未验证 提交 56b5c141 编写于 作者: L Leo Chen 提交者: GitHub

refine paddle.stack (#26886) (#26969)

* refine paddle.stack

* support TensorArray

* add test

* fix coverage problem

* fix coverage problem

* fix sample code
上级 d4fc3dbb
......@@ -10018,15 +10018,16 @@ def stack(x, axis=0, name=None):
Args:
x (Variable|list(Variable)): Input :code:`x` can be a single Tensor, a :code:`list` of Tensors.
If :code:`x` is a :code:`list`, the shapes of all these Tensors
x (list(Variable)|tuple(Variable)): Input :code:`x` can be a :code:`list` or :code:`tuple` of Tensors, the shapes of all these Tensors
must be the same. Supposing input is N dims
Tensors :math:`[d_0, d_1, ..., d_{n-1}]`, the output is N+1 dims
Tensor :math:`[d_0, d_1, d_{axis-1}, len(x), d_{axis}, ..., d_{n-1}]`.
Supported data types: float32, float64, int32, int64.
axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is :math:`[-(R+1), R+1)`.
R is the first tensor of inputs. If ``axis`` < 0, :math:`axis=axis+rank(x[0])+1`.
The default value of axis is 0.
axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
where ``R`` is the number of dimensions of the first input tensor ``x[0]``.
If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Returns:
Variable: The stacked Tensor, has same data type with input Tensors. Output dim is :math:`rank(x[0])+1`.
......@@ -10044,18 +10045,27 @@ def stack(x, axis=0, name=None):
data = layers.stack([x1,x2], axis=1) # stack according to axis 1, data.shape=[None, 2, 1, 2]
# stack single Tensor
data = layers.stack(x1) # stack according to axis 0, data.shape=[1, None, 1, 2]
"""
axis = 0 if axis is None else axis
if not isinstance(x, list) and not isinstance(x, tuple):
x = [x]
if in_dygraph_mode():
return core.ops.stack(x, 'axis', axis)
if not isinstance(x, list) and not isinstance(x, tuple):
# NOTE:(zhiqiu) Only support Variable as input if the Variable is a LOD_TENSOR_ARRAY create by create_array, array_write, array_read, etc.
# In that case, Variable is array of tensors indeed.
if isinstance(x, Variable) and x.desc.type(
) == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
x = [x]
else:
raise TypeError("The type of '%s' in %s must be %s, but received %s"
% ('x', 'stack',
'list[Tensor], tuple[Tensor] or TensorArray',
type(x)))
helper = LayerHelper('stack', **locals())
out = helper.create_variable_for_type_inference(x[0].dtype)
if x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
assert len(x) == 1, "If the elements of 'x' in stack are Variable(LoDTensorArray), " \
......
......@@ -182,6 +182,11 @@ class API_test(unittest.TestCase):
expected_result = np.stack([input1, input2, input3], axis=0)
self.assertTrue(np.allclose(expected_result, result))
def test_single_tensor_error(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
x = paddle.rand([2, 3])
self.assertRaises(TypeError, paddle.stack, x)
class API_DygraphTest(unittest.TestCase):
def test_out(self):
......@@ -192,18 +197,23 @@ class API_DygraphTest(unittest.TestCase):
x1 = fluid.dygraph.to_variable(data1)
x2 = fluid.dygraph.to_variable(data2)
x3 = fluid.dygraph.to_variable(data3)
result = paddle.stack([x1, x2, x3], axis=0)
result = paddle.stack([x1, x2, x3])
result_np = result.numpy()
expected_result = np.stack([data1, data2, data3], axis=0)
expected_result = np.stack([data1, data2, data3])
self.assertTrue(np.allclose(expected_result, result_np))
with fluid.dygraph.guard():
y1 = fluid.dygraph.to_variable(data1)
result = paddle.stack(y1, axis=0)
result = paddle.stack([y1], axis=0)
result_np_2 = result.numpy()
expected_result_2 = np.stack(data1, axis=0)
expected_result_2 = np.stack([data1], axis=0)
self.assertTrue(np.allclose(expected_result_2, result_np_2))
def test_single_tensor_error(self):
with fluid.dygraph.guard():
x = paddle.to_tensor([1, 2, 3])
self.assertRaises(Exception, paddle.stack, x)
if __name__ == '__main__':
unittest.main()
......@@ -433,8 +433,7 @@ def stack(x, axis=0, name=None):
[5.0, 6.0] ] ]
Args:
x (Tensor|list[Tensor]|tuple[Tensor]): Input ``x`` can be a single tensor, or a ``list`` or ``tuple`` of tensors.
If ``x`` is a ``list`` or ``tuple`` , the Tensors in ``x``
x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
where ``R`` is the number of dimensions of the first input tensor ``x[0]``.
......@@ -450,15 +449,10 @@ def stack(x, axis=0, name=None):
import paddle
import numpy as np
data1 = np.array([[1.0, 2.0]])
data2 = np.array([[3.0, 4.0]])
data3 = np.array([[5.0, 6.0]])
paddle.disable_static()
x1 = paddle.to_variable(data1)
x2 = paddle.to_variable(data2)
x3 = paddle.to_variable(data3)
x1 = paddle.to_tensor([[1.0, 2.0]])
x2 = paddle.to_tensor([[3.0, 4.0]])
x3 = paddle.to_tensor([[5.0, 6.0]])
out = paddle.stack([x1, x2, x3], axis=0)
print(out.shape) # [3, 1, 2]
print(out.numpy())
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册