Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
53783e1e
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
53783e1e
编写于
1月 13, 2022
作者:
J
JZ-LIANG
提交者:
GitHub
1月 13, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Dist Pass] AMP pass add dist_update_loss_scaling op (#38902)
上级
a6cf6cdd
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
136 addition
and
1 deletion
+136
-1
python/paddle/distributed/auto_parallel/operators/__init__.py
...on/paddle/distributed/auto_parallel/operators/__init__.py
+1
-0
python/paddle/distributed/auto_parallel/operators/common.py
python/paddle/distributed/auto_parallel/operators/common.py
+1
-1
python/paddle/distributed/auto_parallel/operators/dist_update_loss_scaling.py
...buted/auto_parallel/operators/dist_update_loss_scaling.py
+134
-0
未找到文件。
python/paddle/distributed/auto_parallel/operators/__init__.py
浏览文件 @
53783e1e
...
...
@@ -24,3 +24,4 @@ from . import dist_softmax
from
.
import
dist_transpose
from
.
import
dist_default
from
.
import
dist_check_finite_and_unscale
from
.
import
dist_update_loss_scaling
python/paddle/distributed/auto_parallel/operators/common.py
浏览文件 @
53783e1e
...
...
@@ -15,7 +15,7 @@
from
..dist_attribute
import
OperatorDistributedAttribute
_g_distributed_operator_impl_registries
=
{}
BACKWARD_ONLY_DIST_OPS
=
{
'check_finite_and_unscale'
}
BACKWARD_ONLY_DIST_OPS
=
{
'check_finite_and_unscale'
,
'update_loss_scaling'
}
class
DistributedOperatorImplContainer
:
...
...
python/paddle/distributed/auto_parallel/operators/dist_update_loss_scaling.py
0 → 100644
浏览文件 @
53783e1e
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
from
.common
import
DistributedOperatorImplContainer
from
.common
import
DistributedOperatorImpl
from
.common
import
register_distributed_operator_impl_container
from
.common
import
register_distributed_operator_impl
from
..utils
import
set_dist_op_desc_original_id
class
DistributedUpdateLossScaling
(
DistributedOperatorImplContainer
):
def
__init__
(
self
,
name
):
super
(
DistributedUpdateLossScaling
,
self
).
__init__
()
self
.
_name
=
name
register_distributed_operator_impl_container
(
"update_loss_scaling"
,
DistributedUpdateLossScaling
(
"update_loss_scaling"
))
class
DistributedUpdateLossScalingImpl
(
DistributedOperatorImpl
):
def
__init__
(
self
,
name
):
super
(
DistributedUpdateLossScalingImpl
,
self
).
__init__
()
self
.
_name
=
name
self
.
_forward_implemented
=
False
self
.
_backward_implemented
=
True
def
is_input_compatible
(
self
,
dist_op
):
raise
RuntimeError
(
"DistributedUpdateLossScalingImpl's is_input_compatible should not be called !"
)
def
is_output_compatible
(
self
,
dist_op
):
raise
RuntimeError
(
"DistributedUpdateLossScalingImpl's is_output_compatible should not be called !"
)
def
update_dims_mapping
(
self
,
dist_op
):
raise
RuntimeError
(
"DistributedUpdateLossScalingImpl's update_dims_mapping should not be called !"
)
@
staticmethod
def
forward
(
ctx
,
*
args
,
**
kwargs
):
raise
RuntimeError
(
"DistributedUpdateLossScalingImpl's forward should not be called !"
)
@
staticmethod
def
backward
(
ctx
,
*
args
,
**
kwargs
):
# the backward function only filte the gradient with current rank id
dist_op_context
=
ctx
.
dist_op_context
main_block
=
dist_op_context
.
get_dst_main_program
().
global_block
()
backward_op
=
dist_op_context
.
get_cur_src_op
()
rank_id
=
dist_op_context
.
get_rank_id
()
dist_attr
=
ctx
.
get_op_dist_attr_for_program
(
backward_op
)
assert
dist_attr
is
not
None
,
"backward op [{}] don't have dist attribute !"
.
format
(
str
(
backward_op
))
assert
rank_id
in
dist_attr
.
process_mesh
.
processes
assert
'X'
in
kwargs
,
"input [{}] is not given"
.
format
(
'X'
)
assert
'FoundInfinite'
in
kwargs
,
"input [{}] is not given"
.
format
(
'FoundInfinite'
)
assert
'PrevLossScaling'
in
kwargs
,
"input [{}] is not given"
.
format
(
'PrevLossScaling'
)
assert
'InGoodSteps'
in
kwargs
,
"input [{}] is not given"
.
format
(
'InGoodSteps'
)
assert
'InBadSteps'
in
kwargs
,
"input [{}] is not given"
.
format
(
'InBadSteps'
)
assert
'Out'
in
kwargs
,
"output [{}] is not given"
.
format
(
'Out'
)
assert
'LossScaling'
in
kwargs
,
"output [{}] is not given"
.
format
(
'LossScaling'
)
assert
'OutGoodSteps'
in
kwargs
,
"input [{}] is not given"
.
format
(
'OutGoodSteps'
)
assert
'OutBadSteps'
in
kwargs
,
"input [{}] is not given"
.
format
(
'OutBadSteps'
)
assert
len
(
kwargs
[
'FoundInfinite'
])
==
1
,
\
"update_loss_scaling input FoundInfinite take 1 variable but got {}"
.
format
(
kwargs
[
'FoundInfinite'
])
assert
len
(
kwargs
[
'PrevLossScaling'
])
==
1
,
\
"update_loss_scaling input PrevLossScaling take 1 variable but got {}"
.
format
(
kwargs
[
'PrevLossScaling'
])
assert
len
(
kwargs
[
'InGoodSteps'
])
==
1
,
\
"update_loss_scaling input InGoodSteps take 1 variable but got {}"
.
format
(
kwargs
[
'InGoodSteps'
])
assert
len
(
kwargs
[
'InBadSteps'
])
==
1
,
\
"update_loss_scaling input InBadSteps take 1 variable but got {}"
.
format
(
kwargs
[
'InBadSteps'
])
assert
len
(
kwargs
[
'LossScaling'
])
==
1
,
\
"update_loss_scaling output LossScaling take 1 variable but got {}"
.
format
(
kwargs
[
'LossScaling'
])
assert
len
(
kwargs
[
'OutGoodSteps'
])
==
1
,
\
"update_loss_scaling output OutGoodSteps take 1 variable but got {}"
.
format
(
kwargs
[
'OutGoodSteps'
])
assert
len
(
kwargs
[
'OutBadSteps'
])
==
1
,
\
"update_loss_scaling output OutBadSteps take 1 variable but got {}"
.
format
(
kwargs
[
'OutBadSteps'
])
assert
len
(
kwargs
[
'X'
])
==
len
(
kwargs
[
'Out'
]),
\
"update_loss_scaling got [{}] X and [{}] Out, which are supposed to be equal"
.
format
(
len
(
kwargs
[
'X'
]),
len
(
kwargs
[
'Out'
]))
filter_vars
=
[]
for
varname
in
kwargs
[
'X'
]:
if
rank_id
in
ctx
.
get_tensor_dist_attr_for_program
(
main_block
.
var
(
varname
)).
process_mesh
.
processes
:
filter_vars
.
append
(
varname
)
# replicate op in dist program
dist_op_desc
=
main_block
.
desc
.
append_op
()
dist_op_desc
.
copy_from
(
backward_op
.
desc
)
set_dist_op_desc_original_id
(
dist_op_desc
,
backward_op
.
desc
,
ctx
)
dist_op_desc
.
set_input
(
'X'
,
filter_vars
)
dist_op_desc
.
set_output
(
'Out'
,
filter_vars
)
main_block
.
_sync_with_cpp
()
register_distributed_operator_impl
(
"update_loss_scaling"
,
DistributedUpdateLossScalingImpl
(
"update_loss_scaling"
))
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录