未验证 提交 561841d2 编写于 作者: A Aganlengzi 提交者: GitHub

NPU add elementwise_mod (#35245)

上级 aaaa9965
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_mod_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_npu.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class ElementwiseModNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto& dev_ctx =
ctx.template device_context<paddle::platform::NPUDeviceContext>();
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* out = ctx.Output<Tensor>("Out");
int axis = ctx.Attr<int>("axis");
auto x_dims = x->dims();
auto y_dims = y->dims();
axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
bool direct_compute = false;
if (x_dims.size() >= y_dims.size()) {
direct_compute =
y_dims == framework::slice_ddim(x_dims, axis, x_dims.size());
} else {
direct_compute =
x_dims == framework::slice_ddim(y_dims, axis, y_dims.size());
}
Tensor transformed_x, transformed_y;
if (direct_compute) {
transformed_x.ShareDataWith(*x);
transformed_y.ShareDataWith(*y);
} else {
NpuElementWiseOpBroadcast<T>(dev_ctx, x, y, axis, &transformed_x,
&transformed_y);
}
out->mutable_data<T>(ctx.GetPlace());
const auto& runner =
NpuOpRunner("FloorMod", {transformed_x, transformed_y}, {*out}, {});
auto stream = dev_ctx.stream();
runner.Run(stream);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
elementwise_mod,
ops::ElementwiseModNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::ElementwiseModNPUKernel<paddle::platform::NPUDeviceContext, double>,
ops::ElementwiseModNPUKernel<paddle::platform::NPUDeviceContext, int>,
ops::ElementwiseModNPUKernel<paddle::platform::NPUDeviceContext, int64_t>,
ops::ElementwiseModNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
import random
paddle.enable_static()
class TestElementwiseModOp(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "elementwise_mod"
self.axis = -1
self.init_dtype()
self.init_input_output()
self.init_kernel_type()
self.init_axis()
self.inputs = {
'X': OpTest.np_dtype_to_fluid_dtype(self.x),
'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
}
self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
self.outputs = {'Out': self.out}
def init_kernel_type(self):
self.use_mkldnn = False
def init_dtype(self):
self.dtype = np.int32
def init_axis(self):
pass
def set_npu(self):
self.__class__.use_npu = True
def init_input_output(self):
self.x = np.random.uniform(0, 10000, [10, 10]).astype(self.dtype)
self.y = np.random.uniform(0, 1000, [10, 10]).astype(self.dtype)
self.out = np.mod(self.x, self.y)
def test_check_output(self):
self.check_output_with_place(self.place)
class TestElementwiseModOpInt64(TestElementwiseModOp):
def init_dtype(self):
self.dtype = np.int64
class TestElementwiseModOp_scalar(TestElementwiseModOp):
def init_input_output(self):
scale_x = random.randint(0, 100000000)
scale_y = random.randint(1, 100000000)
self.x = (np.random.rand(2, 3, 4) * scale_x).astype(self.dtype)
self.y = (np.random.rand(1) * scale_y + 1).astype(self.dtype)
self.out = np.mod(self.x, self.y)
class TestElementwiseModOpFloat(TestElementwiseModOp):
def init_dtype(self):
self.dtype = np.float32
def init_input_output(self):
self.x = np.random.uniform(-1000, 1000, [10, 10]).astype(self.dtype)
self.y = np.random.uniform(-100, 100, [10, 10]).astype(self.dtype)
self.out = np.fmod(self.y + np.fmod(self.x, self.y), self.y)
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-4)
class TestElementwiseModOpDouble(TestElementwiseModOpFloat):
def init_dtype(self):
self.dtype = np.float64
def test_check_output(self):
self.check_output_with_place(self.place)
class TestElementwiseModOpFP16(TestElementwiseModOpFloat):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-1)
class TestElementwiseModOp_broadcast_0(TestElementwiseModOp):
def init_input_output(self):
self.x = np.random.rand(100, 2, 3).astype(self.dtype)
self.y = np.random.rand(100).astype(self.dtype)
self.out = np.mod(self.x, self.y.reshape(100, 1, 1))
def init_axis(self):
self.axis = 0
class TestElementwiseModOp_broadcast_1(TestElementwiseModOp):
def init_input_output(self):
self.x = np.random.rand(2, 100, 3).astype(self.dtype)
self.y = np.random.rand(100).astype(self.dtype)
self.out = np.mod(self.x, self.y.reshape(1, 100, 1))
def init_axis(self):
self.axis = 1
class TestElementwiseModOp_broadcast_2(TestElementwiseModOp):
def init_input_output(self):
self.x = np.random.rand(2, 3, 100).astype(self.dtype)
self.y = np.random.rand(100).astype(self.dtype)
self.out = np.mod(self.x, self.y.reshape(1, 1, 100))
def init_axis(self):
self.axis = 2
class TestRemainderOp(unittest.TestCase):
def test_name(self):
paddle.set_device('npu:0')
with fluid.program_guard(fluid.Program()):
x = fluid.data(name="x", shape=[2, 3], dtype="int64")
y = fluid.data(name='y', shape=[2, 3], dtype='int64')
y_1 = paddle.remainder(x, y, name='div_res')
self.assertEqual(('div_res' in y_1.name), True)
def test_dygraph(self):
paddle.set_device('npu:0')
with fluid.dygraph.guard():
np_x = np.array([2, 3, 8, 7]).astype('int64')
np_y = np.array([1, 5, 3, 3]).astype('int64')
x = paddle.to_tensor(np_x)
y = paddle.to_tensor(np_y)
z = paddle.remainder(x, y)
np_z = z.numpy()
z_expected = np.array([0, 3, 2, 1])
self.assertEqual((np_z == z_expected).all(), True)
np_x = np.array([-3.3, 11.5, -2, 3.5])
np_y = np.array([-1.2, 2., 3.3, -2.3])
x = paddle.to_tensor(np_x)
y = paddle.to_tensor(np_y)
z = x % y
z_expected = np.array([-0.9, 1.5, 1.3, -1.1])
self.assertEqual(np.allclose(z_expected, z.numpy()), True)
np_x = np.array([-3, 11, -2, 3])
np_y = np.array([-1, 2, 3, -2])
x = paddle.to_tensor(np_x, dtype="int64")
y = paddle.to_tensor(np_y, dtype="int64")
z = x % y
z_expected = np.array([0, 1, 1, -1])
self.assertEqual(np.allclose(z_expected, z.numpy()), True)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册