Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
55accdfc
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
55accdfc
编写于
9月 27, 2022
作者:
W
wenbin
提交者:
GitHub
9月 27, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
preln_residual_bias optimization (#46496)
* half2 * add epsilon
上级
4d772144
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
153 addition
and
24 deletion
+153
-24
paddle/fluid/inference/tensorrt/plugin/preln_residual_bias_plugin.cu
...d/inference/tensorrt/plugin/preln_residual_bias_plugin.cu
+153
-24
未找到文件。
paddle/fluid/inference/tensorrt/plugin/preln_residual_bias_plugin.cu
浏览文件 @
55accdfc
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
...
...
@@ -30,6 +31,116 @@ namespace paddle {
namespace
inference
{
namespace
tensorrt
{
namespace
plugin
{
#ifdef TRT_PLUGIN_FP16_AVALIABLE
#define FINAL_MASK 0xffffffff
template
<
typename
T
,
int
NUM
>
__inline__
__device__
T
warpReduceSumV2
(
T
*
val
)
{
#pragma unroll
for
(
int
i
=
0
;
i
<
NUM
;
i
++
)
{
#pragma unroll
for
(
int
mask
=
16
;
mask
>
0
;
mask
>>=
1
)
val
[
i
]
+=
__shfl_xor_sync
(
FINAL_MASK
,
val
[
i
],
mask
,
32
);
}
return
(
T
)(
0.0
f
);
}
template
<
typename
T
,
int
NUM
>
__inline__
__device__
T
blockReduceSumV2
(
T
*
val
)
{
static
__shared__
T
shared
[
NUM
][
33
];
int
lane
=
threadIdx
.
x
&
0x1f
;
int
wid
=
threadIdx
.
x
>>
5
;
warpReduceSumV2
<
T
,
NUM
>
(
val
);
if
(
lane
==
0
)
{
#pragma unroll
for
(
int
i
=
0
;
i
<
NUM
;
i
++
)
{
shared
[
i
][
wid
]
=
val
[
i
];
}
}
__syncthreads
();
bool
is_mask
=
threadIdx
.
x
<
(
blockDim
.
x
/
32.
f
);
#pragma unroll
for
(
int
i
=
0
;
i
<
NUM
;
i
++
)
{
val
[
i
]
=
is_mask
?
shared
[
i
][
lane
]
:
(
T
)(
0.0
f
);
}
warpReduceSumV2
<
T
,
NUM
>
(
val
);
return
(
T
)
0.0
f
;
}
__global__
void
generalAddBiasResidualLayerNormOpt2
(
half2
*
normed_output
,
half2
*
output
,
const
half2
*
__restrict
bias
,
const
half2
*
__restrict
src
,
const
half2
*
__restrict
residual
,
const
half2
*
__restrict
gamma
,
const
half2
*
__restrict
beta
,
int
m
,
int
n
,
float
epsilon
)
{
__shared__
float
s_mean
;
__shared__
float
s_variance
;
float
x_sum
=
0.0
f
;
float
x2_sum
=
0.0
f
;
const
int
b_offset
=
blockIdx
.
x
*
n
;
#pragma unroll 2
for
(
int
i
=
threadIdx
.
x
;
i
<
n
;
i
+=
blockDim
.
x
)
{
const
int
index
=
b_offset
+
i
;
float
val_1
=
0.0
f
;
float
val_2
=
0.0
f
;
half2
tmp
;
if
(
bias
)
{
tmp
=
__ldg
(
&
bias
[
i
]);
val_1
+=
static_cast
<
float
>
(
tmp
.
x
);
val_2
+=
static_cast
<
float
>
(
tmp
.
y
);
}
{
tmp
=
__ldg
(
&
residual
[
index
]);
val_1
+=
static_cast
<
float
>
(
tmp
.
x
);
val_2
+=
static_cast
<
float
>
(
tmp
.
y
);
}
{
tmp
=
__ldg
(
&
src
[
index
]);
val_1
+=
static_cast
<
float
>
(
tmp
.
x
);
val_2
+=
static_cast
<
float
>
(
tmp
.
y
);
}
tmp
.
x
=
__float2half_rn
(
val_1
);
tmp
.
y
=
__float2half_rn
(
val_2
);
output
[
index
]
=
tmp
;
x_sum
+=
val_1
+
val_2
;
x2_sum
+=
val_1
*
val_1
+
val_2
*
val_2
;
}
float
sums
[
2
];
sums
[
0
]
=
x_sum
;
sums
[
1
]
=
x2_sum
;
blockReduceSumV2
<
float
,
2
>
(
sums
);
if
(
threadIdx
.
x
==
0
)
{
s_mean
=
sums
[
0
]
/
n
/
2
;
s_variance
=
rsqrtf
(
sums
[
1
]
/
n
/
2
-
s_mean
*
s_mean
+
epsilon
);
}
__syncthreads
();
half2
mean_2
=
__float2half2_rn
(
s_mean
);
half2
var_2
=
__float2half2_rn
(
s_variance
);
#pragma unroll 2
for
(
int
i
=
threadIdx
.
x
;
i
<
n
;
i
+=
blockDim
.
x
)
{
const
int
index
=
b_offset
+
i
;
half2
val
=
__hmul2
(
__hmul2
(
__hsub2
(
output
[
index
],
mean_2
),
var_2
),
__ldg
(
&
gamma
[
i
]));
if
(
beta
)
{
val
=
__hadd2
(
val
,
__ldg
(
&
beta
[
i
]));
}
normed_output
[
index
]
=
val
;
}
}
#endif
using
half
=
phi
::
dtype
::
float16
;
#if IS_TRT_VERSION_GE(6000)
...
...
@@ -306,30 +417,48 @@ int PrelnResidualBiasPluginDynamic::enqueue(
float
*
mean
=
nullptr
;
float
*
var
=
nullptr
;
const
int
VecSize
=
8
;
paddle
::
operators
::
FusedLayernormResidualDropoutBiasFunctor
<
half
,
uint8_t
,
VecSize
,
float
,
false
>
()(
rows
,
cols
,
seed
,
dropout_prob
,
is_upscale_in_train
,
is_test
,
increment
,
epsilon
,
src
,
residual
,
bias
,
scale
,
layernorm_bias
,
mask_data
,
dst
,
layernorm_dst
,
mean
,
var
,
stream
);
// if odd
if
(
hidden
&
1
==
0
)
{
int
half_n
=
hidden
/
2
;
int
half_n_32
=
(
half_n
+
31
)
/
32
*
32
;
int
block
(
std
::
min
(
half_n_32
,
512
));
generalAddBiasResidualLayerNormOpt2
<<<
rows
,
block
,
0
,
stream
>>>
(
reinterpret_cast
<
half2
*>
(
layernorm_dst
),
reinterpret_cast
<
half2
*>
(
dst
),
(
const
half2
*
)
bias
,
(
const
half2
*
)
input2
,
(
const
half2
*
)
input1
,
(
const
half2
*
)
scale
,
(
const
half2
*
)
layernorm_bias
,
rows
,
half_n
,
epsilon
);
}
else
{
paddle
::
operators
::
FusedLayernormResidualDropoutBiasFunctor
<
half
,
uint8_t
,
VecSize
,
float
,
false
>
()(
rows
,
cols
,
seed
,
dropout_prob
,
is_upscale_in_train
,
is_test
,
increment
,
epsilon
,
src
,
residual
,
bias
,
scale
,
layernorm_bias
,
mask_data
,
dst
,
layernorm_dst
,
mean
,
var
,
stream
);
}
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The Ernie(Bert) tensorRT plugin should be "
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录