Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
572c466d
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
572c466d
编写于
1月 19, 2021
作者:
W
WangXi
提交者:
GitHub
1月 19, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Prepare for MultiProcess xpu] unified gen nccl id, refine imperative reducer (#30455)
上级
549855ac
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
599 addition
and
444 deletion
+599
-444
paddle/fluid/imperative/all_reduce.cc
paddle/fluid/imperative/all_reduce.cc
+16
-0
paddle/fluid/imperative/all_reduce.h
paddle/fluid/imperative/all_reduce.h
+0
-15
paddle/fluid/imperative/nccl_context.cc
paddle/fluid/imperative/nccl_context.cc
+79
-151
paddle/fluid/imperative/nccl_context.h
paddle/fluid/imperative/nccl_context.h
+14
-63
paddle/fluid/imperative/parallel_context.h
paddle/fluid/imperative/parallel_context.h
+75
-0
paddle/fluid/imperative/reducer.cc
paddle/fluid/imperative/reducer.cc
+143
-71
paddle/fluid/imperative/reducer.h
paddle/fluid/imperative/reducer.h
+16
-56
paddle/fluid/imperative/tests/nccl_context_test.cc
paddle/fluid/imperative/tests/nccl_context_test.cc
+2
-0
paddle/fluid/imperative/tests/test_group.cc
paddle/fluid/imperative/tests/test_group.cc
+103
-0
paddle/fluid/operators/collective/CMakeLists.txt
paddle/fluid/operators/collective/CMakeLists.txt
+2
-3
paddle/fluid/operators/collective/c_gen_nccl_id_op.cc
paddle/fluid/operators/collective/c_gen_nccl_id_op.cc
+30
-3
paddle/fluid/operators/collective/gen_nccl_id_op.cc
paddle/fluid/operators/collective/gen_nccl_id_op.cc
+42
-9
paddle/fluid/platform/CMakeLists.txt
paddle/fluid/platform/CMakeLists.txt
+1
-1
paddle/fluid/platform/gen_comm_id_helper.cc
paddle/fluid/platform/gen_comm_id_helper.cc
+48
-45
paddle/fluid/platform/gen_comm_id_helper.h
paddle/fluid/platform/gen_comm_id_helper.h
+14
-18
paddle/fluid/platform/nccl_helper.h
paddle/fluid/platform/nccl_helper.h
+1
-1
python/paddle/fluid/tests/unittests/test_gen_nccl_id_op.py
python/paddle/fluid/tests/unittests/test_gen_nccl_id_op.py
+13
-8
未找到文件。
paddle/fluid/imperative/all_reduce.cc
浏览文件 @
572c466d
...
...
@@ -16,8 +16,24 @@
#include "paddle/fluid/imperative/all_reduce.h"
#include <cuda.h>
#include <cuda_runtime.h>
#include <nccl.h>
#include <string>
#include <utility>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/imperative/nccl_context.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/nccl_helper.h"
#include "paddle/fluid/string/string_helper.h"
namespace
paddle
{
namespace
imperative
{
static
const
platform
::
Place
&
GetVarPlace
(
const
framework
::
Variable
&
src
)
{
if
(
src
.
IsType
<
framework
::
LoDTensor
>
())
{
return
src
.
Get
<
framework
::
LoDTensor
>
().
place
();
...
...
paddle/fluid/imperative/all_reduce.h
浏览文件 @
572c466d
...
...
@@ -16,21 +16,6 @@
#ifdef PADDLE_WITH_NCCL
#include <cuda.h>
#include <cuda_runtime.h>
#include <nccl.h>
#include <string>
#include <utility>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/imperative/nccl_context.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/nccl_helper.h"
#include "paddle/fluid/string/string_helper.h"
namespace
paddle
{
namespace
framework
{
class
Variable
;
...
...
paddle/fluid/imperative/nccl_context.cc
浏览文件 @
572c466d
...
...
@@ -14,175 +14,54 @@
#include "paddle/fluid/imperative/nccl_context.h"
namespace
paddle
{
namespace
imperative
{
#if defined(PADDLE_WITH_NCCL)
void
NCCLParallelContext
::
RecvNCCLID
(
const
std
::
string
&
ep
,
std
::
vector
<
ncclUniqueId
>
&
nccl_ids
)
{
// NOLINT
int
nrings
=
nccl_ids
.
size
();
auto
addr
=
paddle
::
string
::
Split
(
ep
,
':'
);
PADDLE_ENFORCE_EQ
(
addr
.
size
(),
2UL
,
platform
::
errors
::
InvalidArgument
(
"The endpoint should contain host and port, but got %s."
,
ep
));
std
::
string
host
=
addr
[
0
];
int
port
=
std
::
stoi
(
addr
[
1
]);
int
server_fd
,
new_socket
;
struct
sockaddr_in
address
;
int
addrlen
=
sizeof
(
address
);
char
buffer
[
1024
]
=
{
0
};
int
opt
=
0
;
// creating socket fd
if
((
server_fd
=
socket
(
AF_INET
,
SOCK_STREAM
,
0
))
==
0
)
{
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Create server file descriptor failed."
));
}
#include <string>
#include <utility>
#include <vector>
if
(
setsockopt
(
server_fd
,
SOL_SOCKET
,
SO_REUSEADDR
,
&
opt
,
sizeof
(
opt
)))
{
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Set socket options failed."
));
}
address
.
sin_family
=
AF_INET
;
address
.
sin_addr
.
s_addr
=
INADDR_ANY
;
address
.
sin_port
=
htons
(
port
);
int
try_times
=
0
;
int
retry_time
=
0
;
while
(
true
)
{
if
(
bind
(
server_fd
,
(
struct
sockaddr
*
)
&
address
,
sizeof
(
address
))
<
0
)
{
retry_time
=
3
*
(
try_times
+
1
);
LOG
(
WARNING
)
<<
"Socket bind worker "
<<
ep
<<
(
try_times
<
9
?
" failed, try again after "
+
std
::
to_string
(
retry_time
)
+
" seconds."
:
" failed, try again after "
+
std
::
to_string
(
retry_time
)
+
" seconds. Bind on endpoint "
+
ep
+
" failed. Please confirm whether the "
"communication port or GPU card is occupied."
);
std
::
this_thread
::
sleep_for
(
std
::
chrono
::
seconds
(
retry_time
));
++
try_times
;
continue
;
}
break
;
}
VLOG
(
3
)
<<
"listening on: "
<<
ep
;
if
(
listen
(
server_fd
,
3
)
<
0
)
{
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Listen on server file descriptor failed."
));
}
if
((
new_socket
=
accept
(
server_fd
,
reinterpret_cast
<
struct
sockaddr
*>
(
&
address
),
reinterpret_cast
<
socklen_t
*>
(
&
addrlen
)))
<
0
)
{
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Accept the new socket file descriptor failed."
));
}
if
(
read
(
new_socket
,
buffer
,
1024
)
<
0
)
{
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Read from socket failed."
));
}
VLOG
(
3
)
<<
"recevived the ncclUniqueId"
;
memcpy
(
&
nccl_ids
[
0
],
buffer
,
nrings
*
NCCL_UNIQUE_ID_BYTES
);
VLOG
(
3
)
<<
"closing the socket server: "
<<
ep
;
close
(
server_fd
);
}
void
NCCLParallelContext
::
SendNCCLID
(
const
std
::
string
&
ep
,
const
std
::
vector
<
ncclUniqueId
>
&
nccl_ids
)
{
int
nrings
=
nccl_ids
.
size
();
auto
addr
=
paddle
::
string
::
Split
(
ep
,
':'
);
PADDLE_ENFORCE_EQ
(
addr
.
size
(),
2UL
,
platform
::
errors
::
InvalidArgument
(
"The endpoint should contain host and port, but got %s."
,
ep
));
std
::
string
host
=
addr
[
0
];
int
port
=
std
::
stoi
(
addr
[
1
]);
int
sock
=
0
;
struct
sockaddr_in
serv_addr
;
char
buffer
[
1024
]
=
{
0
};
memcpy
(
buffer
,
&
nccl_ids
[
0
],
nrings
*
NCCL_UNIQUE_ID_BYTES
);
if
((
sock
=
socket
(
AF_INET
,
SOCK_STREAM
,
0
))
<
0
)
{
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Create socket failed."
));
}
memset
(
&
serv_addr
,
'0'
,
sizeof
(
serv_addr
));
serv_addr
.
sin_family
=
AF_INET
;
serv_addr
.
sin_port
=
htons
(
port
);
#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/imperative/all_reduce.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/dynload/nccl.h"
#include "paddle/fluid/platform/gen_comm_id_helper.h"
#endif
char
*
ip
=
NULL
;
struct
hostent
*
hp
;
if
((
hp
=
gethostbyname
(
host
.
c_str
()))
==
NULL
)
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Fail to get host by name %s."
,
host
));
}
int
i
=
0
;
while
(
hp
->
h_addr_list
[
i
]
!=
NULL
)
{
ip
=
inet_ntoa
(
*
(
struct
in_addr
*
)
hp
->
h_addr_list
[
i
]);
VLOG
(
3
)
<<
"gethostbyname host:"
<<
host
<<
" ->ip: "
<<
ip
;
break
;
}
if
(
inet_pton
(
AF_INET
,
ip
,
&
serv_addr
.
sin_addr
)
<=
0
)
{
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Open address %s failed."
,
ep
));
}
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/split.h"
#include "paddle/fluid/string/string_helper.h"
int
try_times
=
0
;
int
retry_time
=
0
;
while
(
true
)
{
if
(
connect
(
sock
,
(
struct
sockaddr
*
)
&
serv_addr
,
sizeof
(
serv_addr
))
<
0
)
{
retry_time
=
3
*
(
try_times
+
1
);
LOG
(
WARNING
)
<<
"Socket connect worker "
<<
ep
<<
(
try_times
<
9
?
" failed, try again after "
+
std
::
to_string
(
retry_time
)
+
" seconds."
:
" failed, try again after "
+
std
::
to_string
(
retry_time
)
+
" seconds. Maybe that some process is occupied the "
"GPUs of this node now, and you should kill those "
"process manually."
);
std
::
this_thread
::
sleep_for
(
std
::
chrono
::
seconds
(
retry_time
));
++
try_times
;
continue
;
}
VLOG
(
3
)
<<
"sending the ncclUniqueId to "
<<
ep
;
send
(
sock
,
buffer
,
NCCL_UNIQUE_ID_BYTES
*
nrings
,
0
);
break
;
}
close
(
sock
);
}
namespace
paddle
{
namespace
imperative
{
#if defined(PADDLE_WITH_NCCL)
void
NCCLParallelContext
::
BcastNCCLId
(
std
::
vector
<
ncclUniqueId
>
&
nccl_ids
,
// NOLINT
int
root
)
{
if
(
strategy_
.
local_rank_
==
root
)
{
for
(
auto
ep
:
strategy_
.
trainer_endpoints_
)
{
if
(
ep
!=
strategy_
.
current_endpoint_
)
SendNCCLID
(
ep
,
nccl_ids
);
std
::
vector
<
std
::
string
>
other_trainers
;
for
(
auto
&
ep
:
strategy_
.
trainer_endpoints_
)
{
if
(
ep
!=
strategy_
.
current_endpoint_
)
{
other_trainers
.
push_back
(
ep
);
}
}
platform
::
SendBroadCastCommID
(
other_trainers
,
&
nccl_ids
);
}
else
{
RecvNCCLID
(
strategy_
.
current_endpoint_
,
nccl_ids
);
platform
::
RecvBroadCastCommID
(
strategy_
.
current_endpoint_
,
&
nccl_ids
);
}
}
void
NCCLParallelContext
::
Init
()
{
std
::
vector
<
ncclUniqueId
>
nccl_ids
;
nccl_ids
.
resize
(
strategy_
.
nrings_
);
if
(
strategy_
.
local_rank_
==
0
)
{
// generate the unique ncclid on the root worker
for
(
size_t
i
=
0
;
i
<
nccl_ids
.
size
();
++
i
)
{
platform
::
dynload
::
ncclGetUniqueId
(
&
nccl_ids
[
i
]);
}
BcastNCCLId
(
nccl_ids
,
0
);
}
else
{
BcastNCCLId
(
nccl_ids
,
0
);
}
BcastNCCLId
(
nccl_ids
,
0
);
int
gpu_id
=
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place_
).
device
;
for
(
int
ring_id
=
0
;
ring_id
<
strategy_
.
nrings_
;
ring_id
++
)
{
...
...
@@ -193,6 +72,12 @@ void NCCLParallelContext::Init() {
platform
::
NCCLCommContext
::
Instance
().
CreateNCCLComm
(
&
nccl_ids
[
ring_id
],
strategy_
.
nranks_
,
strategy_
.
local_rank_
,
gpu_id
,
ring_id
);
compute_events_
.
emplace_back
(
platform
::
CudaEventResourcePool
::
Instance
().
New
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place_
).
device
));
comm_events_
.
emplace_back
(
platform
::
CudaEventResourcePool
::
Instance
().
New
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place_
).
device
));
}
}
...
...
@@ -206,11 +91,54 @@ void NCCLParallelContext::AllReduceByStream(const framework::Variable &src,
AllReduce
(
src
,
dst
,
strategy_
,
ring_id
,
use_calc_stream
);
}
paddle
::
platform
::
CUDA
DeviceContext
*
NCCLParallelContext
::
GetDeviceContext
(
paddle
::
platform
::
DeviceContext
*
NCCLParallelContext
::
GetDeviceContext
(
int
ring_id
)
{
return
platform
::
NCCLCommContext
::
Instance
()
.
Get
(
ring_id
,
place_
)
->
dev_context
();
return
static_cast
<
platform
::
DeviceContext
*>
(
platform
::
NCCLCommContext
::
Instance
()
.
Get
(
ring_id
,
place_
)
->
dev_context
());
}
void
NCCLParallelContext
::
WaitCompute
(
int
ring_id
)
{
PADDLE_ENFORCE_GE
(
ring_id
,
0
,
platform
::
errors
::
OutOfRange
(
"ring id must >= 0, but got %d"
,
ring_id
));
PADDLE_ENFORCE_LT
(
ring_id
,
compute_events_
.
size
(),
platform
::
errors
::
OutOfRange
(
"ring id must < compute events size,"
"but got ring id = %d, compute events size = %d"
,
ring_id
,
compute_events_
.
size
()));
auto
compute_stream
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
))
->
stream
();
auto
comm_stream
=
platform
::
NCCLCommContext
::
Instance
().
Get
(
ring_id
,
place_
)
->
stream
();
auto
event
=
compute_events_
[
ring_id
].
get
();
// compute_stream-->event-->comm_stream
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaEventRecord
(
event
,
compute_stream
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaStreamWaitEvent
(
comm_stream
,
event
,
0
));
}
void
NCCLParallelContext
::
WaitComm
(
int
ring_id
)
{
PADDLE_ENFORCE_GE
(
ring_id
,
0
,
platform
::
errors
::
OutOfRange
(
"ring id must >= 0, but got %d"
,
ring_id
));
PADDLE_ENFORCE_LT
(
ring_id
,
comm_events_
.
size
(),
platform
::
errors
::
OutOfRange
(
"ring id must < comm events size,"
"but got ring id = %d, comm events size = %d"
,
ring_id
,
comm_events_
.
size
()));
auto
compute_stream
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
))
->
stream
();
auto
comm_stream
=
platform
::
NCCLCommContext
::
Instance
().
Get
(
ring_id
,
place_
)
->
stream
();
auto
event
=
comm_events_
[
ring_id
].
get
();
// comm_stream-->event-->compute_stream
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaEventRecord
(
event
,
comm_stream
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaStreamWaitEvent
(
compute_stream
,
event
,
0
));
}
#endif
...
...
paddle/fluid/imperative/nccl_context.h
浏览文件 @
572c466d
...
...
@@ -13,73 +13,20 @@
// limitations under the License.
#pragma once
// network header files
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#include <arpa/inet.h>
#include <netdb.h>
#include <netinet/in.h>
#include <stdlib.h>
#include <sys/socket.h>
#endif
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/platform/device_context.h"
#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/
imperative/all_reduce
.h"
#include "paddle/fluid/
platform/cuda_resource_pool
.h"
#include "paddle/fluid/platform/dynload/nccl.h"
#include "paddle/fluid/platform/nccl_helper.h"
#endif
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/split.h"
#include "paddle/fluid/string/string_helper.h"
#include "paddle/fluid/imperative/parallel_context.h"
namespace
paddle
{
namespace
imperative
{
struct
ParallelStrategy
{
int
nranks_
{
1
};
int
local_rank_
{
0
};
std
::
vector
<
std
::
string
>
trainer_endpoints_
{};
std
::
string
current_endpoint_
{
""
};
// TODO(shenliang03): support multi stream communication
int
nrings_
{
1
};
};
class
ParallelContext
{
public:
explicit
ParallelContext
(
const
ParallelStrategy
&
strategy
,
const
platform
::
Place
&
place
)
:
strategy_
(
strategy
),
place_
(
place
)
{}
virtual
~
ParallelContext
()
{}
virtual
void
Init
()
=
0
;
virtual
void
AllReduceByStream
(
const
framework
::
Variable
&
src
,
framework
::
Variable
*
dst
,
int
ring_id
=
0
,
bool
use_calc_stream
=
false
)
=
0
;
#if defined(PADDLE_WITH_NCCL)
virtual
paddle
::
platform
::
CUDADeviceContext
*
GetDeviceContext
(
int
ring_id
)
=
0
;
#endif
inline
int
GetNRings
()
{
return
strategy_
.
nrings_
;
}
protected:
ParallelStrategy
strategy_
;
platform
::
Place
place_
;
};
#if defined(PADDLE_WITH_NCCL)
class
NCCLParallelContext
:
public
ParallelContext
{
public:
...
...
@@ -87,7 +34,7 @@ class NCCLParallelContext : public ParallelContext {
const
platform
::
Place
&
place
)
:
ParallelContext
(
strategy
,
place
)
{}
~
NCCLParallelContext
()
{}
~
NCCLParallelContext
()
override
=
default
;
void
BcastNCCLId
(
std
::
vector
<
ncclUniqueId
>&
nccl_ids
,
int
root
);
// NOLINT
...
...
@@ -97,14 +44,18 @@ class NCCLParallelContext : public ParallelContext {
framework
::
Variable
*
dst
,
int
ring_id
,
bool
use_calc_stream
)
override
;
paddle
::
platform
::
CUDADeviceContext
*
GetDeviceContext
(
int
ring_id
)
override
;
paddle
::
platform
::
DeviceContext
*
GetDeviceContext
(
int
ring_id
)
override
;
void
WaitCompute
(
int
ring_id
)
override
;
void
WaitComm
(
int
ring_id
)
override
;
pr
otected
:
void
RecvNCCLID
(
const
std
::
string
&
endpoint
,
std
::
vector
<
ncclUniqueId
>&
nccl_ids
);
// NOLINT
pr
ivate
:
// used for comm wait compute, compute_stream-->event-->comm_stream[ring_id]
std
::
vector
<
std
::
shared_ptr
<
platform
::
CudaEventObject
>>
compute_events_
;
void
SendNCCLID
(
const
std
::
string
&
endpoint
,
const
std
::
vector
<
ncclUniqueId
>&
nccl_ids
)
;
// used for compute wait comm, comm_stream[ring_id]-->event-->compute_stream
std
::
vector
<
std
::
shared_ptr
<
platform
::
CudaEventObject
>>
comm_events_
;
};
#endif
...
...
paddle/fluid/imperative/parallel_context.h
0 → 100644
浏览文件 @
572c466d
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
platform
{
class
DeviceContext
;
}
// namespace platform
namespace
framework
{
class
Variable
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
imperative
{
struct
ParallelStrategy
{
int
nranks_
{
1
};
int
local_rank_
{
0
};
std
::
vector
<
std
::
string
>
trainer_endpoints_
{};
std
::
string
current_endpoint_
{
""
};
int
nrings_
{
1
};
};
class
ParallelContext
{
public:
explicit
ParallelContext
(
const
ParallelStrategy
&
strategy
,
const
platform
::
Place
&
place
)
:
strategy_
(
strategy
),
place_
(
place
)
{}
virtual
~
ParallelContext
()
=
default
;
virtual
void
Init
()
=
0
;
virtual
void
AllReduceByStream
(
const
framework
::
Variable
&
src
,
framework
::
Variable
*
dst
,
int
ring_id
,
bool
use_calc_stream
)
=
0
;
virtual
paddle
::
platform
::
DeviceContext
*
GetDeviceContext
(
int
ring_id
)
=
0
;
// comm_stream[ring_id] wait compute_stream.
// if CPU, should do nothing.
virtual
void
WaitCompute
(
int
ring_id
)
=
0
;
// compute_stream wait comm_stream[ring_id]
// if CPU, should do nothing.
virtual
void
WaitComm
(
int
ring_id
)
=
0
;
inline
int
GetNRings
()
const
{
return
strategy_
.
nrings_
;
}
protected:
ParallelStrategy
strategy_
;
platform
::
Place
place_
;
};
}
// namespace imperative
}
// namespace paddle
paddle/fluid/imperative/reducer.cc
浏览文件 @
572c466d
...
...
@@ -14,60 +14,170 @@
#include "paddle/fluid/imperative/reducer.h"
#include <algorithm>
#include <iostream>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/op_base.h"
#include "paddle/fluid/imperative/variable_wrapper.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/string/string_helper.h"
#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
#endif
#include "paddle/fluid/imperative/parallel_context.h"
namespace
paddle
{
namespace
imperative
{
#if defined(PADDLE_WITH_NCCL)
std
::
shared_ptr
<
Reducer
>
Reducer
::
s_instance_
=
NULL
;
// context is used to select the stream for concat
void
Group
::
ConcatTensors
(
const
platform
::
CUDADeviceContext
&
context
)
{
VLOG
(
3
)
<<
"Before concat, set output tensor size is "
<<
all_length_
;
auto
tensor
=
dense_contents_
.
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
framework
::
make_ddim
({
all_length_
}))
.
mutable_data
(
context
.
GetPlace
(),
dtype_
);
template
<
typename
DeviceContext
,
typename
T
>
static
void
ConcatTensorsForAllReduce
(
const
DeviceContext
&
context
,
const
std
::
vector
<
framework
::
Tensor
>
&
dense_tensors_
,
framework
::
Variable
*
p_dense_contents
)
{
operators
::
math
::
ConcatFunctor
<
DeviceContext
,
T
>
concat_functor_
;
concat_functor_
(
context
,
dense_tensors_
,
0
,
p_dense_contents
->
GetMutable
<
framework
::
LoDTensor
>
());
}
template
<
typename
DeviceContext
,
typename
T
>
static
void
SplitTensorsForAllReduce
(
const
DeviceContext
&
context
,
framework
::
Variable
*
p_dense_contents
,
std
::
vector
<
framework
::
Tensor
>
*
p_dense_tensors
)
{
auto
*
in
=
p_dense_contents
->
GetMutable
<
framework
::
LoDTensor
>
();
std
::
vector
<
framework
::
Tensor
*>
outs
;
std
::
vector
<
const
framework
::
Tensor
*>
shape_refer
;
switch
(
dtype_
)
{
outs
.
reserve
(
p_dense_tensors
->
size
());
shape_refer
.
reserve
(
p_dense_tensors
->
size
());
for
(
auto
&
tensor
:
*
p_dense_tensors
)
{
outs
.
emplace_back
(
&
tensor
);
shape_refer
.
emplace_back
(
&
tensor
);
}
// Sometimes direct copies will be faster
if
(
p_dense_tensors
->
size
()
<
10
)
{
operators
::
StridedMemcpyWithAxis0
<
T
>
(
context
,
*
in
,
shape_refer
,
&
outs
);
}
else
{
operators
::
math
::
SplitFunctor
<
DeviceContext
,
T
>
split_functor_
;
split_functor_
(
context
,
*
in
,
shape_refer
,
0
,
&
outs
);
}
}
// context is used to select the stream for concat
template
<
typename
DeviceContext
>
static
void
ConcatTensorsWithType
(
const
DeviceContext
&
context
,
const
std
::
vector
<
framework
::
Tensor
>
&
dense_tensors_
,
framework
::
Variable
*
p_dense_contents
,
framework
::
proto
::
VarType
::
Type
type
)
{
switch
(
type
)
{
case
framework
::
proto
::
VarType
::
FP16
:
ConcatTensorsForAllReduce
<
platform
::
float16
>
(
context
,
dense_tensors_
,
&
dense_contents_
);
ConcatTensorsForAllReduce
<
DeviceContext
,
platform
::
float16
>
(
context
,
dense_tensors_
,
p_dense_contents
);
break
;
case
framework
::
proto
::
VarType
::
FP32
:
ConcatTensorsForAllReduce
<
float
>
(
context
,
dense_tensors_
,
&
dense_contents_
);
ConcatTensorsForAllReduce
<
DeviceContext
,
float
>
(
context
,
dense_tensors_
,
p_dense_contents
);
break
;
case
framework
::
proto
::
VarType
::
FP64
:
ConcatTensorsForAllReduce
<
double
>
(
context
,
dense_tensors_
,
&
dense_contents_
);
ConcatTensorsForAllReduce
<
DeviceContext
,
double
>
(
context
,
dense_tensors_
,
p_dense_contents
);
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Data type (%s) is not supported when it concats tensors for "
"allreduce."
,
framework
::
DataTypeToString
(
dtype_
)));
framework
::
DataTypeToString
(
type
)));
}
}
// context is used to select the stream for split
void
Group
::
SplitTensors
(
const
platform
::
CUDADeviceContext
&
context
)
{
switch
(
dtype_
)
{
template
<
typename
DeviceContext
>
static
void
SplitTensorsWithType
(
const
DeviceContext
&
context
,
framework
::
Variable
*
p_dense_contents
,
std
::
vector
<
framework
::
Tensor
>
*
p_dense_tensors
,
framework
::
proto
::
VarType
::
Type
type
)
{
switch
(
type
)
{
case
framework
::
proto
::
VarType
::
FP16
:
SplitTensorsForAllReduce
<
platform
::
float16
>
(
context
,
&
dense_contents_
,
&
dense_tensors_
);
SplitTensorsForAllReduce
<
DeviceContext
,
platform
::
float16
>
(
context
,
p_dense_contents
,
p_dense_tensors
);
break
;
case
framework
::
proto
::
VarType
::
FP32
:
SplitTensorsForAllReduce
<
float
>
(
context
,
&
dense_contents_
,
&
dense_tensors_
);
SplitTensorsForAllReduce
<
DeviceContext
,
float
>
(
context
,
p_dense_contents
,
p_dense_tensors
);
break
;
case
framework
::
proto
::
VarType
::
FP64
:
SplitTensorsForAllReduce
<
double
>
(
context
,
&
dense_contents_
,
&
dense_tensors_
);
SplitTensorsForAllReduce
<
DeviceContext
,
double
>
(
context
,
p_dense_contents
,
p_dense_tensors
);
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Data type (%s) is not supported when it splits tensors for "
"allreduce."
,
framework
::
DataTypeToString
(
dtype_
)));
framework
::
DataTypeToString
(
type
)));
}
}
void
Group
::
ConcatTensors
(
const
platform
::
DeviceContext
&
context
)
{
VLOG
(
3
)
<<
"Before concat, set output tensor size is "
<<
all_length_
;
auto
tensor
=
dense_contents_
.
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
framework
::
make_ddim
({
all_length_
}))
.
mutable_data
(
context
.
GetPlace
(),
dtype_
);
auto
place
=
context
.
GetPlace
();
if
(
platform
::
is_gpu_place
(
place
))
{
#ifdef PADDLE_WITH_NCCL
ConcatTensorsWithType
(
static_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
),
dense_tensors_
,
&
dense_contents_
,
dtype_
);
#else
PADDLE_THROW
(
platform
::
errors
::
PermissionDenied
(
"Paddle can't concat grad tensors since it's not compiled with NCCL,"
"Please recompile or reinstall Paddle with NCCL support."
));
#endif
}
else
if
(
platform
::
is_cpu_place
(
place
))
{
ConcatTensorsWithType
(
static_cast
<
const
platform
::
CPUDeviceContext
&>
(
context
),
dense_tensors_
,
&
dense_contents_
,
dtype_
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Concat grad tensor not supported on place (%s)"
,
place
));
}
}
void
Group
::
SplitTensors
(
const
platform
::
DeviceContext
&
context
)
{
auto
place
=
context
.
GetPlace
();
if
(
platform
::
is_gpu_place
(
place
))
{
#ifdef PADDLE_WITH_NCCL
SplitTensorsWithType
(
static_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
),
&
dense_contents_
,
&
dense_tensors_
,
dtype_
);
#else
PADDLE_THROW
(
platform
::
errors
::
PermissionDenied
(
"Paddle can't split grad tensor since it's not compiled with NCCL,"
"Please recompile or reinstall Paddle with NCCL support."
));
#endif
}
else
if
(
platform
::
is_cpu_place
(
place
))
{
SplitTensorsWithType
(
static_cast
<
const
platform
::
CPUDeviceContext
&>
(
context
),
&
dense_contents_
,
&
dense_tensors_
,
dtype_
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Split grad tensor not supported on place (%s)"
,
place
));
}
}
...
...
@@ -115,44 +225,13 @@ Reducer::Reducer(const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
})));
var_index_map_
[
var
->
GradVarBase
()
->
SharedVar
().
get
()]
=
global_var_index
;
}
// create streams
compute_stream_
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
))
->
stream
();
for
(
int
i
=
0
;
i
<
nrings_
;
++
i
)
{
comm_streams_
.
emplace_back
(
platform
::
NCCLCommContext
::
Instance
().
Get
(
i
,
place_
)
->
stream
());
comm_events_
.
emplace_back
(
platform
::
CudaEventResourcePool
::
Instance
().
New
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place_
).
device
));
}
CreateGroupEvents
(
group_indices
.
size
());
std
::
call_once
(
once_flag_
,
[]()
{
std
::
atexit
([]()
{
Reducer
::
GetInstance
()
->
ReleaseReducer
();
});
});
}
void
Reducer
::
ReleaseReducer
()
{
for
(
auto
&
event
:
group_events_
)
{
event
.
reset
();
}
for
(
auto
&
event
:
comm_events_
)
{
event
.
reset
();
}
}
void
Reducer
::
CreateGroupEvents
(
int
group_num
)
{
// release old events
for
(
auto
&
event
:
group_events_
)
{
event
.
reset
();
}
group_events_
.
clear
();
group_events_
.
resize
(
group_num
);
for
(
auto
&
event
:
group_events_
)
{
event
=
platform
::
CudaEventResourcePool
::
Instance
().
New
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place_
).
device
);
}
}
void
Reducer
::
ReleaseReducer
()
{
parallel_ctx_
.
reset
();
}
void
Reducer
::
InitializeDenseGroups
(
const
std
::
vector
<
size_t
>
&
variable_indices_
,
Group
*
p_group
)
{
...
...
@@ -455,18 +534,18 @@ void Reducer::MarkGroupReady(size_t group_index) {
return
;
}
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaEventRecord
(
group_events_
[
group_index
].
get
(),
compute_stream_
));
for
(
int
i
=
0
;
i
<
nrings_
;
++
i
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaStreamWaitEvent
(
comm_streams_
[
i
],
group_events_
[
group_index
].
get
(),
0
));
}
for
(;
next_group_
<
groups_
.
size
()
&&
groups_
[
next_group_
].
pending_
==
0
;
++
next_group_
)
{
auto
&
group
=
groups_
[
next_group_
];
int
run_order
=
next_group_
%
nrings_
;
// For CUDA or XPU, compute_stream --> comm_stream.
// For CPU, do nothing.
// NOTE. Because concat uses the comm_stream,
// so we expose WaitCompute() interface and call
// it here.
parallel_ctx_
->
WaitCompute
(
run_order
);
if
(
group
.
is_sparse_
)
{
if
(
group
.
sparse_contents_
!=
nullptr
)
{
VLOG
(
3
)
<<
"sparse group ["
<<
next_group_
...
...
@@ -526,20 +605,13 @@ void Reducer::FinalizeBackward() {
all_group_ready_
=
false
;
// Must prevent compute_stream_ starting until all comm streams have finished
for
(
int
i
=
0
;
i
<
nrings_
;
++
i
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaEventRecord
(
comm_events_
[
i
].
get
(),
comm_streams_
[
i
]));
}
for
(
int
i
=
0
;
i
<
nrings_
;
++
i
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaStreamWaitEvent
(
compute_stream_
,
comm_events_
[
i
].
get
(),
0
));
parallel_ctx_
->
WaitComm
(
i
);
}
if
(
NeedRebuildGroup
())
{
VLOG
(
3
)
<<
"Start rebuilding the groups"
;
auto
rebuild_group_indices
=
RebuildGruops
();
auto
rebuild_group_number
=
rebuild_group_indices
.
size
();
group_indices_
=
std
::
move
(
rebuild_group_indices
);
CreateGroupEvents
(
rebuild_group_number
);
InitializeGroups
(
group_indices_
);
}
...
...
paddle/fluid/imperative/reducer.h
浏览文件 @
572c466d
...
...
@@ -24,60 +24,27 @@
#include <unordered_set>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/op_base.h"
#include "paddle/fluid/imperative/variable_wrapper.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/string/string_helper.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/variable.h"
#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/imperative/all_reduce.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
#include "paddle/fluid/platform/cuda_resource_pool.h"
#endif
namespace
paddle
{
namespace
platform
{
class
DeviceContext
;
}
// namespace platform
namespace
imperative
{
class
ParallelContext
;
class
VarBase
;
class
VariableWrapper
;
}
// namespace imperative
}
// namespace paddle
namespace
paddle
{
namespace
imperative
{
#if defined(PADDLE_WITH_NCCL)
template
<
typename
T
>
void
ConcatTensorsForAllReduce
(
const
platform
::
CUDADeviceContext
&
context
,
const
std
::
vector
<
framework
::
Tensor
>&
dense_tensors_
,
framework
::
Variable
*
p_dense_contents
)
{
operators
::
math
::
ConcatFunctor
<
platform
::
CUDADeviceContext
,
T
>
concat_functor_
;
concat_functor_
(
context
,
dense_tensors_
,
0
,
p_dense_contents
->
GetMutable
<
framework
::
LoDTensor
>
());
}
template
<
typename
T
>
void
SplitTensorsForAllReduce
(
const
platform
::
CUDADeviceContext
&
context
,
framework
::
Variable
*
p_dense_contents
,
std
::
vector
<
framework
::
Tensor
>*
p_dense_tensors
)
{
auto
*
in
=
p_dense_contents
->
GetMutable
<
framework
::
LoDTensor
>
();
std
::
vector
<
framework
::
Tensor
*>
outs
;
std
::
vector
<
const
framework
::
Tensor
*>
shape_refer
;
outs
.
reserve
(
p_dense_tensors
->
size
());
shape_refer
.
reserve
(
p_dense_tensors
->
size
());
for
(
auto
&
tensor
:
*
p_dense_tensors
)
{
outs
.
emplace_back
(
&
tensor
);
shape_refer
.
emplace_back
(
&
tensor
);
}
// Sometimes direct copies will be faster
if
(
p_dense_tensors
->
size
()
<
10
)
{
operators
::
StridedMemcpyWithAxis0
<
T
>
(
context
,
*
in
,
shape_refer
,
&
outs
);
}
else
{
operators
::
math
::
SplitFunctor
<
platform
::
CUDADeviceContext
,
T
>
split_functor_
;
split_functor_
(
context
,
*
in
,
shape_refer
,
0
,
&
outs
);
}
}
class
Group
{
public:
// Here, we use dense_contents_ & sparse_contents_ to
...
...
@@ -104,10 +71,10 @@ class Group {
framework
::
proto
::
VarType
::
Type
dtype_
;
// context is used to select the stream for concat
void
ConcatTensors
(
const
platform
::
CUDA
DeviceContext
&
context
);
void
ConcatTensors
(
const
platform
::
DeviceContext
&
context
);
// context is used to select the stream for split
void
SplitTensors
(
const
platform
::
CUDA
DeviceContext
&
context
);
void
SplitTensors
(
const
platform
::
DeviceContext
&
context
);
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
,
const
Group
&
);
};
...
...
@@ -155,8 +122,6 @@ class Reducer {
std
::
vector
<
std
::
vector
<
size_t
>>
RebuildGruops
();
void
CreateGroupEvents
(
int
group_num
);
inline
bool
NeedRebuildGroup
()
{
return
!
has_rebuilt_group_
;
}
// Reducer Singleton
...
...
@@ -193,11 +158,6 @@ class Reducer {
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx_
;
std
::
vector
<
VariableLocator
>
variable_locators_
;
// Following variables are to help sync stream
std
::
vector
<
std
::
shared_ptr
<
platform
::
CudaEventObject
>>
group_events_
;
std
::
vector
<
std
::
shared_ptr
<
platform
::
CudaEventObject
>>
comm_events_
;
cudaStream_t
compute_stream_
;
std
::
vector
<
cudaStream_t
>
comm_streams_
;
int
nrings_
=
1
;
// Following variables are to help rebuild group
...
...
paddle/fluid/imperative/tests/nccl_context_test.cc
浏览文件 @
572c466d
...
...
@@ -12,6 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <thread> // NOLINT
#include "paddle/fluid/imperative/nccl_context.h"
#include "gtest/gtest.h"
...
...
paddle/fluid/imperative/tests/test_group.cc
浏览文件 @
572c466d
...
...
@@ -60,6 +60,109 @@ TEST(TestGroup, TestPrintGroupMessage) {
ASSERT_STREQ
(
stream2
.
str
().
c_str
(),
head
.
c_str
());
}
template
<
typename
T
,
typename
Place
>
void
GroupConcatSplit
(
Place
place
,
size_t
size
)
{
platform
::
CPUPlace
cpu_place
;
Group
group
;
// [[0.0], [0.0, 1.0], [0.0, 1.0, 2.0] .. ]
std
::
vector
<
framework
::
Variable
>
vars
;
vars
.
resize
(
size
);
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
auto
len
=
i
+
1
;
auto
*
tensor
=
vars
[
i
].
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
({
static_cast
<
int64_t
>
(
len
)});
auto
*
data
=
tensor
->
mutable_data
<
T
>
(
place
);
std
::
vector
<
T
>
value
;
for
(
size_t
j
=
0
;
j
<
len
;
++
j
)
{
value
.
push_back
(
static_cast
<
T
>
(
1.0
*
j
));
}
if
(
std
::
is_same
<
Place
,
platform
::
CUDAPlace
>::
value
)
{
paddle
::
memory
::
Copy
(
place
,
data
,
cpu_place
,
value
.
data
(),
sizeof
(
T
)
*
value
.
size
(),
0
);
}
else
{
paddle
::
memory
::
Copy
(
place
,
data
,
cpu_place
,
value
.
data
(),
sizeof
(
T
)
*
value
.
size
());
}
framework
::
Tensor
tmp
;
tmp
.
ShareDataWith
(
*
tensor
).
Resize
({
static_cast
<
int64_t
>
(
len
)});
group
.
dense_tensors_
.
push_back
(
std
::
move
(
tmp
));
group
.
all_length_
+=
len
;
group
.
dtype_
=
tensor
->
type
();
}
paddle
::
platform
::
DeviceContextPool
&
pool
=
paddle
::
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
pool
.
Get
(
place
);
{
// concat
group
.
ConcatTensors
(
*
dev_ctx
);
auto
*
tensor
=
group
.
dense_contents_
.
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
Tensor
tmp
;
framework
::
TensorCopySync
(
*
tensor
,
cpu_place
,
&
tmp
);
auto
*
data
=
tmp
.
data
<
T
>
();
size_t
offset
=
0
;
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
auto
len
=
i
+
1
;
for
(
size_t
j
=
0
;
j
<
len
;
++
j
)
{
EXPECT_EQ
(
data
[
offset
+
j
],
static_cast
<
T
>
(
1.0
*
j
));
// [[-0.0], [-0.0, -1.0], [-0.0, -1.0, -2.0] .. ]
data
[
offset
+
j
]
=
-
data
[
offset
+
j
];
}
offset
+=
len
;
}
framework
::
TensorCopySync
(
tmp
,
place
,
tensor
);
}
{
// split
group
.
SplitTensors
(
*
dev_ctx
);
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
auto
len
=
i
+
1
;
auto
&
tensor
=
group
.
dense_tensors_
[
i
];
framework
::
Tensor
tmp
;
framework
::
TensorCopySync
(
tensor
,
cpu_place
,
&
tmp
);
auto
*
data
=
tmp
.
data
<
T
>
();
for
(
size_t
j
=
0
;
j
<
len
;
++
j
)
{
EXPECT_EQ
(
data
[
j
],
static_cast
<
T
>
(
-
1.0
*
j
));
}
}
}
}
TEST
(
TestGroup
,
TestConcatSplit
)
{
platform
::
CUDAPlace
cuda_place
(
0
);
platform
::
CPUPlace
cpu_place
;
int
size
=
3
;
GroupConcatSplit
<
float
>
(
cpu_place
,
size
);
GroupConcatSplit
<
double
>
(
cpu_place
,
size
);
GroupConcatSplit
<
platform
::
float16
>
(
cpu_place
,
size
);
GroupConcatSplit
<
float
>
(
cuda_place
,
size
);
GroupConcatSplit
<
double
>
(
cuda_place
,
size
);
GroupConcatSplit
<
platform
::
float16
>
(
cuda_place
,
size
);
size
=
15
;
GroupConcatSplit
<
float
>
(
cpu_place
,
size
);
GroupConcatSplit
<
double
>
(
cpu_place
,
size
);
GroupConcatSplit
<
platform
::
float16
>
(
cpu_place
,
size
);
GroupConcatSplit
<
float
>
(
cuda_place
,
size
);
GroupConcatSplit
<
double
>
(
cuda_place
,
size
);
GroupConcatSplit
<
platform
::
float16
>
(
cuda_place
,
size
);
}
TEST
(
TestGroup
,
TestConcatSplitException
)
{
platform
::
CUDAPinnedPlace
place
;
int
size
=
3
;
ASSERT_ANY_THROW
(
GroupConcatSplit
<
float
>
(
place
,
size
));
}
#endif
}
// namespace imperative
...
...
paddle/fluid/operators/collective/CMakeLists.txt
浏览文件 @
572c466d
...
...
@@ -15,9 +15,8 @@ register_operators(EXCLUDES c_gen_nccl_id_op gen_nccl_id_op DEPS ${COLLECTIVE_DE
if
(
WITH_NCCL
)
set
(
COLLECTIVE_DEPS
${
COLLECTIVE_DEPS
}
nccl_common collective_helper
)
cc_library
(
gen_nccl_id_op_helper SRCS gen_nccl_id_op_helper.cc DEPS nccl_common
)
op_library
(
c_gen_nccl_id_op DEPS
${
COLLECTIVE_DEPS
}
gen_nccl_id_op_helper
)
op_library
(
gen_nccl_id_op DEPS
${
COLLECTIVE_DEPS
}
gen_nccl_id_op_helper
)
op_library
(
c_gen_nccl_id_op DEPS
${
COLLECTIVE_DEPS
}
)
op_library
(
gen_nccl_id_op DEPS
${
COLLECTIVE_DEPS
}
)
endif
()
if
(
WITH_GLOO
)
...
...
paddle/fluid/operators/collective/c_gen_nccl_id_op.cc
浏览文件 @
572c466d
...
...
@@ -23,11 +23,32 @@ limitations under the License. */
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/
operators/collective/gen_nccl_id_op
_helper.h"
#include "paddle/fluid/
platform/gen_comm_id
_helper.h"
namespace
paddle
{
namespace
operators
{
static
void
GenNCCLID
(
std
::
vector
<
ncclUniqueId
>*
nccl_ids
)
{
for
(
size_t
i
=
0
;
i
<
nccl_ids
->
size
();
++
i
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
ncclGetUniqueId
(
&
(
*
nccl_ids
)[
i
]));
}
}
static
void
CopyNCCLIDToVar
(
const
std
::
vector
<
ncclUniqueId
>&
nccl_ids
,
std
::
function
<
std
::
string
(
size_t
)
>
func
,
const
framework
::
Scope
&
scope
)
{
for
(
size_t
i
=
0
;
i
<
nccl_ids
.
size
();
++
i
)
{
std
::
string
var_name
=
func
(
i
);
auto
var
=
scope
.
FindVar
(
var_name
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
platform
::
errors
::
NotFound
(
"Variable with name %s is not found"
,
var_name
.
c_str
()));
auto
nccl_id
=
var
->
GetMutable
<
ncclUniqueId
>
();
memcpy
(
nccl_id
,
&
nccl_ids
[
i
],
sizeof
(
ncclUniqueId
));
}
}
class
CGenNCCLIdOp
:
public
framework
::
OperatorBase
{
public:
CGenNCCLIdOp
(
const
std
::
string
&
type
,
...
...
@@ -45,14 +66,20 @@ class CGenNCCLIdOp : public framework::OperatorBase {
return
Output
(
"Out"
);
};
std
::
vector
<
ncclUniqueId
>
nccl_ids
;
nccl_ids
.
resize
(
1
);
if
(
rank
==
0
)
{
GenNCCLID
(
&
nccl_ids
);
std
::
vector
<
std
::
string
>
endpoint_list
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"other_endpoints"
);
SendBroadCastNCCLID
(
endpoint_list
,
1
,
func
,
local_scope
);
platform
::
SendBroadCastCommID
(
endpoint_list
,
&
nccl_ids
);
}
else
{
std
::
string
endpoint
=
Attr
<
std
::
string
>
(
"endpoint"
);
RecvBroadCastNCCLID
(
endpoint
,
1
,
func
,
local_scope
);
platform
::
RecvBroadCastCommID
(
endpoint
,
&
nccl_ids
);
}
CopyNCCLIDToVar
(
nccl_ids
,
func
,
scope
);
scope
.
DeleteScope
(
&
local_scope
);
}
};
...
...
paddle/fluid/operators/collective/gen_nccl_id_op.cc
浏览文件 @
572c466d
...
...
@@ -27,11 +27,32 @@ limitations under the License. */
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/split.h"
#include "paddle/fluid/
operators/collective/gen_nccl_id_op
_helper.h"
#include "paddle/fluid/
platform/gen_comm_id
_helper.h"
namespace
paddle
{
namespace
operators
{
static
void
GenNCCLID
(
std
::
vector
<
ncclUniqueId
>*
nccl_ids
)
{
for
(
size_t
i
=
0
;
i
<
nccl_ids
->
size
();
++
i
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
ncclGetUniqueId
(
&
(
*
nccl_ids
)[
i
]));
}
}
static
void
CopyNCCLIDToVar
(
const
std
::
vector
<
ncclUniqueId
>&
nccl_ids
,
std
::
function
<
std
::
string
(
size_t
)
>
func
,
const
framework
::
Scope
&
scope
)
{
for
(
size_t
i
=
0
;
i
<
nccl_ids
.
size
();
++
i
)
{
std
::
string
var_name
=
func
(
i
);
auto
var
=
scope
.
FindVar
(
var_name
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
platform
::
errors
::
NotFound
(
"Variable with name %s is not found"
,
var_name
.
c_str
()));
auto
nccl_id
=
var
->
GetMutable
<
ncclUniqueId
>
();
memcpy
(
nccl_id
,
&
nccl_ids
[
i
],
sizeof
(
ncclUniqueId
));
}
}
class
GenNCCLIdOp
:
public
framework
::
OperatorBase
{
public:
GenNCCLIdOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
...
...
@@ -98,19 +119,25 @@ class GenNCCLIdOp : public framework::OperatorBase {
<<
", trainers:"
<<
ss
.
str
();
int
server_fd
=
-
1
;
std
::
vector
<
ncclUniqueId
>
nccl_ids
;
nccl_ids
.
resize
(
nccl_comm_num
);
/// 1. init flat
std
::
function
<
std
::
string
(
size_t
)
>
func
=
platform
::
GetFlatNCCLVarName
;
// broadcast unique id
if
(
trainer_id
==
0
)
{
GenNCCLID
(
&
nccl_ids
);
// server endpoints
std
::
vector
<
std
::
string
>
flat_endpoints
;
flat_endpoints
.
insert
(
flat_endpoints
.
begin
(),
trainers
.
begin
()
+
1
,
trainers
.
end
());
SendBroadCastNCCLID
(
flat_endpoints
,
nccl_comm_num
,
func
,
scope
);
platform
::
SendBroadCastCommID
(
flat_endpoints
,
&
nccl_ids
);
}
else
{
server_fd
=
CreateListenSocket
(
endpoint
);
RecvBroadCastNCCLID
(
server_fd
,
endpoint
,
nccl_comm_num
,
func
,
scope
);
server_fd
=
platform
::
CreateListenSocket
(
endpoint
);
platform
::
RecvBroadCastCommID
(
server_fd
,
endpoint
,
&
nccl_ids
);
}
CopyNCCLIDToVar
(
nccl_ids
,
func
,
scope
);
/// 2. hierarchical inter ncclid
func
=
platform
::
GetHierarchicalInterNCCLVarName
;
...
...
@@ -127,10 +154,13 @@ class GenNCCLIdOp : public framework::OperatorBase {
}
VLOG
(
1
)
<<
"Hierarchical inter ring endpoints:"
<<
ss
.
str
();
SendBroadCastNCCLID
(
inter_endpoints
,
nccl_comm_num
,
func
,
scope
);
GenNCCLID
(
&
nccl_ids
);
platform
::
SendBroadCastCommID
(
inter_endpoints
,
&
nccl_ids
);
CopyNCCLIDToVar
(
nccl_ids
,
func
,
scope
);
}
else
if
(
inter_trainer_id
>
0
)
{
VLOG
(
1
)
<<
"Hierarchical inter ring"
;
RecvBroadCastNCCLID
(
server_fd
,
endpoint
,
nccl_comm_num
,
func
,
scope
);
platform
::
RecvBroadCastCommID
(
server_fd
,
endpoint
,
&
nccl_ids
);
CopyNCCLIDToVar
(
nccl_ids
,
func
,
scope
);
}
/// 3. hierarchical exter ncclid
...
...
@@ -146,15 +176,18 @@ class GenNCCLIdOp : public framework::OperatorBase {
}
VLOG
(
1
)
<<
"Hierarchical exter ring endpoints:"
<<
ss
.
str
();
SendBroadCastNCCLID
(
exter_endpoints
,
nccl_comm_num
,
func
,
scope
);
GenNCCLID
(
&
nccl_ids
);
platform
::
SendBroadCastCommID
(
exter_endpoints
,
&
nccl_ids
);
CopyNCCLIDToVar
(
nccl_ids
,
func
,
scope
);
}
else
if
(
exter_trainer_id
>
0
)
{
VLOG
(
1
)
<<
"Hierarchical exter ring"
;
RecvBroadCastNCCLID
(
server_fd
,
endpoint
,
nccl_comm_num
,
func
,
scope
);
platform
::
RecvBroadCastCommID
(
server_fd
,
endpoint
,
&
nccl_ids
);
CopyNCCLIDToVar
(
nccl_ids
,
func
,
scope
);
}
// close socket server
if
(
trainer_id
!=
0
)
{
CloseSocket
(
server_fd
);
platform
::
CloseSocket
(
server_fd
);
}
}
};
...
...
paddle/fluid/platform/CMakeLists.txt
浏览文件 @
572c466d
...
...
@@ -101,7 +101,7 @@ cc_library(device_context SRCS device_context.cc init.cc DEPS simple_threadpool
place eigen3 stringpiece cpu_helper cpu_info framework_proto
${
GPU_CTX_DEPS
}
${
MKLDNN_CTX_DEPS
}
${
dgc_deps
}
dlpack cudnn_workspace_helper
${
XPU_CTX_DEPS
}
)
cc_library
(
collective_helper SRCS collective_helper.cc DEPS framework_proto device_context enforce
)
cc_library
(
collective_helper SRCS collective_helper.cc
gen_comm_id_helper.cc
DEPS framework_proto device_context enforce
)
if
(
WITH_GPU
)
cc_library
(
cuda_resource_pool SRCS cuda_resource_pool.cc DEPS gpu_info
)
...
...
paddle/fluid/
operators/collective/gen_nccl_id_op
_helper.cc
→
paddle/fluid/
platform/gen_comm_id
_helper.cc
浏览文件 @
572c466d
...
...
@@ -12,7 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/gen_nccl_id_op_helper.h"
#ifdef PADDLE_WITH_NCCL
#include "paddle/fluid/platform/gen_comm_id_helper.h"
#include <arpa/inet.h>
#include <netdb.h>
...
...
@@ -31,7 +32,7 @@ limitations under the License. */
#include "paddle/fluid/string/split.h"
namespace
paddle
{
namespace
operators
{
namespace
platform
{
constexpr
char
COMM_HEAD
[]
=
"_pd_gen_comm_id_"
;
...
...
@@ -257,26 +258,29 @@ static int ConnectAddr(const std::string& ep, const char* head) {
return
sock
;
}
static
void
RecvNCCLID
(
int
conn
,
ncclUniqueId
*
nccl_id
)
{
template
<
typename
CommUniqueId
>
static
void
RecvCommID
(
int
conn
,
CommUniqueId
*
nccl_id
)
{
char
buffer
[
1024
]
=
{
0
};
static_assert
(
NCCL_UNIQUE_ID_BYTES
<=
1024
,
static_assert
(
sizeof
(
CommUniqueId
)
<=
1024
,
"nccl id bytes must <= buffer size"
);
CHECK_SYS_CALL
(
SocketRecv
(
conn
,
buffer
,
NCCL_UNIQUE_ID_BYTES
),
"recv ncc id"
);
memcpy
(
nccl_id
,
buffer
,
NCCL_UNIQUE_ID_BYTES
);
CHECK_SYS_CALL
(
SocketRecv
(
conn
,
buffer
,
sizeof
(
CommUniqueId
)),
"recv comm unique id"
);
memcpy
(
nccl_id
,
buffer
,
sizeof
(
CommUniqueId
));
}
static
void
SendNCCLID
(
int
conn
,
ncclUniqueId
*
nccl_id
)
{
template
<
typename
CommUniqueId
>
static
void
SendCommID
(
int
conn
,
CommUniqueId
*
nccl_id
)
{
char
buffer
[
1024
]
=
{
0
};
memcpy
(
buffer
,
nccl_id
,
NCCL_UNIQUE_ID_BYTES
);
memcpy
(
buffer
,
nccl_id
,
sizeof
(
CommUniqueId
)
);
CHECK_SYS_CALL
(
SocketSend
(
conn
,
buffer
,
NCCL_UNIQUE_ID_BYTES
),
"send
nccl
id"
);
CHECK_SYS_CALL
(
SocketSend
(
conn
,
buffer
,
sizeof
(
CommUniqueId
)
),
"send
comm unique
id"
);
}
void
SendBroadCastNCCLID
(
std
::
vector
<
std
::
string
>
servers
,
int
nccl_comm_num
,
std
::
function
<
std
::
string
(
size_t
)
>
func
,
const
framework
::
Scope
&
scope
)
{
template
<
typename
CommUniqueId
>
void
SendBroadCastCommID
(
std
::
vector
<
std
::
string
>
servers
,
std
::
vector
<
CommUniqueId
>*
nccl_ids
)
{
// connect with server
std
::
vector
<
int
>
connects
;
for
(
auto
server
:
servers
)
{
...
...
@@ -286,23 +290,13 @@ void SendBroadCastNCCLID(std::vector<std::string> servers, int nccl_comm_num,
}
VLOG
(
3
)
<<
"connecting completed..."
;
for
(
int
i
=
0
;
i
<
nccl_comm_num
;
++
i
)
{
std
::
string
var_name
=
func
(
i
);
auto
var
=
scope
.
FindVar
(
var_name
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
platform
::
errors
::
NotFound
(
"Variable with name %s is not found"
,
var_name
.
c_str
()));
auto
nccl_id
=
var
->
GetMutable
<
ncclUniqueId
>
();
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
ncclGetUniqueId
(
nccl_id
));
for
(
size_t
i
=
0
;
i
<
nccl_ids
->
size
();
++
i
)
{
int
j
=
0
;
for
(
auto
conn
:
connects
)
{
VLOG
(
3
)
<<
"sending nccl_id_var: "
<<
var_name
<<
" to "
<<
servers
[
j
]
<<
" nccl_comm_no: "
<<
i
;
SendNCCLID
(
conn
,
nccl_id
);
VLOG
(
3
)
<<
"sending comm_id to "
<<
servers
[
j
]
<<
" nccl_comm_no: "
<<
i
;
SendCommID
(
conn
,
&
(
*
nccl_ids
)[
i
]);
++
j
;
}
VLOG
(
3
)
<<
"sending completed..."
;
}
// close client
...
...
@@ -311,34 +305,43 @@ void SendBroadCastNCCLID(std::vector<std::string> servers, int nccl_comm_num,
}
}
void
RecvBroadCastNCCLID
(
std
::
string
endpoint
,
int
nccl_comm_num
,
std
::
function
<
std
::
string
(
size_t
)
>
func
,
const
framework
::
Scope
&
scope
)
{
template
<
typename
CommUniqueId
>
void
RecvBroadCastCommID
(
std
::
string
endpoint
,
std
::
vector
<
CommUniqueId
>*
nccl_ids
)
{
int
server
=
CreateListenSocket
(
endpoint
);
RecvBroadCast
NCCLID
(
server
,
endpoint
,
nccl_comm_num
,
func
,
scope
);
RecvBroadCast
CommID
(
server
,
endpoint
,
nccl_ids
);
CloseSocket
(
server
);
}
void
RecvBroadCastNCCLID
(
int
server_fd
,
std
::
string
endpoint
,
int
nccl_comm_num
,
std
::
function
<
std
::
string
(
size_t
)
>
func
,
const
framework
::
Scope
&
scope
)
{
template
<
typename
CommUniqueId
>
void
RecvBroadCastCommID
(
int
server_fd
,
std
::
string
endpoint
,
std
::
vector
<
CommUniqueId
>*
nccl_ids
)
{
int
client
=
SocketAccept
(
server_fd
,
COMM_HEAD
);
for
(
int
i
=
0
;
i
<
nccl_comm_num
;
++
i
)
{
std
::
string
var_name
=
func
(
i
);
auto
var
=
scope
.
FindVar
(
var_name
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
platform
::
errors
::
NotFound
(
"Variable with name %s is not found"
,
var_name
.
c_str
()));
auto
nccl_id
=
var
->
GetMutable
<
ncclUniqueId
>
();
VLOG
(
3
)
<<
"trainer: "
<<
endpoint
<<
" receiving nccl_id_var: "
<<
var_name
<<
" from trainer 0, nccl_comm_no: "
<<
i
;
RecvNCCLID
(
client
,
nccl_id
);
for
(
size_t
i
=
0
;
i
<
nccl_ids
->
size
();
++
i
)
{
VLOG
(
3
)
<<
"trainer: "
<<
endpoint
<<
" receiving comm_id from trainer 0, nccl_comm_no: "
<<
i
;
RecvCommID
(
client
,
&
(
*
nccl_ids
)[
i
]);
}
VLOG
(
3
)
<<
"receiving completed..."
;
CloseSocket
(
client
);
}
}
// namespace operators
/// template instantiation
#define INSTANT_TEMPLATE(Type) \
template void SendBroadCastCommID<Type>(std::vector<std::string> servers, \
std::vector<Type> * nccl_ids); \
template void RecvBroadCastCommID<Type>(std::string endpoint, \
std::vector<Type> * nccl_ids);
#ifdef PADDLE_WITH_NCCL
INSTANT_TEMPLATE
(
ncclUniqueId
)
#endif
#ifdef PADDLE_WITH_XPU_BKCL
INSTANT_TEMPLATE
(
bkclUniqueId
)
#endif
}
// namespace platform
}
// namespace paddle
#endif
paddle/fluid/
operators/collective/gen_nccl_id_op
_helper.h
→
paddle/fluid/
platform/gen_comm_id
_helper.h
浏览文件 @
572c466d
...
...
@@ -14,35 +14,31 @@ limitations under the License. */
#pragma once
#ifdef PADDLE_WITH_NCCL
#include <functional>
#include <string>
#include <vector>
namespace
paddle
{
namespace
framework
{
class
Scope
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
operators
{
namespace
platform
{
int
CreateListenSocket
(
const
std
::
string
&
ep
);
void
CloseSocket
(
int
fd
);
void
SendBroadCastNCCLID
(
std
::
vector
<
std
::
string
>
servers
,
int
nccl_comm_num
,
std
::
function
<
std
::
string
(
size_t
)
>
func
,
const
framework
::
Scope
&
scope
);
template
<
typename
CommUniqueId
>
void
SendBroadCastCommID
(
std
::
vector
<
std
::
string
>
servers
,
std
::
vector
<
CommUniqueId
>*
nccl_ids
);
// server listen on endpoint, then recv nccl id
void
RecvBroadCastNCCLID
(
std
::
string
endpoint
,
int
nccl_comm_num
,
std
::
function
<
std
::
string
(
size_t
)
>
func
,
const
framework
::
Scope
&
scope
);
template
<
typename
CommUniqueId
>
void
RecvBroadCastCommID
(
std
::
string
endpoint
,
std
::
vector
<
CommUniqueId
>*
nccl_ids
);
// recv nccl id from socket
void
RecvBroadCastNCCLID
(
int
server_fd
,
std
::
string
endpoint
,
int
nccl_comm_num
,
std
::
function
<
std
::
string
(
size_t
)
>
func
,
const
framework
::
Scope
&
scope
);
}
// namespace
operators
template
<
typename
CommUniqueId
>
void
RecvBroadCastCommID
(
int
server_fd
,
std
::
string
endpoint
,
std
::
vector
<
CommUniqueId
>*
nccl_ids
);
}
// namespace
platform
}
// namespace paddle
#endif
paddle/fluid/platform/nccl_helper.h
浏览文件 @
572c466d
...
...
@@ -12,9 +12,9 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef PADDLE_WITH_NCCL
#pragma once
#ifdef PADDLE_WITH_NCCL
#include <stdio.h>
#include <memory>
#include <string>
...
...
python/paddle/fluid/tests/unittests/test_gen_nccl_id_op.py
浏览文件 @
572c466d
...
...
@@ -14,10 +14,11 @@
import
unittest
import
os
import
copy
from
launch_function_helper
import
wait
,
_find_free_port
from
multiprocessing
import
Pool
,
Process
from
threading
import
Thread
os
.
environ
[
'GLOG_vmodule'
]
=
str
(
"gen_nccl_id_op*=10"
)
os
.
environ
[
'GLOG_vmodule'
]
=
str
(
"gen_nccl_id_op*=10
,gen_comm_id*=10
"
)
import
paddle
from
paddle.fluid
import
core
...
...
@@ -29,8 +30,8 @@ def run_gen_ncc_id(attr):
nccl_comm_num
=
attr
[
'nccl_comm_num'
]
use_hallreduce
=
attr
[
'use_hierarchical_allreduce'
]
startup_program
=
paddle
.
static
.
default_startup_p
rogram
()
main_program
=
paddle
.
static
.
default_main_p
rogram
()
startup_program
=
paddle
.
static
.
P
rogram
()
main_program
=
paddle
.
static
.
P
rogram
()
with
paddle
.
static
.
program_guard
(
main_program
,
startup_program
):
nccl_id_var
=
startup_program
.
global_block
().
create_var
(
...
...
@@ -60,9 +61,10 @@ def run_gen_ncc_id(attr):
attrs
=
attr
)
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_program
)
scope
=
paddle
.
static
.
Scope
()
with
paddle
.
static
.
scope_guard
(
scope
):
exe
.
run
(
startup_program
)
class
TestGenNcclIdOp
(
unittest
.
TestCase
):
...
...
@@ -97,16 +99,19 @@ class TestGenNcclIdOp(unittest.TestCase):
procs
=
[]
for
i
in
range
(
nranks
):
attr
[
'trainer_id'
]
=
i
p
=
Process
(
target
=
run_gen_ncc_id
,
args
=
(
attr
,
))
# NOTE. multiprocessing cannot be covered by coverage
p
=
Thread
(
target
=
run_gen_ncc_id
,
args
=
(
copy
.
copy
(
attr
),
))
p
.
start
()
procs
.
append
(
p
)
wait
(
procs
,
timeout
=
120
)
for
p
in
procs
:
p
.
join
()
def
test_flat
(
self
):
print
(
">>> test gen flat nccl id"
)
self
.
gen_nccl_id
(
2
)
print
(
"<<< end test gen flat nccl id"
)
print
()
def
test_hierarchical
(
self
):
print
(
">>> test gen hierarchical nccl id"
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录