Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
53c8c36a
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
53c8c36a
编写于
3月 21, 2018
作者:
D
dzhwinter
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
"debug the process"
上级
e4c35d83
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
133 addition
and
88 deletion
+133
-88
paddle/fluid/framework/executor.cc
paddle/fluid/framework/executor.cc
+1
-1
paddle/fluid/operators/sequence_expand_op.cu
paddle/fluid/operators/sequence_expand_op.cu
+84
-44
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+3
-0
python/paddle/fluid/tests/unittests/test_sequence_expand.py
python/paddle/fluid/tests/unittests/test_sequence_expand.py
+45
-43
未找到文件。
paddle/fluid/framework/executor.cc
浏览文件 @
53c8c36a
...
...
@@ -44,7 +44,7 @@ struct ExecutorPrepareContext {
ExecutorPrepareContext
(
const
framework
::
ProgramDesc
&
prog
,
size_t
block_id
)
:
prog_
(
prog
),
block_id_
(
block_id
)
{}
const
framework
::
ProgramDesc
&
prog_
;
const
framework
::
ProgramDesc
prog_
;
size_t
block_id_
;
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>
ops_
;
};
...
...
paddle/fluid/operators/sequence_expand_op.cu
浏览文件 @
53c8c36a
...
...
@@ -13,7 +13,10 @@ See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include <stdio.h>
#include <algorithm>
#include "paddle/fluid/operators/sequence_expand_op.h"
#include "paddle/fluid/platform/cuda_helper.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -22,47 +25,71 @@ using LoDTensor = framework::LoDTensor;
template
<
typename
T
>
__global__
void
sequence_expand_kernel
(
const
T
*
x_data
,
T
*
out_data
,
const
size_t
*
lod
,
size_t
lod_size
,
size_t
element_len
)
{
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
for
(;
tid_x
<
static_cast
<
int
>
(
lod_size
-
1
);
tid_x
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
scale
=
lod
[
tid_x
+
1
]
-
lod
[
tid_x
];
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
scale
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
{
int
tid_z
=
blockIdx
.
z
*
blockDim
.
z
+
threadIdx
.
z
;
int
item_start
=
tid_x
/
element_len
;
for
(;
tid_z
<
element_len
;
tid_z
+=
blockDim
.
z
*
gridDim
.
z
)
{
out_data
[
item_start
*
scale
+
tid_z
]
=
x_data
[
item_start
+
tid_z
];
}
const
size_t
*
lod
,
const
size_t
*
out_offset
,
size_t
lod_size
,
size_t
element_len
,
size_t
x_size
)
{
int
bid_x
=
blockIdx
.
x
;
if
(
bid_x
>
lod_size
)
return
;
int
repeats
=
lod
[
bid_x
];
int
offset
=
out_offset
[
bid_x
];
for
(
int
tid_y
=
threadIdx
.
y
;
tid_y
<
repeats
;
tid_y
+=
blockDim
.
y
)
{
for
(
int
tid_x
=
threadIdx
.
x
;
tid_x
<
element_len
;
tid_x
+=
blockDim
.
x
)
{
out_data
[(
offset
+
tid_y
)
*
element_len
+
tid_x
]
=
x_data
[
bid_x
*
element_len
+
tid_x
];
}
}
}
template
<
typename
T
>
__global__
void
sequence_expand_grad_kernel
(
const
T
*
dout_data
,
T
*
dx_data
,
const
size_t
*
lod
,
size_t
lod_size
,
size_t
element_len
,
size_t
dout_size
)
{
const
size_t
*
lod
,
const
size_t
*
out_offset
,
size_t
lod_size
,
size_t
element_len
,
size_t
dout_size
,
size_t
dx_size
)
{
// reduce visit memory time.
// dout_shm = [0 - dout_size-1], dx_shm = [dout_size-1, dout_size + dx_size-1]
if
(
blockIdx
.
x
==
0
&&
blockIdx
.
y
==
0
&&
threadIdx
.
x
==
0
&&
threadIdx
.
y
==
0
)
{
printf
(
"lod_size=%ld, element_size=%ld, dout_size=%ld, dx_size=%ld
\n
"
,
lod_size
,
element_len
,
dout_size
,
dx_size
);
}
extern
__shared__
T
shm
[];
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
for
(;
tid_x
<
static_cast
<
int
>
(
lod_size
-
1
);
tid_x
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
scale
=
lod
[
tid_x
+
1
]
-
lod
[
tid_x
];
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
scale
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
{
int
tid_z
=
blockIdx
.
z
*
blockDim
.
z
+
threadIdx
.
z
;
int
item_start
=
tid_x
/
element_len
;
for
(;
tid_z
<
element_len
;
tid_z
+=
blockDim
.
z
*
gridDim
.
z
)
{
shm
[
item_start
+
tid_z
]
+=
dout_data
[
item_start
*
scale
+
tid_z
];
}
T
*
dout_shm
=
shm
;
T
*
dx_shm
=
&
shm
[
dout_size
];
// int idx = threadIdx.x + blockIdx.x * blockDim.x;
for
(
int
idx
=
0
;
idx
<
dout_size
;
++
idx
)
{
if
(
idx
<
dx_size
)
{
dx_shm
[
idx
]
=
0.0
;
}
if
(
idx
<
dout_size
)
{
dout_shm
[
idx
]
=
dout_data
[
idx
];
}
}
int
bid_x
=
blockIdx
.
x
;
if
(
bid_x
>
lod_size
)
return
;
int
repeats
=
lod
[
bid_x
];
int
offset
=
out_offset
[
bid_x
];
if
(
threadIdx
.
x
==
0
)
{
printf
(
"repeats=%d, offset=%ld
\n
"
,
repeats
,
offset
);
}
for
(
int
tid_y
=
threadIdx
.
y
;
tid_y
<
repeats
;
tid_y
+=
blockDim
.
y
)
{
for
(
int
tid_x
=
threadIdx
.
x
;
tid_x
<
element_len
;
tid_x
+=
blockDim
.
x
)
{
T
val
=
dout_shm
[(
offset
+
tid_y
)
*
element_len
+
tid_x
];
platform
::
CudaAtomicAdd
(
&
dx_shm
[
bid_x
*
element_len
+
tid_x
],
val
);
int
dx_idx
=
bid_x
*
element_len
+
tid_x
;
int
dout_idx
=
(
offset
+
tid_y
)
*
element_len
+
tid_x
;
printf
(
"dx_idx=%d, dout_idx=%d, dx_data=%f, dout_data=%f, val=%f
\n
"
,
dx_idx
,
dout_idx
,
dx_shm
[
dx_idx
],
dout_shm
[
dout_idx
],
val
);
}
}
// synchronize before write to dx
__syncthreads
();
for
(
int
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
idx
<
static_cast
<
int
>
(
dout_size
);
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
dx_data
[
idx
]
=
shm
[
idx
];
// copy shared memory back to dx
for
(
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
idx
<
dx_size
;
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
dx_data
[
idx
]
=
dx_shm
[
idx
];
}
}
...
...
@@ -72,15 +99,20 @@ struct SequenceExpandFunctor<platform::CUDADeviceContext, T> {
const
LoDTensor
&
x
,
LoDTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
size_t
element_len
=
framework
::
product
(
x_dims
)
/
x_dims
[
0
];
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
out_starts
=
out
->
lod
().
back
();
auto
lod
=
out
->
lod
().
back
();
framework
::
Vector
<
size_t
>
out_lod
;
for
(
size_t
i
=
0
;
i
<
lod
.
size
()
-
1
;
++
i
)
{
out_lod
.
push_back
(
lod
[
i
+
1
]
-
lod
[
i
]);
}
dim3
block_size
(
16
,
32
,
element_len
);
dim3
grid_size
(
10
,
10
);
int
thread_x
=
std
::
max
(
static_cast
<
int
>
(
element_len
),
32
);
int
block_x
=
static_cast
<
int
>
(
out_lod
.
size
());
dim3
block_size
(
thread_x
,
1024
/
thread_x
);
dim3
grid_size
(
block_x
,
1
);
sequence_expand_kernel
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
x
.
data
<
T
>
(),
out
->
mutable_data
<
T
>
(
context
.
GetPlace
()),
out_
starts
.
CUDAData
(
context
.
GetPlace
()),
out_starts
.
size
(
),
element_len
);
out_
lod
.
CUDAData
(
context
.
GetPlace
()),
lod
.
CUDAData
(
context
.
GetPlace
()
),
out_lod
.
size
(),
element_len
,
framework
::
product
(
x_dims
)
);
}
};
...
...
@@ -91,16 +123,24 @@ struct SequenceExpandGradFunctor<platform::CUDADeviceContext, T> {
const
LoDTensor
&
dout
,
LoDTensor
*
dx
)
{
auto
x_dims
=
x
.
dims
();
size_t
element_len
=
framework
::
product
(
x_dims
)
/
x_dims
[
0
];
auto
out_starts
=
out
.
lod
().
back
();
auto
lod
=
out
.
lod
().
back
();
framework
::
Vector
<
size_t
>
out_lod
;
for
(
size_t
i
=
0
;
i
<
lod
.
size
()
-
1
;
++
i
)
{
out_lod
.
push_back
(
lod
[
i
+
1
]
-
lod
[
i
]);
}
size_t
dout_size
=
framework
::
product
(
dout
.
dims
());
size_t
dx_size
=
framework
::
product
(
dx
->
dims
());
dim3
block_size
(
16
,
32
,
element_len
);
dim3
grid_size
(
10
,
10
);
size_t
out_size
=
framework
::
product
(
dx
->
dims
());
sequence_expand_grad_kernel
<<<
grid_size
,
block_size
,
out_size
*
sizeof
(
T
),
int
thread_x
=
std
::
max
(
static_cast
<
int
>
(
element_len
),
32
);
dim3
block_size
(
thread_x
,
1024
/
thread_x
);
int
block_x
=
static_cast
<
int
>
(
out_lod
.
size
());
dim3
grid_size
(
block_x
,
1
);
sequence_expand_grad_kernel
<<<
grid_size
,
block_size
,
(
dout_size
+
dx_size
)
*
sizeof
(
T
),
context
.
stream
()
>>>
(
dout
.
data
<
T
>
(),
dx
->
mutable_data
<
T
>
(
context
.
GetPlace
()),
out_
starts
.
CUDAData
(
context
.
GetPlace
()),
out_starts
.
size
(),
element_len
,
out_size
);
out_
lod
.
CUDAData
(
context
.
GetPlace
()),
lod
.
CUDAData
(
context
.
GetPlace
())
,
out_
lod
.
size
(),
element_len
,
dout_size
,
dx_
size
);
}
};
...
...
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
53c8c36a
...
...
@@ -362,6 +362,9 @@ class OpTest(unittest.TestCase):
for
a
,
b
,
name
in
itertools
.
izip
(
numeric_grads
,
analytic_grads
,
names
):
abs_a
=
np
.
abs
(
a
)
abs_a
[
abs_a
<
1e-3
]
=
1
print
(
"actual"
,
a
)
print
(
"*****"
)
print
(
"expected"
,
b
)
diff_mat
=
np
.
abs
(
a
-
b
)
/
abs_a
max_diff
=
np
.
max
(
diff_mat
)
...
...
python/paddle/fluid/tests/unittests/test_sequence_expand.py
浏览文件 @
53c8c36a
...
...
@@ -19,8 +19,14 @@ from op_test import OpTest
class
TestSequenceExpand
(
OpTest
):
def
set_data
(
self
):
x_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
3
,
1
]).
astype
(
'float32'
)
y_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
8
,
1
]).
astype
(
'float32'
)
x
=
[
i
/
10.0
for
i
in
range
(
3
)]
y
=
[
i
/
10.0
for
i
in
range
(
8
)]
x_data
=
np
.
array
(
x
).
reshape
(
3
,
1
).
astype
(
'float32'
)
y_data
=
np
.
array
(
y
).
reshape
(
8
,
1
).
astype
(
'float32'
)
print
(
x_data
)
print
(
y_data
)
# x_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32')
# y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32')
y_lod
=
[[
0
,
1
,
4
,
8
]]
self
.
inputs
=
{
'X'
:
x_data
,
'Y'
:
(
y_data
,
y_lod
)}
...
...
@@ -45,47 +51,43 @@ class TestSequenceExpand(OpTest):
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
class
TestSequenceExpandCase1
(
TestSequenceExpand
):
def
set_data
(
self
):
x_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
5
,
1
]).
astype
(
'float32'
)
x_lod
=
[[
0
,
2
,
5
]]
y_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
1
]).
astype
(
'float32'
)
y_lod
=
[[
0
,
2
,
5
],
[
0
,
2
,
4
,
7
,
10
,
13
]]
self
.
inputs
=
{
'X'
:
(
x_data
,
x_lod
),
'Y'
:
(
y_data
,
y_lod
)}
class
TestSequenceExpandCase2
(
TestSequenceExpand
):
def
set_data
(
self
):
x_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
1
,
2
,
2
]).
astype
(
'float32'
)
x_lod
=
[[
0
,
1
]]
y_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
2
,
2
]).
astype
(
'float32'
)
y_lod
=
[[
0
,
2
]]
self
.
inputs
=
{
'X'
:
(
x_data
,
x_lod
),
'Y'
:
(
y_data
,
y_lod
)}
class
TestSequenceExpandCase3
(
TestSequenceExpand
):
def
set_data
(
self
):
x_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
4
,
1
]).
astype
(
'float32'
)
x_lod
=
[[
0
,
1
,
2
,
3
,
4
]]
y_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
6
,
1
]).
astype
(
'float32'
)
y_lod
=
[[
0
,
2
,
4
,
4
,
6
]]
self
.
inputs
=
{
'X'
:
(
x_data
,
x_lod
),
'Y'
:
(
y_data
,
y_lod
)}
class
TestSequenceExpandCase4
(
TestSequenceExpand
):
def
set_data
(
self
):
x_data
=
np
.
array
(
[
0.1
,
0.3
,
0.2
,
0.15
,
0.25
,
0.2
,
0.15
,
0.25
,
0.1
,
0.3
]).
reshape
(
[
2
,
5
]).
astype
(
'float32'
)
x_lod
=
[[
0
,
1
,
2
,
]]
y_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
1
]).
astype
(
'float32'
)
y_lod
=
[[
0
,
1
,
2
],
[
0
,
1
,
2
]]
self
.
inputs
=
{
'X'
:
(
x_data
,
x_lod
),
'Y'
:
(
y_data
,
y_lod
)}
# class TestSequenceExpandCase1(TestSequenceExpand):
# def set_data(self):
# x_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32')
# x_lod = [[0, 2, 5]]
# y_data = np.random.uniform(0.1, 1, [13, 1]).astype('float32')
# y_lod = [[0, 2, 5], [0, 2, 4, 7, 10, 13]]
# self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
# class TestSequenceExpandCase2(TestSequenceExpand):
# def set_data(self):
# x_data = np.random.uniform(0.1, 1, [1, 2, 2]).astype('float32')
# x_lod = [[0, 1]]
# y_data = np.random.uniform(0.1, 1, [2, 2, 2]).astype('float32')
# y_lod = [[0, 2]]
# self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
# class TestSequenceExpandCase3(TestSequenceExpand):
# def set_data(self):
# x_data = np.random.uniform(0.1, 1, [4, 1]).astype('float32')
# x_lod = [[0, 1, 2, 3, 4]]
# y_data = np.random.uniform(0.1, 1, [6, 1]).astype('float32')
# y_lod = [[0, 2, 4, 4, 6]]
# self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
# class TestSequenceExpandCase4(TestSequenceExpand):
# def set_data(self):
# x_data = np.array(
# [0.1, 0.3, 0.2, 0.15, 0.25, 0.2, 0.15, 0.25, 0.1, 0.3]).reshape(
# [2, 5]).astype('float32')
# x_lod = [[
# 0,
# 1,
# 2,
# ]]
# y_data = np.random.uniform(0.1, 1, [2, 1]).astype('float32')
# y_lod = [[0, 1, 2], [0, 1, 2]]
# self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录