未验证 提交 546a0d3c 编写于 作者: T tangwei12 提交者: GitHub

trainer from dataset fetch targets (#19760) (#20182)

add executor.FetchHandler for train/infer from the dataset
上级 bad312c3
...@@ -16,7 +16,7 @@ ...@@ -16,7 +16,7 @@
if(WIN32) if(WIN32)
if(NOT PYTHON_EXECUTABLE) if(NOT PYTHON_EXECUTABLE)
FIND_PACKAGE(PythonInterp REQUIRED) FIND_PACKAGE(PythonInterp REQUIRED)
endif() endif()
endif() endif()
...@@ -78,26 +78,26 @@ add_custom_target(inference_lib_dist DEPENDS ${inference_lib_deps}) ...@@ -78,26 +78,26 @@ add_custom_target(inference_lib_dist DEPENDS ${inference_lib_deps})
set(dst_dir "${FLUID_INFERENCE_INSTALL_DIR}/third_party/eigen3") set(dst_dir "${FLUID_INFERENCE_INSTALL_DIR}/third_party/eigen3")
copy(inference_lib_dist copy(inference_lib_dist
SRCS ${EIGEN_INCLUDE_DIR}/Eigen/Core ${EIGEN_INCLUDE_DIR}/Eigen/src ${EIGEN_INCLUDE_DIR}/unsupported/Eigen SRCS ${EIGEN_INCLUDE_DIR}/Eigen/Core ${EIGEN_INCLUDE_DIR}/Eigen/src ${EIGEN_INCLUDE_DIR}/unsupported/Eigen
DSTS ${dst_dir}/Eigen ${dst_dir}/Eigen ${dst_dir}/unsupported) DSTS ${dst_dir}/Eigen ${dst_dir}/Eigen ${dst_dir}/unsupported)
set(dst_dir "${FLUID_INFERENCE_INSTALL_DIR}/third_party/boost") set(dst_dir "${FLUID_INFERENCE_INSTALL_DIR}/third_party/boost")
copy(inference_lib_dist copy(inference_lib_dist
SRCS ${BOOST_INCLUDE_DIR}/boost SRCS ${BOOST_INCLUDE_DIR}/boost
DSTS ${dst_dir}) DSTS ${dst_dir})
if(WITH_MKLML) if(WITH_MKLML)
set(dst_dir "${FLUID_INFERENCE_INSTALL_DIR}/third_party/install/mklml") set(dst_dir "${FLUID_INFERENCE_INSTALL_DIR}/third_party/install/mklml")
if(WIN32) if(WIN32)
copy(inference_lib_dist copy(inference_lib_dist
SRCS ${MKLML_LIB} ${MKLML_IOMP_LIB} ${MKLML_SHARED_LIB} SRCS ${MKLML_LIB} ${MKLML_IOMP_LIB} ${MKLML_SHARED_LIB}
${MKLML_SHARED_LIB_DEPS} ${MKLML_SHARED_IOMP_LIB} ${MKLML_INC_DIR} ${MKLML_SHARED_LIB_DEPS} ${MKLML_SHARED_IOMP_LIB} ${MKLML_INC_DIR}
DSTS ${dst_dir}/lib ${dst_dir}/lib ${dst_dir}/lib DSTS ${dst_dir}/lib ${dst_dir}/lib ${dst_dir}/lib
${dst_dir}/lib ${dst_dir}/lib ${dst_dir}) ${dst_dir}/lib ${dst_dir}/lib ${dst_dir})
else() else()
copy(inference_lib_dist copy(inference_lib_dist
SRCS ${MKLML_LIB} ${MKLML_IOMP_LIB} ${MKLML_INC_DIR} SRCS ${MKLML_LIB} ${MKLML_IOMP_LIB} ${MKLML_INC_DIR}
DSTS ${dst_dir}/lib ${dst_dir}/lib ${dst_dir}) DSTS ${dst_dir}/lib ${dst_dir}/lib ${dst_dir})
endif() endif()
elseif (NOT CBLAS_FOUND OR WIN32) elseif (NOT CBLAS_FOUND OR WIN32)
set(dst_dir "${FLUID_INFERENCE_INSTALL_DIR}/third_party/install/openblas") set(dst_dir "${FLUID_INFERENCE_INSTALL_DIR}/third_party/install/openblas")
...@@ -107,16 +107,16 @@ elseif (NOT CBLAS_FOUND OR WIN32) ...@@ -107,16 +107,16 @@ elseif (NOT CBLAS_FOUND OR WIN32)
endif () endif ()
if(WITH_MKLDNN) if(WITH_MKLDNN)
set(dst_dir "${FLUID_INFERENCE_INSTALL_DIR}/third_party/install/mkldnn") set(dst_dir "${FLUID_INFERENCE_INSTALL_DIR}/third_party/install/mkldnn")
if(WIN32) if(WIN32)
copy(inference_lib_dist copy(inference_lib_dist
SRCS ${MKLDNN_INC_DIR} ${MKLDNN_SHARED_LIB} ${MKLDNN_LIB} SRCS ${MKLDNN_INC_DIR} ${MKLDNN_SHARED_LIB} ${MKLDNN_LIB}
DSTS ${dst_dir} ${dst_dir}/lib ${dst_dir}/lib) DSTS ${dst_dir} ${dst_dir}/lib ${dst_dir}/lib)
else() else()
copy(inference_lib_dist copy(inference_lib_dist
SRCS ${MKLDNN_INC_DIR} ${MKLDNN_SHARED_LIB} SRCS ${MKLDNN_INC_DIR} ${MKLDNN_SHARED_LIB}
DSTS ${dst_dir} ${dst_dir}/lib) DSTS ${dst_dir} ${dst_dir}/lib)
endif() endif()
endif() endif()
set(dst_dir "${FLUID_INFERENCE_INSTALL_DIR}/third_party/install/gflags") set(dst_dir "${FLUID_INFERENCE_INSTALL_DIR}/third_party/install/gflags")
...@@ -156,20 +156,20 @@ endif () ...@@ -156,20 +156,20 @@ endif ()
if (TENSORRT_FOUND) if (TENSORRT_FOUND)
set(dst_dir "${FLUID_INFERENCE_INSTALL_DIR}/third_party/install/tensorrt") set(dst_dir "${FLUID_INFERENCE_INSTALL_DIR}/third_party/install/tensorrt")
copy(inference_lib_dist copy(inference_lib_dist
SRCS ${TENSORRT_ROOT}/include/Nv*.h ${TENSORRT_ROOT}/lib/*nvinfer* SRCS ${TENSORRT_ROOT}/include/Nv*.h ${TENSORRT_ROOT}/lib/*nvinfer*
DSTS ${dst_dir}/include ${dst_dir}/lib) DSTS ${dst_dir}/include ${dst_dir}/lib)
endif () endif ()
if (ANAKIN_FOUND) if (ANAKIN_FOUND)
set(dst_dir "${FLUID_INFERENCE_INSTALL_DIR}/third_party/install/anakin") set(dst_dir "${FLUID_INFERENCE_INSTALL_DIR}/third_party/install/anakin")
copy(inference_lib_dist copy(inference_lib_dist
SRCS ${ANAKIN_ROOT}/* SRCS ${ANAKIN_ROOT}/*
DSTS ${dst_dir}) DSTS ${dst_dir})
endif () endif ()
copy(inference_lib_dist copy(inference_lib_dist
SRCS ${CMAKE_CURRENT_BINARY_DIR}/CMakeCache.txt SRCS ${CMAKE_CURRENT_BINARY_DIR}/CMakeCache.txt
DSTS ${FLUID_INFERENCE_INSTALL_DIR}) DSTS ${FLUID_INFERENCE_INSTALL_DIR})
set(src_dir "${PADDLE_SOURCE_DIR}/paddle/fluid") set(src_dir "${PADDLE_SOURCE_DIR}/paddle/fluid")
if(WIN32) if(WIN32)
...@@ -179,8 +179,8 @@ else(WIN32) ...@@ -179,8 +179,8 @@ else(WIN32)
endif(WIN32) endif(WIN32)
copy(inference_lib_dist copy(inference_lib_dist
SRCS ${src_dir}/inference/api/paddle_*.h ${paddle_fluid_lib} SRCS ${src_dir}/inference/api/paddle_*.h ${paddle_fluid_lib}
DSTS ${FLUID_INFERENCE_INSTALL_DIR}/paddle/include ${FLUID_INFERENCE_INSTALL_DIR}/paddle/lib) DSTS ${FLUID_INFERENCE_INSTALL_DIR}/paddle/include ${FLUID_INFERENCE_INSTALL_DIR}/paddle/lib)
# fluid library for both train and inference # fluid library for both train and inference
...@@ -190,17 +190,23 @@ add_custom_target(fluid_lib_dist ALL DEPENDS ${fluid_lib_deps}) ...@@ -190,17 +190,23 @@ add_custom_target(fluid_lib_dist ALL DEPENDS ${fluid_lib_deps})
set(dst_dir "${FLUID_INSTALL_DIR}/paddle/fluid") set(dst_dir "${FLUID_INSTALL_DIR}/paddle/fluid")
set(module "inference") set(module "inference")
copy(fluid_lib_dist copy(fluid_lib_dist
SRCS ${src_dir}/${module}/*.h ${src_dir}/${module}/api/paddle_*.h ${paddle_fluid_lib} SRCS ${src_dir}/${module}/*.h ${src_dir}/${module}/api/paddle_*.h ${paddle_fluid_lib}
DSTS ${dst_dir}/${module} ${dst_dir}/${module} ${dst_dir}/${module} DSTS ${dst_dir}/${module} ${dst_dir}/${module} ${dst_dir}/${module}
) )
set(module "framework") set(module "framework")
set(framework_lib_deps framework_proto) set(framework_lib_deps framework_proto)
add_dependencies(fluid_lib_dist ${framework_lib_deps}) add_dependencies(fluid_lib_dist ${framework_lib_deps})
copy(fluid_lib_dist copy(fluid_lib_dist
SRCS ${src_dir}/${module}/*.h ${src_dir}/${module}/details/*.h ${PADDLE_BINARY_DIR}/paddle/fluid/framework/framework.pb.h ${PADDLE_BINARY_DIR}/paddle/fluid/framework/data_feed.pb.h ${src_dir}/${module}/ir/memory_optimize_pass/*.h SRCS ${src_dir}/${module}/*.h ${src_dir}/${module}/details/*.h ${PADDLE_BINARY_DIR}/paddle/fluid/framework/trainer_desc.pb.h ${PADDLE_BINARY_DIR}/paddle/fluid/framework/framework.pb.h ${PADDLE_BINARY_DIR}/paddle/fluid/framework/data_feed.pb.h ${src_dir}/${module}/ir/memory_optimize_pass/*.h
${src_dir}/${module}/ir/*.h ${src_dir}/${module}/fleet/*.h ${src_dir}/${module}/ir/*.h ${src_dir}/${module}/fleet/*.h
DSTS ${dst_dir}/${module} ${dst_dir}/${module}/details ${dst_dir}/${module} ${dst_dir}/${module} ${dst_dir}/${module}/ir/memory_optimize_pass ${dst_dir}/${module}/ir ${dst_dir}/${module}/fleet) DSTS ${dst_dir}/${module} ${dst_dir}/${module}/details ${dst_dir}/${module} ${dst_dir}/${module} ${dst_dir}/${module} ${dst_dir}/${module}/ir/memory_optimize_pass ${dst_dir}/${module}/ir ${dst_dir}/${module}/fleet)
set(module "operators")
copy(fluid_lib_dist
SRCS ${src_dir}/${module}/reader/blocking_queue.h
DSTS ${dst_dir}/${module}/reader/
)
set(module "memory") set(module "memory")
copy(fluid_lib_dist copy(fluid_lib_dist
...@@ -252,4 +258,4 @@ function(version version_file) ...@@ -252,4 +258,4 @@ function(version version_file)
endif () endif ()
endfunction() endfunction()
version(${FLUID_INSTALL_DIR}/version.txt) version(${FLUID_INSTALL_DIR}/version.txt)
version(${FLUID_INFERENCE_INSTALL_DIR}/version.txt) version(${FLUID_INFERENCE_INSTALL_DIR}/version.txt)
\ No newline at end of file
...@@ -30,9 +30,9 @@ paddle.fluid.load_op_library (ArgSpec(args=['lib_filename'], varargs=None, keywo ...@@ -30,9 +30,9 @@ paddle.fluid.load_op_library (ArgSpec(args=['lib_filename'], varargs=None, keywo
paddle.fluid.Executor ('paddle.fluid.executor.Executor', ('document', '34e8c1769313fbeff7817212dda6259e')) paddle.fluid.Executor ('paddle.fluid.executor.Executor', ('document', '34e8c1769313fbeff7817212dda6259e'))
paddle.fluid.Executor.__init__ (ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.Executor.__init__ (ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.Executor.close (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '3a584496aa1343f36eebf3c46b323a74')) paddle.fluid.Executor.close (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '3a584496aa1343f36eebf3c46b323a74'))
paddle.fluid.Executor.infer_from_dataset (ArgSpec(args=['self', 'program', 'dataset', 'scope', 'thread', 'debug', 'fetch_list', 'fetch_info', 'print_period'], varargs=None, keywords=None, defaults=(None, None, None, 0, False, None, None, 100)), ('document', 'bedc29ad01c1b911e99032ee1e19ac59')) paddle.fluid.Executor.infer_from_dataset (ArgSpec(args=['self', 'program', 'dataset', 'scope', 'thread', 'debug', 'fetch_list', 'fetch_info', 'print_period', 'fetch_handler'], varargs=None, keywords=None, defaults=(None, None, None, 0, False, None, None, 100, None)), ('document', '4ff256774ecaeee01c840a5fb5de8f7a'))
paddle.fluid.Executor.run (ArgSpec(args=['self', 'program', 'feed', 'fetch_list', 'feed_var_name', 'fetch_var_name', 'scope', 'return_numpy', 'use_program_cache'], varargs=None, keywords=None, defaults=(None, None, None, 'feed', 'fetch', None, True, False)), ('document', '4cfcd9c15b766a51b584cc46d38f1ad8')) paddle.fluid.Executor.run (ArgSpec(args=['self', 'program', 'feed', 'fetch_list', 'feed_var_name', 'fetch_var_name', 'scope', 'return_numpy', 'use_program_cache'], varargs=None, keywords=None, defaults=(None, None, None, 'feed', 'fetch', None, True, False)), ('document', '4cfcd9c15b766a51b584cc46d38f1ad8'))
paddle.fluid.Executor.train_from_dataset (ArgSpec(args=['self', 'program', 'dataset', 'scope', 'thread', 'debug', 'fetch_list', 'fetch_info', 'print_period'], varargs=None, keywords=None, defaults=(None, None, None, 0, False, None, None, 100)), ('document', '28f50904a0213f110947a30e0438529c')) paddle.fluid.Executor.train_from_dataset (ArgSpec(args=['self', 'program', 'dataset', 'scope', 'thread', 'debug', 'fetch_list', 'fetch_info', 'print_period', 'fetch_handler'], varargs=None, keywords=None, defaults=(None, None, None, 0, False, None, None, 100, None)), ('document', '73024c79f46b4f14f1060edeaa4919c8'))
paddle.fluid.global_scope (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', 'f65788d9ead293ada47551339df12203')) paddle.fluid.global_scope (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', 'f65788d9ead293ada47551339df12203'))
paddle.fluid.scope_guard (ArgSpec(args=['scope'], varargs=None, keywords=None, defaults=None), ('document', 'e6c073ed237001aaba7bff976b62b122')) paddle.fluid.scope_guard (ArgSpec(args=['scope'], varargs=None, keywords=None, defaults=None), ('document', 'e6c073ed237001aaba7bff976b62b122'))
paddle.fluid.DistributeTranspiler ('paddle.fluid.transpiler.distribute_transpiler.DistributeTranspiler', ('document', 'b2b19821c5dffcd11473d6a4eef089af')) paddle.fluid.DistributeTranspiler ('paddle.fluid.transpiler.distribute_transpiler.DistributeTranspiler', ('document', 'b2b19821c5dffcd11473d6a4eef089af'))
......
...@@ -123,7 +123,7 @@ cc_library(shape_inference SRCS shape_inference.cc DEPS ddim attribute device_co ...@@ -123,7 +123,7 @@ cc_library(shape_inference SRCS shape_inference.cc DEPS ddim attribute device_co
cc_library(transfer_scope_cache SRCS transfer_scope_cache.cc DEPS scope framework_proto device_context) cc_library(transfer_scope_cache SRCS transfer_scope_cache.cc DEPS scope framework_proto device_context)
cc_library(op_kernel_type SRCS op_kernel_type.cc DEPS device_context place) cc_library(op_kernel_type SRCS op_kernel_type.cc DEPS device_context place)
cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope glog data_feed_proto cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope glog trainer_desc_proto data_feed_proto
shape_inference data_transform lod_tensor profiler transfer_scope_cache op_kernel_type op_call_stack) shape_inference data_transform lod_tensor profiler transfer_scope_cache op_kernel_type op_call_stack)
cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry device_context) cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry device_context)
......
...@@ -140,14 +140,14 @@ void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope, ...@@ -140,14 +140,14 @@ void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
} }
} }
void Executor::RunFromDataset(const ProgramDesc& main_program, Scope* scope, std::shared_ptr<TrainerBase> Executor::InitForDataset(
Dataset* dataset, const ProgramDesc& main_program, const std::string& trainer_desc_str,
const std::string& trainer_desc_str) { Scope* scope, Dataset* dataset) {
VLOG(3) << "Start to RunFromDataset in executor"; VLOG(3) << "Start to RunFromDataset in executor";
TrainerDesc trainer_desc; TrainerDesc trainer_desc;
bool success = trainer_desc.ParseFromString(trainer_desc_str); bool success = trainer_desc.ParseFromString(trainer_desc_str);
PADDLE_ENFORCE(success, "Fail to parse TrainerDesc from string:\n%s", PADDLE_ENFORCE_EQ(success, true, "Fail to parse TrainerDesc from string:\n%s",
trainer_desc_str.c_str()); trainer_desc_str.c_str());
VLOG(3) << "Going to create trainer, trainer class is " VLOG(3) << "Going to create trainer, trainer class is "
<< trainer_desc.class_name(); << trainer_desc.class_name();
std::shared_ptr<TrainerBase> trainer; std::shared_ptr<TrainerBase> trainer;
...@@ -162,12 +162,17 @@ void Executor::RunFromDataset(const ProgramDesc& main_program, Scope* scope, ...@@ -162,12 +162,17 @@ void Executor::RunFromDataset(const ProgramDesc& main_program, Scope* scope,
trainer->InitTrainerEnv(main_program, place_); trainer->InitTrainerEnv(main_program, place_);
VLOG(3) << "Try to init other environment"; VLOG(3) << "Try to init other environment";
trainer->InitOtherEnv(main_program); trainer->InitOtherEnv(main_program);
return trainer;
}
void Executor::RunFromDataset(std::shared_ptr<TrainerBase> trainer) {
PADDLE_ENFORCE_NE(trainer, nullptr,
"Trainer is nullptr, invoke InitForDataset first");
// training and finalize training // training and finalize training
VLOG(3) << "Trainer starts to run"; VLOG(3) << "Trainer starts to run";
trainer->Run(); trainer->Run();
VLOG(3) << "Trainer going to finalize"; VLOG(3) << "Trainer going to finalize";
trainer->Finalize(); trainer->Finalize();
return;
} }
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id, void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
......
...@@ -26,6 +26,7 @@ limitations under the License. */ ...@@ -26,6 +26,7 @@ limitations under the License. */
#include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/trainer.h"
#include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/device_context.h"
namespace paddle { namespace paddle {
...@@ -119,8 +120,10 @@ class Executor { ...@@ -119,8 +120,10 @@ class Executor {
void EnableMKLDNN(const ProgramDesc& program); void EnableMKLDNN(const ProgramDesc& program);
void RunFromDataset(const ProgramDesc& main_program, Scope* scope, std::shared_ptr<TrainerBase> InitForDataset(
Dataset* dataset, const std::string& trainer_desc_str); const ProgramDesc& main_program, const std::string& trainer_desc_str,
Scope* scope, Dataset* dataset);
void RunFromDataset(std::shared_ptr<TrainerBase> trainer);
private: private:
const platform::Place place_; const platform::Place place_;
......
...@@ -62,6 +62,10 @@ void MultiTrainer::InitTrainerEnv(const ProgramDesc& main_program, ...@@ -62,6 +62,10 @@ void MultiTrainer::InitTrainerEnv(const ProgramDesc& main_program,
} }
} }
Scope* MultiTrainer::GetWorkerScope(int thread_id) {
return workers_[thread_id]->GetThreadScope();
}
void MultiTrainer::Run() { void MultiTrainer::Run() {
VLOG(3) << "Going to run"; VLOG(3) << "Going to run";
for (int thidx = 0; thidx < thread_num_; ++thidx) { for (int thidx = 0; thidx < thread_num_; ++thidx) {
......
...@@ -261,6 +261,10 @@ void PipelineTrainer::Finalize() { ...@@ -261,6 +261,10 @@ void PipelineTrainer::Finalize() {
root_scope_->DropKids(); root_scope_->DropKids();
} }
Scope* PipelineTrainer::GetWorkerScope(int thread_id) {
return pipeline_scopes_[thread_id];
}
} // end namespace framework } // end namespace framework
} // end namespace paddle } // end namespace paddle
#endif #endif
...@@ -50,6 +50,7 @@ class TrainerBase { ...@@ -50,6 +50,7 @@ class TrainerBase {
virtual void InitOtherEnv(const ProgramDesc& main_program) = 0; virtual void InitOtherEnv(const ProgramDesc& main_program) = 0;
virtual void Run() = 0; virtual void Run() = 0;
virtual void Finalize() = 0; virtual void Finalize() = 0;
virtual Scope* GetWorkerScope(int thread_id) = 0;
protected: protected:
Scope* root_scope_; Scope* root_scope_;
...@@ -70,6 +71,7 @@ class MultiTrainer : public TrainerBase { ...@@ -70,6 +71,7 @@ class MultiTrainer : public TrainerBase {
virtual void InitOtherEnv(const ProgramDesc& main_program) {} virtual void InitOtherEnv(const ProgramDesc& main_program) {}
virtual void Run(); virtual void Run();
virtual void Finalize(); virtual void Finalize();
virtual Scope* GetWorkerScope(int thread_id);
protected: protected:
int thread_num_; int thread_num_;
...@@ -92,6 +94,7 @@ class DistMultiTrainer : public MultiTrainer { ...@@ -92,6 +94,7 @@ class DistMultiTrainer : public MultiTrainer {
virtual void FinalizeDumpEnv(); virtual void FinalizeDumpEnv();
virtual void InitDumpEnv(); virtual void InitDumpEnv();
virtual void DumpWork(); virtual void DumpWork();
virtual Scope* GetWorkerScope(int thread_id) { return root_scope_; }
protected: protected:
std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_; std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
...@@ -117,6 +120,7 @@ class PipelineTrainer : public TrainerBase { ...@@ -117,6 +120,7 @@ class PipelineTrainer : public TrainerBase {
void InitOtherEnv(const ProgramDesc& main_program) override {} void InitOtherEnv(const ProgramDesc& main_program) override {}
void Run() override; void Run() override;
void Finalize() override; void Finalize() override;
virtual Scope* GetWorkerScope(int thread_id);
protected: protected:
int section_num_; int section_num_;
......
...@@ -55,7 +55,7 @@ endif() ...@@ -55,7 +55,7 @@ endif()
cc_test(rpc_server_test SRCS rpc_server_test.cc cc_test(rpc_server_test SRCS rpc_server_test.cc
DEPS ${RPC_DEPS} executor proto_desc lookup_sparse_table_op) DEPS ${RPC_DEPS} executor scope proto_desc lookup_sparse_table_op)
cc_test(varhandle_test SRCS varhandle_test.cc DEPS profiler scope) cc_test(varhandle_test SRCS varhandle_test.cc DEPS profiler scope)
cc_library(parameter_prefetch SRCS parameter_prefetch.cc DEPS sendrecvop_rpc memory) cc_library(parameter_prefetch SRCS parameter_prefetch.cc DEPS sendrecvop_rpc memory)
cc_library(parameter_send SRCS parameter_send.cc DEPS sendrecvop_rpc memory) cc_library(parameter_send SRCS parameter_send.cc DEPS sendrecvop_rpc memory)
......
...@@ -41,6 +41,7 @@ limitations under the License. */ ...@@ -41,6 +41,7 @@ limitations under the License. */
#include "paddle/fluid/framework/reader.h" #include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/scope_pool.h" #include "paddle/fluid/framework/scope_pool.h"
#include "paddle/fluid/framework/selected_rows.h" #include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/trainer.h"
#include "paddle/fluid/framework/version.h" #include "paddle/fluid/framework/version.h"
#include "paddle/fluid/memory/allocation/allocator_strategy.h" #include "paddle/fluid/memory/allocation/allocator_strategy.h"
#include "paddle/fluid/operators/activation_op.h" #include "paddle/fluid/operators/activation_op.h"
...@@ -1014,11 +1015,31 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -1014,11 +1015,31 @@ All parameter, weight, gradient are variables in Paddle.
py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext") py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
.def(py::init<const ProgramDesc &, size_t>()); .def(py::init<const ProgramDesc &, size_t>());
py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
m, "TrainerBase")
.def("get_worker_scope",
[](TrainerBase &self, int thread_id) -> Scope * {
return self.GetWorkerScope(thread_id);
},
py::return_value_policy::reference)
.def("finalize", &TrainerBase::Finalize);
py::class_<framework::Executor>(m, "Executor") py::class_<framework::Executor>(m, "Executor")
.def(py::init<const platform::Place &>()) .def(py::init<const platform::Place &>())
.def("close", &Executor::Close) .def("close", &Executor::Close)
.def("run_from_dataset", &Executor::RunFromDataset, .def("run_from_dataset", &Executor::RunFromDataset,
py::call_guard<py::gil_scoped_release>()) py::call_guard<py::gil_scoped_release>())
.def("init_for_dataset",
[](Executor &self, const ProgramDesc &prog,
const std::string &trainer_desc, Scope *scope,
Dataset *dataset) -> std::shared_ptr<TrainerBase> {
return self.InitForDataset(prog, trainer_desc, scope, dataset);
})
.def("run_from_dataset",
[](Executor &self, std::shared_ptr<TrainerBase> trainer) {
pybind11::gil_scoped_release release;
self.RunFromDataset(trainer);
})
.def("run_prepared_ctx", .def("run_prepared_ctx",
[](Executor &self, ExecutorPrepareContext *ctx, Scope *scope, [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
std::map<std::string, const LoDTensor *> *feed_targets, std::map<std::string, const LoDTensor *> *feed_targets,
......
...@@ -27,6 +27,7 @@ from . import core ...@@ -27,6 +27,7 @@ from . import core
from . import compiler from . import compiler
from .. import compat as cpt from .. import compat as cpt
from .trainer_factory import TrainerFactory from .trainer_factory import TrainerFactory
from .trainer_factory import FetchHandlerMonitor
__all__ = ['Executor', 'global_scope', 'scope_guard'] __all__ = ['Executor', 'global_scope', 'scope_guard']
...@@ -377,6 +378,27 @@ def _as_lodtensor(data, place): ...@@ -377,6 +378,27 @@ def _as_lodtensor(data, place):
return tensor return tensor
class FetchHandler(object):
def __init__(self, fetch_target_names, period_secs=60, return_np=True):
self.fetch_target_names = fetch_target_names
self.period_secs = period_secs
self.return_np = return_np
def handler(self, fetch_target_vars):
return
@staticmethod
def help():
print("""
class FetchHandlerExamlpe(FetchHandler):
def handler(self, fetch_target_vars):
b_auc = fetch_target_vars[0]
g_auc = fetch_target_vars[1]
print("b_auc: {}, g_auc: {} at time: {}".format(b_auc, g_auc, time.ctime()))
""")
class Executor(object): class Executor(object):
""" """
An Executor in Python, supports single/multiple-GPU running, An Executor in Python, supports single/multiple-GPU running,
...@@ -918,6 +940,67 @@ class Executor(object): ...@@ -918,6 +940,67 @@ class Executor(object):
trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period) trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
return scope, trainer return scope, trainer
def _run_from_dataset(self,
program=None,
dataset=None,
scope=None,
thread=0,
is_infer=False,
debug=False,
fetch_list=None,
fetch_info=None,
print_period=100,
fetch_handler=None):
if dataset is None:
raise RuntimeError("dataset is need and should be initialized")
if program._pipeline_opt:
thread = self._adjust_pipeline_resource(program._pipeline_opt,
dataset, thread)
dataset._prepare_to_run()
if fetch_handler is not None:
fetch_instance = fetch_handler
elif fetch_handler is None and fetch_list is not None:
class FH(FetchHandler):
def handler(self, fetch_target_vars):
for i in range(len(fetch_target_vars)):
print("{}: \n {}\n".format(fetch_info[i],
fetch_target_vars[i]))
fetch_target_names = [var.name for var in fetch_list]
fetch_instance = FH(fetch_target_names,
period_secs=print_period,
return_np=False)
else:
fetch_instance = FetchHandler([])
scope, trainer = self._prepare_trainer(
program=program,
dataset=dataset,
scope=scope,
thread=thread,
debug=debug)
trainer._set_infer(is_infer)
trainer._gen_trainer_desc()
self._dump_debug_info(program=program, trainer=trainer)
trainer_instance = self._default_executor.init_for_dataset(
program.desc, trainer._desc(), scope, dataset.dataset)
scope0 = trainer_instance.get_worker_scope(0)
fetch_monitor = FetchHandlerMonitor(scope0, fetch_instance)
fetch_monitor.start()
self._default_executor.run_from_dataset(trainer_instance)
fetch_monitor.stop()
dataset._finish_to_run()
return None
def infer_from_dataset(self, def infer_from_dataset(self,
program=None, program=None,
dataset=None, dataset=None,
...@@ -926,7 +1009,8 @@ class Executor(object): ...@@ -926,7 +1009,8 @@ class Executor(object):
debug=False, debug=False,
fetch_list=None, fetch_list=None,
fetch_info=None, fetch_info=None,
print_period=100): print_period=100,
fetch_handler=None):
""" """
The document of infer_from_dataset is almost the same as The document of infer_from_dataset is almost the same as
train_from_dataset, except that in distributed training, train_from_dataset, except that in distributed training,
...@@ -949,6 +1033,7 @@ class Executor(object): ...@@ -949,6 +1033,7 @@ class Executor(object):
will be printed during training, default is None will be printed during training, default is None
fetch_info(String List): print information for each variable, default is None fetch_info(String List): print information for each variable, default is None
print_period(int): the number of mini-batches for each print, default is 100 print_period(int): the number of mini-batches for each print, default is 100
fetch_handler(FetchHandler): a user define class for fetch output.
Returns: Returns:
None None
...@@ -973,29 +1058,9 @@ class Executor(object): ...@@ -973,29 +1058,9 @@ class Executor(object):
dataset=dataset) dataset=dataset)
""" """
if dataset == None: return self._run_from_dataset(program, dataset, scope, thread, True,
raise RuntimeError("dataset is needed and should be initialized") debug, fetch_list, fetch_info,
print_period, fetch_handler)
dataset._prepare_to_run()
scope, trainer = self._prepare_trainer(
program=program,
dataset=dataset,
scope=scope,
thread=thread,
debug=debug,
fetch_list=fetch_list,
fetch_info=fetch_info,
print_period=print_period)
trainer._set_infer(True)
trainer._gen_trainer_desc()
self._dump_debug_info(program=program, trainer=trainer)
dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
self._default_executor.run_from_dataset(program.desc, scope,
dataset.dataset,
trainer._desc())
dataset._dynamic_adjust_after_train()
dataset._finish_to_run()
return None
def train_from_dataset(self, def train_from_dataset(self,
program=None, program=None,
...@@ -1005,7 +1070,8 @@ class Executor(object): ...@@ -1005,7 +1070,8 @@ class Executor(object):
debug=False, debug=False,
fetch_list=None, fetch_list=None,
fetch_info=None, fetch_info=None,
print_period=100): print_period=100,
fetch_handler=None):
""" """
Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset. Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
Given a program, either a program or compiled program, train_from_dataset will Given a program, either a program or compiled program, train_from_dataset will
...@@ -1032,6 +1098,7 @@ class Executor(object): ...@@ -1032,6 +1098,7 @@ class Executor(object):
will be printed during training will be printed during training
fetch_info(String List): print information for each variable fetch_info(String List): print information for each variable
print_period(int): the number of mini-batches for each print print_period(int): the number of mini-batches for each print
fetch_handler(FetchHandler): a user define class for fetch output.
Returns: Returns:
None None
...@@ -1056,29 +1123,6 @@ class Executor(object): ...@@ -1056,29 +1123,6 @@ class Executor(object):
dataset=dataset) dataset=dataset)
""" """
if dataset == None: return self._run_from_dataset(program, dataset, scope, thread, False,
raise RuntimeError("dataset is need and should be initialized") debug, fetch_list, fetch_info,
print_period, fetch_handler)
if program._pipeline_opt:
thread = self._adjust_pipeline_resource(program._pipeline_opt,
dataset, thread)
dataset._prepare_to_run()
scope, trainer = self._prepare_trainer(
program=program,
dataset=dataset,
scope=scope,
thread=thread,
debug=debug,
fetch_list=fetch_list,
fetch_info=fetch_info,
print_period=print_period)
trainer._gen_trainer_desc()
self._dump_debug_info(program=program, trainer=trainer)
dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
self._default_executor.run_from_dataset(program.desc, scope,
dataset.dataset,
trainer._desc())
dataset._dynamic_adjust_after_train()
dataset._finish_to_run()
return None
...@@ -14,9 +14,11 @@ ...@@ -14,9 +14,11 @@
from __future__ import print_function from __future__ import print_function
import os
import logging import logging
import tarfile import tarfile
import os
import random
import paddle import paddle
import paddle.fluid.incubate.data_generator as data_generator import paddle.fluid.incubate.data_generator as data_generator
...@@ -61,14 +63,18 @@ def load_lr_input_record(sent): ...@@ -61,14 +63,18 @@ def load_lr_input_record(sent):
class DatasetCtrReader(data_generator.MultiSlotDataGenerator): class DatasetCtrReader(data_generator.MultiSlotDataGenerator):
def generate_sample(self, line): def generate_sample(self, line):
def get_rand(low=0.0, high=1.0):
return random.random()
def iter(): def iter():
fs = line.strip().split('\t') if get_rand() < 0.1:
dnn_input = load_dnn_input_record(fs[0]) fs = line.strip().split('\t')
lr_input = load_lr_input_record(fs[1]) dnn_input = load_dnn_input_record(fs[0])
click = [int(fs[2])] lr_input = load_lr_input_record(fs[1])
yield ("dnn_data", dnn_input), \ click = [int(fs[2])]
("lr_data", lr_input), \ yield ("dnn_data", dnn_input), \
("click", click) ("lr_data", lr_input), \
("click", click)
return iter return iter
......
...@@ -147,7 +147,25 @@ class TestDistCTR2x2(FleetDistRunnerBase): ...@@ -147,7 +147,25 @@ class TestDistCTR2x2(FleetDistRunnerBase):
dataset=dataset, dataset=dataset,
fetch_list=[self.avg_cost], fetch_list=[self.avg_cost],
fetch_info=["cost"], fetch_info=["cost"],
print_period=100, print_period=2,
debug=False)
pass_time = time.time() - pass_start
class FH(fluid.executor.FetchHandler):
def handler(self, fetch_target_vars):
for i in range(len(fetch_target_vars)):
print("{}: \n {}\n".format(self.fetch_target_names[0],
fetch_target_vars[0]))
for epoch_id in range(2):
pass_start = time.time()
dataset.set_filelist(filelist)
exe.train_from_dataset(
program=fleet.main_program,
dataset=dataset,
fetch_handler=FH([self.avg_cost.name],
period_secs=2,
return_np=True),
debug=False) debug=False)
pass_time = time.time() - pass_start pass_time = time.time() - pass_start
......
...@@ -18,6 +18,7 @@ including create, config, run, etc. ...@@ -18,6 +18,7 @@ including create, config, run, etc.
from __future__ import print_function from __future__ import print_function
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.compat as cpt
import paddle.fluid.core as core import paddle.fluid.core as core
import numpy as np import numpy as np
import os import os
...@@ -410,5 +411,108 @@ class TestDatasetWithDataLoader(TestDataset): ...@@ -410,5 +411,108 @@ class TestDatasetWithDataLoader(TestDataset):
self.drop_last = False self.drop_last = False
class TestDatasetWithFetchHandler(unittest.TestCase):
def net(self):
slots = ["slot1", "slot2", "slot3", "slot4"]
slots_vars = []
poolings = []
for slot in slots:
data = fluid.layers.data(
name=slot, shape=[1], dtype="int64", lod_level=1)
var = fluid.layers.cast(x=data, dtype='float32')
pool = fluid.layers.sequence_pool(input=var, pool_type='AVERAGE')
slots_vars.append(data)
poolings.append(pool)
concated = fluid.layers.concat(poolings, axis=1)
fc = fluid.layers.fc(input=concated, act='tanh', size=32)
return slots_vars, fc
def get_dataset(self, inputs, files):
dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
dataset.set_batch_size(32)
dataset.set_thread(3)
dataset.set_filelist(files)
dataset.set_pipe_command("cat")
dataset.set_use_var(inputs)
return dataset
def setUp(self):
with open("test_queue_dataset_run_a.txt", "w") as f:
data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
f.write(data)
with open("test_queue_dataset_run_b.txt", "w") as f:
data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
f.write(data)
def tearDown(self):
os.remove("./test_queue_dataset_run_a.txt")
os.remove("./test_queue_dataset_run_b.txt")
def test_dataset_none(self):
slots_vars, out = self.net()
files = ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"]
dataset = self.get_dataset(slots_vars, files)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
# test dataset->None
try:
exe.train_from_dataset(fluid.default_main_program(), None)
except ImportError as e:
print("warning: we skip trainer_desc_pb2 import problem in windows")
except RuntimeError as e:
error_msg = "dataset is need and should be initialized"
self.assertEqual(error_msg, cpt.get_exception_message(e))
except Exception as e:
self.assertTrue(False)
def test_infer_from_dataset(self):
slots_vars, out = self.net()
files = ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"]
dataset = self.get_dataset(slots_vars, files)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
try:
exe.infer_from_dataset(fluid.default_main_program(), dataset)
except ImportError as e:
print("warning: we skip trainer_desc_pb2 import problem in windows")
except Exception as e:
self.assertTrue(False)
def test_fetch_handler(self):
slots_vars, out = self.net()
files = ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"]
dataset = self.get_dataset(slots_vars, files)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
fh = fluid.executor.FetchHandler(out.name)
fh.help()
try:
exe.train_from_dataset(
program=fluid.default_main_program(),
dataset=dataset,
fetch_handler=fh)
except ImportError as e:
print("warning: we skip trainer_desc_pb2 import problem in windows")
except RuntimeError as e:
error_msg = "dataset is need and should be initialized"
self.assertEqual(error_msg, cpt.get_exception_message(e))
except Exception as e:
self.assertTrue(False)
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
...@@ -97,6 +97,7 @@ class FleetDistRunnerBase(object): ...@@ -97,6 +97,7 @@ class FleetDistRunnerBase(object):
optimizer = fluid.optimizer.SGD(LEARNING_RATE) optimizer = fluid.optimizer.SGD(LEARNING_RATE)
optimizer = fleet.distributed_optimizer(optimizer, strategy) optimizer = fleet.distributed_optimizer(optimizer, strategy)
optimizer.minimize(avg_cost) optimizer.minimize(avg_cost)
out = self.do_training(fleet) out = self.do_training(fleet)
def net(self, batch_size=4, lr=0.01): def net(self, batch_size=4, lr=0.01):
...@@ -181,12 +182,13 @@ class TestFleetBase(unittest.TestCase): ...@@ -181,12 +182,13 @@ class TestFleetBase(unittest.TestCase):
def _run_cluster(self, model, envs): def _run_cluster(self, model, envs):
env = {'CPU_NUM': '1'} env = {'CPU_NUM': '1'}
env.update(envs)
python_path = self._python_interp python_path = self._python_interp
if os.getenv('WITH_COVERAGE', 'OFF') == 'ON': if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '') envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
python_path += " -m coverage run --branch -p" python_path += " -m coverage run --branch -p"
env.update(envs)
tr_cmd = "{0} {1} --role trainer --endpoints {2} --current_id {{}} --trainers {3}".format( tr_cmd = "{0} {1} --role trainer --endpoints {2} --current_id {{}} --trainers {3}".format(
python_path, model, self._ps_endpoints, self._trainers) python_path, model, self._ps_endpoints, self._trainers)
......
...@@ -30,6 +30,7 @@ def skip_ci(func): ...@@ -30,6 +30,7 @@ def skip_ci(func):
return __func__ return __func__
@skip_ci
class TestDistMnist2x2(TestFleetBase): class TestDistMnist2x2(TestFleetBase):
def _setup_config(self): def _setup_config(self):
self._sync_mode = False self._sync_mode = False
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import time
import unittest
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
class TestFetchHandler(unittest.TestCase):
def test_fetch_handler(self):
place = core.CPUPlace()
scope = core.Scope()
table = np.random.random((3, 10)).astype("float32")
class FH(fluid.executor.FetchHandler):
def handler(self, fetch_target_vars):
assert len(fetch_target_vars) == 1
table_var = scope.var('emb').get_tensor()
table_var.set(table, place)
fh = FH(['emb'], period_secs=2, return_np=True)
fm = fluid.trainer_factory.FetchHandlerMonitor(scope, fh)
fm.start()
time.sleep(10)
fm.stop()
if __name__ == "__main__":
unittest.main()
...@@ -12,10 +12,15 @@ ...@@ -12,10 +12,15 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import threading
import time
import numpy as np
from .trainer_desc import MultiTrainer, DistMultiTrainer, PipelineTrainer from .trainer_desc import MultiTrainer, DistMultiTrainer, PipelineTrainer
from .device_worker import Hogwild, DownpourSGD, Section from .device_worker import Hogwild, DownpourSGD, Section
__all__ = ["TrainerFactory"] __all__ = ["TrainerFactory", "FetchHandler", "FetchHandlerMonitor"]
class TrainerFactory(object): class TrainerFactory(object):
...@@ -48,3 +53,61 @@ class TrainerFactory(object): ...@@ -48,3 +53,61 @@ class TrainerFactory(object):
trainer._set_adjust_ins_weight(opt_info["adjust_ins_weight"]) trainer._set_adjust_ins_weight(opt_info["adjust_ins_weight"])
trainer._set_device_worker(device_worker) trainer._set_device_worker(device_worker)
return trainer return trainer
class FetchHandlerMonitor(object):
def __init__(self, scope, handler):
self.fetch_instance = handler
self.fetch_thread = threading.Thread(
target=self.handler_decorator,
args=(scope, self.fetch_instance.handler))
self.running = False
def start(self):
self.running = True
self.fetch_thread.setDaemon(True)
self.fetch_thread.start()
def handler_decorator(self, fetch_scope, fetch_handler):
fetch_target_names = self.fetch_instance.fetch_target_names
period_secs = self.fetch_instance.period_secs
elapsed_secs = 0
while True:
while self.running and elapsed_secs >= period_secs:
elapsed_secs = 0
fetch_vars = [
fetch_scope.find_var(varname)
for varname in fetch_target_names
]
fetch_tensors = [var.get_tensor() for var in fetch_vars]
if self.fetch_instance.return_np:
fetch_nps = []
for tensor in fetch_tensors:
lod = tensor.lod()
if len(lod) > 0:
raise RuntimeError(
"Some of your fetched tensors hold LoD information. \
They can not be completely cast to Python ndarray. We can not \
return LoDTensor itself directly, please choose another targets"
)
if tensor._is_initialized():
fetch_nps.append(np.array(tensor))
else:
fetch_nps.append(None)
fetch_handler(fetch_nps)
else:
fetch_handler(fetch_tensors)
else:
time.sleep(1)
elapsed_secs += 1
def stop(self):
self.running = False
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册