0
,
0
});
.
SetDefault
({
0
,
0
});
AddAttr
<
int
>
(
AddAttr
<
int
>
(
"groups"
,
"groups"
,
"(int default:1), the group
size of
convolution operator. "
"(int default:1), the group
s number of the
convolution operator. "
"According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
"According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
"when group=2, the first half of the filters is only connected to the "
"when group=2, the first half of the filters is only connected to the "
"first half of the input channels, while the second half of the filters "
"first half of the input channels, while the second half of the filters "
...
@@ -112,23 +112,29 @@ Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
...
@@ -112,23 +112,29 @@ Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
Convolution Operator.
Convolution Operator.
The convolution operation calculates the output based on the input, filter
The convolution operation calculates the output based on the input, filter
and strides, paddings,
groups, dilation
s parameters. The size of each dimension of the
and strides, paddings,
dilations, group
s parameters. The size of each dimension of the
parameters is checked in the infer-shape.
parameters is checked in the infer-shape.
Input(Input
, Filter) and o
utput(Output) are in NCHW format. Where N is batch
Input(Input
) and O
utput(Output) are in NCHW format. Where N is batch
size, C is the number of channels, H is the height of the feature, and W is
size, C is the number of channels, H is the height of the feature, and W is
the width of the feature. Parameters(ksize, strides, paddings, dilations) are two elements.
the width of the feature.
These two elements represent height and width, respectively.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
The input(X) size and output(Out) size may be different.
The input(X) size and output(Out) size may be different.
Example:
Example:
Input:
Input:
Input shape:
(N, C_in, H_in, W_in)
Input shape:
$(N, C_{in}, H_{in}, W_{in})$
Filter shape:
(C_out, C_in, H_f, W_f)
Filter shape:
$(C_{out}, C_{in}, H_f, W_f)$
Output:
Output:
Output shape: (N, C_out, H_out, W_out)
Output shape: $(N, C_{out}, H_{out}, W_{out})$
where
Where
H_out = (H_in + 2 * paddings[0] - (dilations[0]*(filter_size[0] - 1) + 1)) / strides[0] + 1;
$$
W_out = (W_in + 2 * paddings[1] - (dilations[1]*(filter_size[1] - 1) + 1)) / strides[1] + 1;
H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
)DOC"
);
)DOC"
);
}
}
...
@@ -165,7 +171,7 @@ Conv3DOpMaker::Conv3DOpMaker(framework::OpProto* proto,
...
@@ -165,7 +171,7 @@ Conv3DOpMaker::Conv3DOpMaker(framework::OpProto* proto,
.
SetDefault
({
0
,
0
,
0
});
.
SetDefault
({
0
,
0
,
0
});
AddAttr
<
int
>
(
AddAttr
<
int
>
(
"groups"
,
"groups"
,
"(int default:1), the group
size of
convolution operator. "
"(int default:1), the group
s number of the
convolution operator. "
"According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
"According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
"when group=2, the first half of the filters is only connected to the "
"when group=2, the first half of the filters is only connected to the "
"first half of the input channels, while the second half of the filters "
"first half of the input channels, while the second half of the filters "
...
@@ -174,32 +180,37 @@ Conv3DOpMaker::Conv3DOpMaker(framework::OpProto* proto,
...
@@ -174,32 +180,37 @@ Conv3DOpMaker::Conv3DOpMaker(framework::OpProto* proto,
AddAttr
<
std
::
vector
<
int
>>
(
"dilations"
,
AddAttr
<
std
::
vector
<
int
>>
(
"dilations"
,
"(vector<int> default:{1, 1, 1}), the "
"(vector<int> default:{1, 1, 1}), the "
"dilations(d_dilation, h_dilation, w_dilation) of "
"dilations(d_dilation, h_dilation, w_dilation) of "
"convolution operator. Currently, conv3d doesn't "
"convolution operator."
)
"support dilation."
)
.
SetDefault
({
1
,
1
,
1
});
.
SetDefault
({
1
,
1
,
1
});
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Convolution3D Operator.
Convolution3D Operator.
The convolution operation calculates the output based on the input, filter
The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
and strides, paddings,
dilations,
groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
parameters is checked in the infer-shape.
Input(Input
, Filter) and output(Output) are in NCDHW format. W
here N is batch
Input(Input
) and output(Output) are in NCDHW format, w
here N is batch
size, C is the number of channels,D is the depth of the feature, H is the height of
size, C is the number of channels,D is the depth of the feature, H is the height of
the feature, and W is the width of the feature. Parameters(ksize, strides, paddings)
the feature, and W is the width of the feature.
are three elements. These three elements represent depth, height and width, respectively.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
The input(X) size and output(Out) size may be different.
The input(X) size and output(Out) size may be different.
Example:
Example:
Input:
Input:
Input shape:
(N, C_in, D_in, H_in, W_in)
Input shape:
$(N, C_{in}, D_{in}, H_{in}, W_{in})$
Filter shape:
(C_out, C_in, D_f, H_f, W_f)
Filter shape:
$(C_{out}, C_{in}, D_f, H_f, W_f)$
Output:
Output:
Output shape: (N, C_out, D_out, H_out, W_out)
Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
where
Where
D_out = (D_in - filter_size[0] + 2 * paddings[0]) / strides[0] + 1;
$$
H_out = (H_in - filter_size[1] + 2 * paddings[1]) / strides[1] + 1;
D_{out}= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
W_out = (W_in - filter_size[2] + 2 * paddings[2]) / strides[2] + 1;
H_{out}= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
$$
)DOC"
);
)DOC"
);
}
}
...
...
paddle/operators/conv_transpose_op.cc
浏览文件 @
5a3d1362
...
@@ -39,7 +39,7 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -39,7 +39,7 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
"ConvTransposeOp input dimension and strides dimension should "
"ConvTransposeOp input dimension and strides dimension should "
"be consistent."
);
"be consistent."
);
PADDLE_ENFORCE_EQ
(
paddings
.
size
(),
strides
.
size
(),
PADDLE_ENFORCE_EQ
(
paddings
.
size
(),
strides
.
size
(),
"ConvTransposeOp paddings dimension and
Conv
strides "
"ConvTransposeOp paddings dimension and strides "
"dimension should be the same."
);
"dimension should be the same."
);
PADDLE_ENFORCE_EQ
(
in_dims
[
1
],
filter_dims
[
0
],
PADDLE_ENFORCE_EQ
(
in_dims
[
1
],
filter_dims
[
0
],
"In ConvTransposeOp, The input channel should be the same "
"In ConvTransposeOp, The input channel should be the same "
...
@@ -62,13 +62,14 @@ Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(
...
@@ -62,13 +62,14 @@ Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(
"The format of input tensor is NCHW. Where N is batch size, C is the "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of input channels, H is the height of the feature, and "
"number of input channels, H is the height of the feature, and "
"W is the width of the feature."
);
"W is the width of the feature."
);
AddInput
(
"Filter"
,
AddInput
(
"(Tensor) The filter tensor of convolution transpose operator. "
"Filter"
,
"The format of the filter tensor is CMHW, where C is the number of "
"(Tensor) The filter tensor of convolution transpose operator. "
"output image channels, M is the number of input image channels, "
"The format of the filter tensor is MCHW, where M is the number of "
"H is the height of the filter, and W is the width of the filter. "
"input feature channels, C is the number of "
"We enforce groups number == 1 and padding == 0 in "
"output feature channels,"
"the convolution transpose scenario."
);
"H is the height of the filter, and W is the width of the filter. "
"We enforce groups number == 1 in the convolution transpose scenario."
);
AddOutput
(
"Output"
,
AddOutput
(
"Output"
,
"(Tensor) The output tensor of convolution transpose operator. "
"(Tensor) The output tensor of convolution transpose operator. "
"The format of output tensor is also NCHW."
);
"The format of output tensor is also NCHW."
);
...
@@ -88,21 +89,26 @@ Convolution2D Transpose Operator.
...
@@ -88,21 +89,26 @@ Convolution2D Transpose Operator.
The convolution transpose operation calculates the output based on the input, filter
The convolution transpose operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
parameters is checked in the infer-shape.
Input(Input) and output(Output) are in NCHW format. Where N is batchsize, C is the
Input(Input, Filter) and output(Output) are in NCHW format. Where N is batch
number of channels, H is the height of the feature, and W is the width of the feature.
size, C is the number of channels, H is the height of the feature, and
Filter(Input) is in MCHW format. Where M is the number of input feature channels,
W is the width of the feature. Parameters(ksize, strides, paddings) are two elements.
C is the number of output feature channels, H is the height of the filter,
These two elements represent height and width, respectively.
and W is the width of the filter.
Parameters(strides, paddings) are two elements. These two elements represent height
and width, respectively.
The input(X) size and output(Out) size may be different.
The input(X) size and output(Out) size may be different.
Example:
Example:
Input:
Input:
Input shape:
(N, C_in, H_in, W_in)
Input shape:
$(N, C_{in}, H_{in}, W_{in})$
Filter shape:
(C_in, C_out, H_f, W_f)
Filter shape:
$(C_{in}, C_{out}, H_f, W_f)$
Output:
Output:
Output shape: (N, C_out, H_out, W_out)
Output shape: $(N, C_{out}, H_{out}, W_{out})$
where
Where
H_out = (H_in - 1) * strides[0] - 2 * paddings[0] + H_f;
$$
W_out = (W_in - 1) * strides[1] - 2 * paddings[1] + W_f;
H_{out} = (H_{in} - 1) * strides[0] - 2 * paddings[0] + H_f \\
W_{out} = (W_{in} - 1) * strides[1] - 2 * paddings[1] + W_f
$$
)DOC"
);
)DOC"
);
}
}
...
@@ -117,8 +123,9 @@ Conv3DTransposeOpMaker::Conv3DTransposeOpMaker(
...
@@ -117,8 +123,9 @@ Conv3DTransposeOpMaker::Conv3DTransposeOpMaker(
"W is the width of the feature."
);
"W is the width of the feature."
);
AddInput
(
"Filter"
,
AddInput
(
"Filter"
,
"(Tensor) The filter tensor of convolution transpose operator."
"(Tensor) The filter tensor of convolution transpose operator."
"The format of the filter tensor is CMDHW, where C is the number of "
"The format of the filter tensor is MCDHW, where M is the number of "
"output image channels, M is the number of input image channels, D "
"input feature channels, C is the number of "
"output feature channels, D "
"is the depth of the filter, H is the height of the filter, and "
"is the depth of the filter, H is the height of the filter, and "
"W is the width of the filter."
"W is the width of the filter."
"We enforce groups number == 1 and padding == 0 in "
"We enforce groups number == 1 and padding == 0 in "
...
@@ -144,23 +151,28 @@ Convolution3D Transpose Operator.
...
@@ -144,23 +151,28 @@ Convolution3D Transpose Operator.
The convolution transpose operation calculates the output based on the input, filter
The convolution transpose operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
parameters is checked in the infer-shape.
Input(Input) and output(Output) are in NCDHW format. Where N is batch size, C is the
Input(Input, Filter) and output(Output) are in NCDHW format. Where N is batch
number of channels, D is the depth of the feature, H is the height of the feature,
size, C is the number of channels, D is the depth of the feature,
and W is the width of the feature.
H is the height of the feature, and W is the width of the feature.
Filter(Input) is in MCDHW format. Where M is the number of input feature channels,
Parameters(ksize, strides, paddings) are three elements.
C is the number of output feature channels, D is the depth of the filter,H is the
These three elements represent depth, height and width, respectively.
height of the filter, and W is the width of the filter.
Parameters(strides, paddings) are three elements. These three elements represent
depth, height and width, respectively.
The input(X) size and output(Out) size may be different.
The input(X) size and output(Out) size may be different.
Example:
Example:
Input:
Input:
Input shape:
(N, C_in, D_in, H_in, W_in)
Input shape:
$(N, C_{in}, D_{in}, H_{in}, W_{in})$
Filter shape:
(C_in, C_out, D_f, H_f, W_f)
Filter shape:
$(C_{in}, C_{out}, D_f, H_f, W_f)$
Output:
Output:
Output shape: (N, C_out, D_out, H_out, W_out)
Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
where
Where
D_out = (D_in - 1) * strides[0] - 2 * paddings[0] + D_f;
$$
H_out = (H_in - 1) * strides[1] - 2 * paddings[1] + H_f;
D_{out} = (D_{in} - 1) * strides[0] - 2 * paddings[0] + D_f \\
W_out = (W_in - 1) * strides[2] - 2 * paddings[2] + W_f;
H_{out} = (H_{in} - 1) * strides[1] - 2 * paddings[1] + H_f \\
W_{out} = (W_{in} - 1) * strides[2] - 2 * paddings[2] + W_f
$$
)DOC"
);
)DOC"
);
}
}
...
...
paddle/operators/conv_transpose_op.h
浏览文件 @
5a3d1362
...
@@ -63,7 +63,6 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
...
@@ -63,7 +63,6 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
// TODO(Zhuoyuan): Paddings can be added in future.
// groups will alway be disabled in conv2dtranspose.
// groups will alway be disabled in conv2dtranspose.
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
...
...
paddle/operators/pool_op.cc
浏览文件 @
5a3d1362
...
@@ -105,7 +105,7 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
...
@@ -105,7 +105,7 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
// TypedAttrChecker don't support vector type.)
// TypedAttrChecker don't support vector type.)
AddAttr
<
std
::
vector
<
int
>>
(
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"paddings"
,
"(vector<int>, defa
lu
t {0,0}), paddings(height, width) of pooling "
"(vector<int>, defa
ul
t {0,0}), paddings(height, width) of pooling "
"operator."
"operator."
"If global_pooling = true, paddings and ksize will be ignored."
)
"If global_pooling = true, paddings and ksize will be ignored."
)
.
SetDefault
({
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
.
SetDefault
({
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
...
@@ -122,15 +122,15 @@ Parameters(ksize, strides, paddings) are two elements.
...
@@ -122,15 +122,15 @@ Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different.
The input(X) size and output(Out) size may be different.
Example:
Example:
Input:
Input:
X shape: $(N, C, H_{in}, W_{in})$
X shape: $(N, C, H_{in}, W_{in})$
Output:
Output:
Out shape: $(N, C, H_{out}, W_{out})$
Out shape: $(N, C, H_{out}, W_{out})$
where
Where
$$
$$
H_{out} =
(H_{in} - ksize[0] + 2 * paddings[0]) / strides[0]
+ 1 \\
H_{out} =
\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]}
+ 1 \\
W_{out} =
(W_{in} - ksize[1] + 2 * paddings[1]) / strides[1]
+ 1
W_{out} =
\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]}
+ 1
$$
$$
)DOC"
);
)DOC"
);
...
@@ -177,7 +177,7 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
...
@@ -177,7 +177,7 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
// TypedAttrChecker don't support vector type.)
// TypedAttrChecker don't support vector type.)
AddAttr
<
std
::
vector
<
int
>>
(
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"paddings"
,
"(vector<int>, defa
lu
t {0,0,0}), paddings(depth, height, "
"(vector<int>, defa
ul
t {0,0,0}), paddings(depth, height, "
"width) of pooling operator. "
"width) of pooling operator. "
"If global_pooling = true, ksize and paddings will be ignored."
)
"If global_pooling = true, ksize and paddings will be ignored."
)
.
SetDefault
({
0
,
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
.
SetDefault
({
0
,
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
...
@@ -199,12 +199,12 @@ Example:
...
@@ -199,12 +199,12 @@ Example:
X shape: $(N, C, D_{in}, H_{in}, W_{in})$
X shape: $(N, C, D_{in}, H_{in}, W_{in})$
Output:
Output:
Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
w
here
W
here
$$
$$
D_{out} =
(D_{in} - ksize[0] + 2 * paddings[0]) / strides[0]
+ 1 \\
D_{out} =
\frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]}
+ 1 \\
H_{out} =
(H_{in} - ksize[1] + 2 * paddings[1]) / strides[1]
+ 1 \\
H_{out} =
\frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]}
+ 1 \\
W_{out} =
(W_{in} - ksize[2] + 2 * paddings[2]) / strides[2]
+ 1
W_{out} =
\frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]}
+ 1
$$
$$
)DOC"
);
)DOC"
);
}
}
...
...
paddle/operators/pool_with_index_op.cc
浏览文件 @
5a3d1362
...
@@ -142,7 +142,7 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -142,7 +142,7 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
// TypedAttrChecker don't support vector type.)
// TypedAttrChecker don't support vector type.)
AddAttr
<
std
::
vector
<
int
>>
(
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"paddings"
,
"(vector<int>, defa
lu
t:{0, 0}), paddings(height, width) of pooling "
"(vector<int>, defa
ul
t:{0, 0}), paddings(height, width) of pooling "
"operator. "
"operator. "
"If global_pooling = true, paddings and will be ignored."
)
"If global_pooling = true, paddings and will be ignored."
)
.
SetDefault
({
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
.
SetDefault
({
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
...
@@ -166,10 +166,10 @@ Example:
...
@@ -166,10 +166,10 @@ Example:
Output:
Output:
Out shape: $(N, C, H_{out}, W_{out})$
Out shape: $(N, C, H_{out}, W_{out})$
Mask shape: $(N, C, H_{out}, W_{out})$
Mask shape: $(N, C, H_{out}, W_{out})$
w
here
W
here
$$
$$
H_{out} =
(H_{in} - ksize[0] + 2 * paddings[0]) / strides[0]
+ 1 \\
H_{out} =
\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]}
+ 1 \\
W_{out} =
(W_{in} - ksize[1] + 2 * paddings[1]) / strides[1]
+ 1
W_{out} =
\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]}
+ 1
$$
$$
)DOC"
);
)DOC"
);
...
@@ -220,7 +220,7 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -220,7 +220,7 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
// TypedAttrChecker don't support vector type.)
// TypedAttrChecker don't support vector type.)
AddAttr
<
std
::
vector
<
int
>>
(
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"paddings"
,
"(vector, defa
lu
t {0,0,0}), paddings(depth, "
"(vector, defa
ul
t {0,0,0}), paddings(depth, "
"height, width) of pooling operator. "
"height, width) of pooling operator. "
"If global_pooling = true, paddings and ksize will be ignored."
)
"If global_pooling = true, paddings and ksize will be ignored."
)
.
SetDefault
({
0
,
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
.
SetDefault
({
0
,
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
...
@@ -244,11 +244,11 @@ Example:
...
@@ -244,11 +244,11 @@ Example:
Output:
Output:
Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
Mask shape: $(N, C, D_{out}, H_{out}, W_{out})$
Mask shape: $(N, C, D_{out}, H_{out}, W_{out})$
w
here
W
here
$$
$$
D_{out} =
(D_{in} - ksize[0] + 2 * paddings[0]) / strides[0]
+ 1 \\
D_{out} =
\frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]}
+ 1 \\
H_{out} =
(H_{in} - ksize[1] + 2 * paddings[1]) / strides[1]
+ 1 \\
H_{out} =
\frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]}
+ 1 \\
W_{out} =
(W_{in} - ksize[2] + 2 * paddings[2]) / strides[2]
+ 1
W_{out} =
\frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]}
+ 1
$$
$$
)DOC"
);
)DOC"
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录