Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
5469c081
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5469c081
编写于
4月 09, 2018
作者:
D
dzhwinter
提交者:
GitHub
4月 09, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
"add auto feature" (#9760)
上级
46d6f4ce
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
236 addition
and
107 deletion
+236
-107
benchmark/fluid/machine_translation.py
benchmark/fluid/machine_translation.py
+48
-18
benchmark/fluid/mnist.py
benchmark/fluid/mnist.py
+43
-21
benchmark/fluid/resnet.py
benchmark/fluid/resnet.py
+14
-24
benchmark/fluid/run.sh
benchmark/fluid/run.sh
+63
-7
benchmark/fluid/stacked_dynamic_lstm.py
benchmark/fluid/stacked_dynamic_lstm.py
+58
-31
benchmark/fluid/vgg.py
benchmark/fluid/vgg.py
+10
-6
未找到文件。
benchmark/fluid/machine_translation.py
浏览文件 @
5469c081
...
...
@@ -48,6 +48,13 @@ parser.add_argument(
type
=
int
,
default
=
16
,
help
=
"The sequence number of a mini-batch data. (default: %(default)d)"
)
parser
.
add_argument
(
'--skip_batch_num'
,
type
=
int
,
default
=
5
,
help
=
'The first num of minibatch num to skip, for better performance test'
)
parser
.
add_argument
(
'--iterations'
,
type
=
int
,
default
=
80
,
help
=
'The number of minibatches.'
)
parser
.
add_argument
(
"--dict_size"
,
type
=
int
,
...
...
@@ -72,16 +79,21 @@ parser.add_argument(
default
=
3
,
help
=
"The width for beam searching. (default: %(default)d)"
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
distutils
.
util
.
strtobool
,
default
=
True
,
help
=
"Whether to use gpu. (default: %(default)d)"
)
'--device'
,
type
=
str
,
default
=
'GPU'
,
choices
=
[
'CPU'
,
'GPU'
],
help
=
"The device type."
)
parser
.
add_argument
(
"--max_length"
,
type
=
int
,
default
=
250
,
help
=
"The maximum length of sequence when doing generation. "
"(default: %(default)d)"
)
parser
.
add_argument
(
'--with_test'
,
action
=
'store_true'
,
help
=
'If set, test the testset during training.'
)
def
lstm_step
(
x_t
,
hidden_t_prev
,
cell_t_prev
,
size
):
...
...
@@ -281,7 +293,7 @@ def train():
paddle
.
dataset
.
wmt14
.
test
(
args
.
dict_size
),
buf_size
=
1000
),
batch_size
=
args
.
batch_size
)
place
=
core
.
C
UDAPlace
(
0
)
if
args
.
use_gpu
else
core
.
CPUPlace
(
)
place
=
core
.
C
PUPlace
()
if
args
.
device
==
'CPU'
else
core
.
CUDAPlace
(
0
)
exe
=
Executor
(
place
)
exe
.
run
(
framework
.
default_startup_program
())
...
...
@@ -307,14 +319,20 @@ def train():
return
total_loss
/
count
iters
,
num_samples
,
start_time
=
0
,
0
,
time
.
time
()
for
pass_id
in
xrange
(
args
.
pass_num
):
pass_start_time
=
time
.
time
()
words_seen
=
0
train_accs
=
[]
train_losses
=
[]
for
batch_id
,
data
in
enumerate
(
train_batch_generator
()):
if
iters
==
args
.
skip_batch_num
:
start_time
=
time
.
time
()
num_samples
=
0
if
iters
==
args
.
iterations
:
break
src_seq
,
word_num
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
words_seen
+=
word_num
num_samples
+=
word_num
trg_seq
,
word_num
=
to_lodtensor
(
map
(
lambda
x
:
x
[
1
],
data
),
place
)
words_seen
+=
word_num
num_samples
+=
word_num
lbl_seq
,
_
=
to_lodtensor
(
map
(
lambda
x
:
x
[
2
],
data
),
place
)
fetch_outs
=
exe
.
run
(
framework
.
default_main_program
(),
...
...
@@ -325,24 +343,36 @@ def train():
},
fetch_list
=
[
avg_cost
])
avg_cost_val
=
np
.
array
(
fetch_outs
[
0
])
print
(
'pass_id=%d, batch_id=%d, train_loss: %f'
%
(
pass_id
,
batch_id
,
avg_cost_val
))
iters
+=
1
loss
=
np
.
array
(
fetch_outs
[
0
])
print
(
"Pass = %d, Iter = %d, Loss = %f"
%
(
pass_id
,
iters
,
loss
)
)
# The accuracy is the accumulation of batches, but not the current batch.
pass_end_time
=
time
.
time
()
test_loss
=
do_validation
()
time_consumed
=
pass_end_time
-
pass_start_time
words_per_sec
=
words_seen
/
time_consumed
print
(
"pass_id=%d, test_loss: %f, words/s: %f, sec/pass: %f"
%
(
pass_id
,
test_loss
,
words_per_sec
,
time_consumed
))
train_elapsed
=
time
.
time
()
-
start_time
examples_per_sec
=
num_samples
/
train_elapsed
print
(
'
\n
Total examples: %d, total time: %.5f, %.5f examples/sed
\n
'
%
(
num_samples
,
train_elapsed
,
examples_per_sec
))
# evaluation
if
args
.
with_test
:
test_loss
=
do_validation
()
exit
(
0
)
def
infer
():
pass
def
print_arguments
(
args
):
print
(
'----------- seq2seq Configuration Arguments -----------'
)
for
arg
,
value
in
sorted
(
vars
(
args
).
iteritems
()):
print
(
'%s: %s'
%
(
arg
,
value
))
print
(
'------------------------------------------------'
)
if
__name__
==
'__main__'
:
args
=
parser
.
parse_args
()
print_arguments
(
args
)
if
args
.
infer_only
:
infer
()
else
:
...
...
benchmark/fluid/mnist.py
浏览文件 @
5469c081
...
...
@@ -35,6 +35,12 @@ def parse_args():
parser
=
argparse
.
ArgumentParser
(
"mnist model benchmark."
)
parser
.
add_argument
(
'--batch_size'
,
type
=
int
,
default
=
128
,
help
=
'The minibatch size.'
)
parser
.
add_argument
(
'--skip_batch_num'
,
type
=
int
,
default
=
5
,
help
=
'The first num of minibatch num to skip, for better performance test'
)
parser
.
add_argument
(
'--iterations'
,
type
=
int
,
default
=
35
,
help
=
'The number of minibatches.'
)
parser
.
add_argument
(
...
...
@@ -53,19 +59,14 @@ def parse_args():
'--use_nvprof'
,
action
=
'store_true'
,
help
=
'If set, use nvprof for CUDA.'
)
parser
.
add_argument
(
'--with_test'
,
action
=
'store_true'
,
help
=
'If set, test the testset during training.'
)
args
=
parser
.
parse_args
()
return
args
def
print_arguments
(
args
):
vars
(
args
)[
'use_nvprof'
]
=
(
vars
(
args
)[
'use_nvprof'
]
and
vars
(
args
)[
'device'
]
==
'GPU'
)
print
(
'----------- Configuration Arguments -----------'
)
for
arg
,
value
in
sorted
(
vars
(
args
).
iteritems
()):
print
(
'%s: %s'
%
(
arg
,
value
))
print
(
'------------------------------------------------'
)
def
cnn_model
(
data
):
conv_pool_1
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
data
,
...
...
@@ -161,16 +162,22 @@ def run_benchmark(model, args):
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
args
.
batch_size
)
accuracy
=
fluid
.
average
.
WeightedAverage
()
iters
,
num_samples
,
start_time
=
0
,
0
,
time
.
time
()
for
pass_id
in
range
(
args
.
pass_num
):
accuracy
.
reset
()
pass_start
=
time
.
time
()
train_accs
=
[]
train_losses
=
[]
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
iters
==
args
.
skip_batch_num
:
start_time
=
time
.
time
()
num_samples
=
0
if
iters
==
args
.
iterations
:
break
img_data
=
np
.
array
(
map
(
lambda
x
:
x
[
0
].
reshape
([
1
,
28
,
28
]),
data
)).
astype
(
DTYPE
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
([
len
(
y_data
),
1
])
start
=
time
.
time
()
outs
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
img_data
,
...
...
@@ -178,21 +185,36 @@ def run_benchmark(model, args):
fetch_list
=
[
avg_cost
,
batch_acc
,
batch_size_tensor
]
)
# The accuracy is the accumulation of batches, but not the current batch.
accuracy
.
add
(
value
=
outs
[
1
],
weight
=
outs
[
2
])
end
=
time
.
time
()
iters
+=
1
num_samples
+=
len
(
y_data
)
loss
=
np
.
array
(
outs
[
0
])
acc
=
np
.
array
(
outs
[
1
])
print
(
"pass=%d, batch=%d, loss=%f, error=%f, elapse=%f"
%
(
pass_id
,
batch_id
,
loss
,
1
-
acc
,
(
end
-
start
)
/
1000
))
train_losses
.
append
(
loss
)
train_accs
.
append
(
acc
)
print
(
"Pass: %d, Iter: %d, Loss: %f, Accuracy: %f"
%
(
pass_id
,
iters
,
loss
,
acc
))
print
(
"Pass: %d, Loss: %f, Train Accuray: %f
\n
"
%
(
pass_id
,
np
.
mean
(
train_losses
),
np
.
mean
(
train_accs
)))
train_elapsed
=
time
.
time
()
-
start_time
examples_per_sec
=
num_samples
/
train_elapsed
pass_end
=
time
.
time
()
print
(
'
\n
Total examples: %d, total time: %.5f, %.5f examples/sed
\n
'
%
(
num_samples
,
train_elapsed
,
examples_per_sec
))
# evaluation
if
args
.
with_test
:
test_avg_acc
=
eval_test
(
exe
,
batch_acc
,
batch_size_tensor
,
inference_program
)
exit
(
0
)
train_avg_acc
=
accuracy
.
eval
()
test_avg_acc
=
eval_test
(
exe
,
batch_acc
,
batch_size_tensor
,
inference_program
)
print
(
"pass=%d, train_avg_acc=%f, test_avg_acc=%f, elapse=%f"
%
(
pass_id
,
train_avg_acc
,
test_avg_acc
,
(
pass_end
-
pass_start
)
/
1000
))
def
print_arguments
(
args
):
vars
(
args
)[
'use_nvprof'
]
=
(
vars
(
args
)[
'use_nvprof'
]
and
vars
(
args
)[
'device'
]
==
'GPU'
)
print
(
'----------- mnist Configuration Arguments -----------'
)
for
arg
,
value
in
sorted
(
vars
(
args
).
iteritems
()):
print
(
'%s: %s'
%
(
arg
,
value
))
print
(
'------------------------------------------------'
)
if
__name__
==
'__main__'
:
...
...
benchmark/fluid/resnet.py
浏览文件 @
5469c081
...
...
@@ -87,15 +87,6 @@ def parse_args():
return
args
def
print_arguments
(
args
):
vars
(
args
)[
'use_nvprof'
]
=
(
vars
(
args
)[
'use_nvprof'
]
and
vars
(
args
)[
'device'
]
==
'GPU'
)
print
(
'----------- Configuration Arguments -----------'
)
for
arg
,
value
in
sorted
(
vars
(
args
).
iteritems
()):
print
(
'%s: %s'
%
(
arg
,
value
))
print
(
'------------------------------------------------'
)
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
act
=
'relu'
):
conv1
=
fluid
.
layers
.
conv2d
(
input
=
input
,
...
...
@@ -279,32 +270,31 @@ def run_benchmark(model, args):
'label'
:
label
},
fetch_list
=
[
avg_cost
,
batch_acc
,
batch_size_tensor
])
iters
+=
1
num_samples
+=
l
abel
[
0
]
num_samples
+=
l
en
(
label
)
accuracy
.
add
(
value
=
acc
,
weight
=
weight
)
train_losses
.
append
(
loss
)
train_accs
.
append
(
acc
)
print
(
"Pass: %d, Iter: %d, Loss: %f, Accuracy: %f"
%
(
pass_id
,
iters
,
loss
,
acc
))
pass_train_acc
=
accuracy
.
eval
()
# evaluation
if
args
.
with_test
:
pass_test_acc
=
test
(
exe
)
train_elapsed
=
time
.
time
()
-
start_time
print
(
"Pass: %d, Loss: %f, Train Accuray: %f
\n
"
%
(
pass_id
,
np
.
mean
(
train_losses
),
np
.
mean
(
train_accs
)))
train_elapsed
=
time
.
time
()
-
start_time
examples_per_sec
=
num_samples
/
train_elapsed
print
(
'
\n
Total examples: %d, total time: %.5f, %.5f examples/sed
\n
'
%
(
num_samples
,
train_elapsed
,
examples_per_sec
))
# evaluation
if
args
.
with_test
:
pass_test_acc
=
test
(
exe
)
exit
(
0
)
if
args
.
use_cprof
:
pr
.
disable
()
s
=
StringIO
.
StringIO
()
sortby
=
'cumulative'
ps
=
pstats
.
Stats
(
pr
,
stream
=
s
).
sort_stats
(
sortby
)
ps
.
print_stats
()
print
(
s
.
getvalue
())
def
print_arguments
(
args
):
vars
(
args
)[
'use_nvprof'
]
=
(
vars
(
args
)[
'use_nvprof'
]
and
vars
(
args
)[
'device'
]
==
'GPU'
)
print
(
'----------- resnet Configuration Arguments -----------'
)
for
arg
,
value
in
sorted
(
vars
(
args
).
iteritems
()):
print
(
'%s: %s'
%
(
arg
,
value
))
print
(
'------------------------------------------------'
)
if
__name__
==
'__main__'
:
...
...
benchmark/fluid/run.sh
浏览文件 @
5469c081
#!/bin/bash
# This script benchmarking the PaddlePaddle Fluid on
# single thread single GPU.
export
CUDNN_PATH
=
/paddle/cudnn_v5/cuda/lib
#export FLAGS_fraction_of_gpu_memory_to_use=0.0
export
CUDNN_PATH
=
/paddle/cudnn_v5
# disable openmp and mkl parallel
#https://github.com/PaddlePaddle/Paddle/issues/7199
...
...
@@ -25,25 +27,79 @@ export CUDA_VISIBLE_DEVICES=0
export
LD_LIBRARY_PATH
=
/usr/local/lib:
$LD_LIBRARY_PATH
export
LD_LIBRARY_PATH
=
$CUDNN_PATH
:
$LD_LIBRARY_PATH
# only query the gpu used
nohup stdbuf
-oL
nvidia-smi
\
--id
=
${
CUDA_VISIBLE_DEVICES
}
\
--query-gpu
=
timestamp
\
--query-compute-apps
=
pid,process_name,used_memory
\
--format
=
csv
\
--filename
=
mem.log
\
-l
1 &
# mnist
# mnist gpu mnist 128
FLAGS_benchmark
=
true stdbuf
-oL
python fluid/mnist.py
\
--device
=
GPU
\
--batch_size
=
128
\
--skip_batch_num
=
5
\
--iterations
=
500
\
2>&1 |
tee
-a
mnist_gpu_128.log
# vgg16
#
cifar10
gpu cifar10 128
FLAGS_benchmark
=
true
python fluid/vgg
.py
\
# gpu cifar10 128
FLAGS_benchmark
=
true
stdbuf
-oL
python fluid/vgg16
.py
\
--device
=
GPU
\
--batch_size
=
128
\
--skip_batch_num
=
5
\
--iterations
=
30
\
2>&1
>
vgg16_gpu_128.log
--iterations
=
30
\
2>&1 |
tee
-a
vgg16_gpu_128.log
# flowers gpu 128
FLAGS_benchmark
=
true stdbuf
-oL
python fluid/vgg16.py
\
--device
=
GPU
\
--batch_size
=
32
\
--data_set
=
flowers
\
--skip_batch_num
=
5
\
--iterations
=
30
\
2>&1 |
tee
-a
vgg16_gpu_flowers_32.log
# resnet50
# resnet50 gpu cifar10 128
FLAGS_benchmark
=
true
python fluid/resnet
.py
\
FLAGS_benchmark
=
true
stdbuf
-oL
python fluid/resnet50
.py
\
--device
=
GPU
\
--batch_size
=
128
\
--data_set
=
cifar10
\
--model
=
resnet_cifar10
\
--skip_batch_num
=
5
\
--iterations
=
30
\
2>&1
>
resnet50_gpu_128.log
2>&1 |
tee
-a
resnet50_gpu_128.log
# resnet50 gpu flowers 64
FLAGS_benchmark
=
true stdbuf
-oL
python fluid/resnet50.py
\
--device
=
GPU
\
--batch_size
=
64
\
--data_set
=
flowers
\
--model
=
resnet_imagenet
\
--skip_batch_num
=
5
\
--iterations
=
30
\
2>&1 |
tee
-a
resnet50_gpu_flowers_64.log
# lstm
# lstm gpu imdb 32 # tensorflow only support batch=32
FLAGS_benchmark
=
true stdbuf
-oL
python fluid/stacked_dynamic_lstm.py
\
--device
=
GPU
\
--batch_size
=
32
\
--skip_batch_num
=
5
\
--iterations
=
30
\
--hidden_dim
=
512
\
--emb_dim
=
512
\
--crop_size
=
1500
\
2>&1 |
tee
-a
lstm_gpu_32.log
# seq2seq
# seq2seq gpu wmb 128
FLAGS_benchmark
=
true stdbuf
-oL
python fluid/machine_translation.py
\
--device
=
GPU
\
--batch_size
=
128
\
--skip_batch_num
=
5
\
--iterations
=
30
\
2>&1 |
tee
-a
lstm_gpu_128.log
benchmark/fluid/stacked_dynamic_lstm.py
浏览文件 @
5469c081
...
...
@@ -37,6 +37,14 @@ def parse_args():
type
=
int
,
default
=
32
,
help
=
'The sequence number of a batch data. (default: %(default)d)'
)
parser
.
add_argument
(
'--skip_batch_num'
,
type
=
int
,
default
=
5
,
help
=
'The first num of minibatch num to skip, for better performance test'
)
parser
.
add_argument
(
'--iterations'
,
type
=
int
,
default
=
80
,
help
=
'The number of minibatches.'
)
parser
.
add_argument
(
'--emb_dim'
,
type
=
int
,
...
...
@@ -64,6 +72,10 @@ def parse_args():
default
=
int
(
os
.
environ
.
get
(
'CROP_SIZE'
,
'1500'
)),
help
=
'The max sentence length of input. Since this model use plain RNN,'
' Gradient could be explored if sentence is too long'
)
parser
.
add_argument
(
'--with_test'
,
action
=
'store_true'
,
help
=
'If set, test the testset during training.'
)
args
=
parser
.
parse_args
()
return
args
...
...
@@ -157,37 +169,43 @@ def main():
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
def
train_loop
(
pass_num
,
crop_size
):
with
profiler
.
profiler
(
args
.
device
,
'total'
)
as
prof
:
for
pass_id
in
range
(
pass_num
):
train_reader
=
batch
(
paddle
.
reader
.
shuffle
(
crop_sentence
(
imdb
.
train
(
word_dict
),
crop_size
),
buf_size
=
25000
),
batch_size
=
args
.
batch_size
)
word_nums
=
0
pass_start_time
=
time
.
time
()
for
batch_id
,
data
in
enumerate
(
train_reader
()):
tensor_words
=
to_lodtensor
([
x
[
0
]
for
x
in
data
],
place
)
for
x
in
data
:
word_nums
+=
len
(
x
[
0
])
label
=
numpy
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
"int64"
)
label
=
label
.
reshape
((
-
1
,
1
))
loss_np
,
acc
,
weight
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"words"
:
tensor_words
,
"label"
:
label
},
fetch_list
=
[
loss
,
batch_acc
,
batch_size_tensor
])
print
(
"pass_id=%d, batch_id=%d, loss=%f, acc=%f"
%
(
pass_id
,
batch_id
,
loss_np
,
acc
))
pass_end_time
=
time
.
time
()
time_consumed
=
pass_end_time
-
pass_start_time
words_per_sec
=
word_nums
/
time_consumed
print
(
"pass_id=%d, sec/pass: %f, words/s: %f"
%
(
pass_id
,
time_consumed
,
words_per_sec
))
train_loop
(
args
.
pass_num
,
args
.
crop_size
)
train_reader
=
batch
(
paddle
.
reader
.
shuffle
(
crop_sentence
(
imdb
.
train
(
word_dict
),
args
.
crop_size
),
buf_size
=
25000
),
batch_size
=
args
.
batch_size
)
iters
,
num_samples
,
start_time
=
0
,
0
,
time
.
time
()
for
pass_id
in
range
(
args
.
pass_num
):
train_accs
=
[]
train_losses
=
[]
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
iters
==
args
.
skip_batch_num
:
start_time
=
time
.
time
()
num_samples
=
0
if
iters
==
args
.
iterations
:
break
tensor_words
=
to_lodtensor
([
x
[
0
]
for
x
in
data
],
place
)
label
=
numpy
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
"int64"
)
label
=
label
.
reshape
((
-
1
,
1
))
loss_np
,
acc
,
weight
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"words"
:
tensor_words
,
"label"
:
label
},
fetch_list
=
[
loss
,
batch_acc
,
batch_size_tensor
])
iters
+=
1
for
x
in
data
:
num_samples
+=
len
(
x
[
0
])
print
(
"Pass = %d, Iter = %d, Loss = %f, Accuracy = %f"
%
(
pass_id
,
iters
,
loss_np
,
acc
)
)
# The accuracy is the accumulation of batches, but not the current batch.
train_elapsed
=
time
.
time
()
-
start_time
examples_per_sec
=
num_samples
/
train_elapsed
print
(
'
\n
Total examples: %d, total time: %.5f, %.5f examples/sed
\n
'
%
(
num_samples
,
train_elapsed
,
examples_per_sec
))
exit
(
0
)
def
to_lodtensor
(
data
,
place
):
...
...
@@ -205,5 +223,14 @@ def to_lodtensor(data, place):
return
res
def
print_arguments
(
args
):
print
(
'----------- lstm Configuration Arguments -----------'
)
for
arg
,
value
in
sorted
(
vars
(
args
).
iteritems
()):
print
(
'%s: %s'
%
(
arg
,
value
))
print
(
'------------------------------------------------'
)
if
__name__
==
'__main__'
:
args
=
parse_args
()
print_arguments
(
args
)
main
()
benchmark/fluid/vgg.py
浏览文件 @
5469c081
...
...
@@ -191,25 +191,29 @@ def main():
fetch_list
=
[
avg_cost
,
batch_acc
,
batch_size_tensor
])
accuracy
.
add
(
value
=
acc
,
weight
=
weight
)
iters
+=
1
num_samples
+=
len
(
data
)
num_samples
+=
len
(
y_
data
)
print
(
"Pass = %d, Iter = %d, Loss = %f, Accuracy = %f"
%
(
pass_id
,
iters
,
loss
,
acc
)
)
# The accuracy is the accumulation of batches, but not the current batch.
pass_train_acc
=
accuracy
.
eval
()
#
pass_train_acc = accuracy.eval()
train_losses
.
append
(
loss
)
train_accs
.
append
(
acc
)
print
(
"Pass: %d, Loss: %f, Train Accuray: %f
\n
"
%
(
pass_id
,
np
.
mean
(
train_losses
),
np
.
mean
(
train_accs
)))
train_elapsed
=
time
.
time
()
-
start_time
examples_per_sec
=
num_samples
/
train_elapsed
print
(
'
\n
Total examples: %d, total time: %.5f, %.5f examples/sed
\n
'
%
(
num_samples
,
train_elapsed
,
examples_per_sec
))
# evaluation
if
args
.
with_test
:
pass_test_acc
=
test
(
exe
)
train_elapsed
=
time
.
time
()
-
start_time
print
(
"Pass: %d, Loss: %f, Train Accuray: %f
\n
"
%
(
pass_id
,
np
.
mean
(
train_losses
),
np
.
mean
(
train_accs
)))
exit
(
0
)
def
print_arguments
():
print
(
'----------- Configuration Arguments -----------'
)
print
(
'-----------
vgg
Configuration Arguments -----------'
)
for
arg
,
value
in
sorted
(
vars
(
args
).
iteritems
()):
print
(
'%s: %s'
%
(
arg
,
value
))
print
(
'------------------------------------------------'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录