Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
53619873
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
53619873
编写于
5月 09, 2020
作者:
Y
Yiqun Liu
提交者:
GitHub
5月 09, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Implement the new profiler api. (#24344)
上级
a851b97a
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
241 addition
and
56 deletion
+241
-56
python/paddle/fluid/tests/unittests/test_profiler.py
python/paddle/fluid/tests/unittests/test_profiler.py
+114
-42
python/paddle/utils/__init__.py
python/paddle/utils/__init__.py
+5
-7
python/paddle/utils/profiler.py
python/paddle/utils/profiler.py
+122
-7
未找到文件。
python/paddle/fluid/tests/unittests/test_profiler.py
浏览文件 @
53619873
...
@@ -18,6 +18,7 @@ import unittest
...
@@ -18,6 +18,7 @@ import unittest
import
os
import
os
import
tempfile
import
tempfile
import
numpy
as
np
import
numpy
as
np
import
paddle.utils
as
utils
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.layers
as
layers
import
paddle.fluid.layers
as
layers
...
@@ -31,16 +32,9 @@ class TestProfiler(unittest.TestCase):
...
@@ -31,16 +32,9 @@ class TestProfiler(unittest.TestCase):
def
setUpClass
(
cls
):
def
setUpClass
(
cls
):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
def
net_profiler
(
self
,
def
build_program
(
self
,
compile_program
=
True
):
state
,
option
,
iter_range
=
None
,
use_parallel_executor
=
False
):
profile_path
=
os
.
path
.
join
(
tempfile
.
gettempdir
(),
"profile"
)
open
(
profile_path
,
"w"
).
write
(
""
)
startup_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
main_program
=
fluid
.
Program
()
main_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main_program
,
startup_program
):
with
fluid
.
program_guard
(
main_program
,
startup_program
):
image
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
784
],
dtype
=
'float32'
)
image
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
784
],
dtype
=
'float32'
)
hidden1
=
fluid
.
layers
.
fc
(
input
=
image
,
size
=
64
,
act
=
'relu'
)
hidden1
=
fluid
.
layers
.
fc
(
input
=
image
,
size
=
64
,
act
=
'relu'
)
...
@@ -70,34 +64,19 @@ class TestProfiler(unittest.TestCase):
...
@@ -70,34 +64,19 @@ class TestProfiler(unittest.TestCase):
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
0.001
,
momentum
=
0.9
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
0.001
,
momentum
=
0.9
)
opts
=
optimizer
.
minimize
(
avg_cost
,
startup_program
=
startup_program
)
opts
=
optimizer
.
minimize
(
avg_cost
,
startup_program
=
startup_program
)
place
=
fluid
.
CPUPlace
()
if
state
==
'CPU'
else
fluid
.
CUDAPlace
(
0
)
if
compile_program
:
exe
=
fluid
.
Executor
(
place
)
train_program
=
fluid
.
compiler
.
CompiledProgram
(
exe
.
run
(
startup_program
)
main_program
).
with_data_parallel
(
loss_name
=
avg_cost
.
name
)
if
use_parallel_executor
:
else
:
pe
=
fluid
.
ParallelExecutor
(
train_program
=
main_program
state
!=
'CPU'
,
return
train_program
,
startup_program
,
avg_cost
,
batch_size
,
batch_acc
loss_name
=
avg_cost
.
name
,
main_program
=
main_program
)
def
get_profile_path
(
self
):
profile_path
=
os
.
path
.
join
(
tempfile
.
gettempdir
(),
"profile"
)
pass_acc_calculator
=
fluid
.
average
.
WeightedAverage
()
open
(
profile_path
,
"w"
).
write
(
""
)
with
profiler
.
profiler
(
state
,
'total'
,
profile_path
,
option
)
as
prof
:
return
profile_path
for
iter
in
range
(
10
):
if
iter
==
2
:
def
check_profile_result
(
self
,
profile_path
):
profiler
.
reset_profiler
()
x
=
np
.
random
.
random
((
32
,
784
)).
astype
(
"float32"
)
y
=
np
.
random
.
randint
(
0
,
10
,
(
32
,
1
)).
astype
(
"int64"
)
if
use_parallel_executor
:
pe
.
run
(
feed
=
{
'x'
:
x
,
'y'
:
y
},
fetch_list
=
[
avg_cost
.
name
])
continue
outs
=
exe
.
run
(
main_program
,
feed
=
{
'x'
:
x
,
'y'
:
y
},
fetch_list
=
[
avg_cost
,
batch_acc
,
batch_size
])
acc
=
np
.
array
(
outs
[
1
])
b_size
=
np
.
array
(
outs
[
2
])
pass_acc_calculator
.
add
(
value
=
acc
,
weight
=
b_size
)
pass_acc
=
pass_acc_calculator
.
eval
()
data
=
open
(
profile_path
,
'rb'
).
read
()
data
=
open
(
profile_path
,
'rb'
).
read
()
if
(
len
(
data
)
>
0
):
if
(
len
(
data
)
>
0
):
profile_pb
=
profiler_pb2
.
Profile
()
profile_pb
=
profiler_pb2
.
Profile
()
...
@@ -115,21 +94,114 @@ class TestProfiler(unittest.TestCase):
...
@@ -115,21 +94,114 @@ class TestProfiler(unittest.TestCase):
event
.
name
.
startswith
(
"Runtime API"
)):
event
.
name
.
startswith
(
"Runtime API"
)):
print
(
"Warning: unregister"
,
event
.
name
)
print
(
"Warning: unregister"
,
event
.
name
)
def
run_iter
(
self
,
exe
,
main_program
,
fetch_list
,
pass_acc_calculator
):
x
=
np
.
random
.
random
((
32
,
784
)).
astype
(
"float32"
)
y
=
np
.
random
.
randint
(
0
,
10
,
(
32
,
1
)).
astype
(
"int64"
)
outs
=
exe
.
run
(
main_program
,
feed
=
{
'x'
:
x
,
'y'
:
y
},
fetch_list
=
fetch_list
)
acc
=
np
.
array
(
outs
[
1
])
b_size
=
np
.
array
(
outs
[
2
])
pass_acc_calculator
.
add
(
value
=
acc
,
weight
=
b_size
)
pass_acc
=
pass_acc_calculator
.
eval
()
def
net_profiler
(
self
,
exe
,
state
,
tracer_option
,
batch_range
=
None
,
use_parallel_executor
=
False
,
use_new_api
=
False
):
main_program
,
startup_program
,
avg_cost
,
batch_size
,
batch_acc
=
self
.
build_program
(
compile_program
=
use_parallel_executor
)
exe
.
run
(
startup_program
)
profile_path
=
self
.
get_profile_path
()
if
not
use_new_api
:
with
profiler
.
profiler
(
state
,
'total'
,
profile_path
,
tracer_option
):
pass_acc_calculator
=
fluid
.
average
.
WeightedAverage
()
for
iter
in
range
(
10
):
if
iter
==
2
:
profiler
.
reset_profiler
()
self
.
run_iter
(
exe
,
main_program
,
[
avg_cost
,
batch_acc
,
batch_size
],
pass_acc_calculator
)
else
:
options
=
utils
.
ProfilerOptions
(
options
=
{
'state'
:
state
,
'sorted_key'
:
'total'
,
'tracer_level'
:
tracer_option
,
'batch_range'
:
[
0
,
10
]
if
batch_range
is
None
else
batch_range
,
'profile_path'
:
profile_path
})
with
utils
.
Profiler
(
enabled
=
True
,
options
=
options
)
as
prof
:
pass_acc_calculator
=
fluid
.
average
.
WeightedAverage
()
for
iter
in
range
(
10
):
self
.
run_iter
(
exe
,
main_program
,
[
avg_cost
,
batch_acc
,
batch_size
],
pass_acc_calculator
)
utils
.
get_profiler
().
record_step
()
if
batch_range
is
None
and
iter
==
2
:
utils
.
get_profiler
().
reset
()
self
.
check_profile_result
(
profile_path
)
def
test_cpu_profiler
(
self
):
def
test_cpu_profiler
(
self
):
self
.
net_profiler
(
'CPU'
,
"Default"
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
#self.net_profiler('CPU', "Default", use_parallel_executor=True)
for
use_new_api
in
[
False
,
True
]:
self
.
net_profiler
(
exe
,
'CPU'
,
"Default"
,
batch_range
=
[
5
,
10
],
use_new_api
=
use_new_api
)
#self.net_profiler('CPU', "Default", use_parallel_executor=True)
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"profiler is enabled only with GPU"
)
"profiler is enabled only with GPU"
)
def
test_cuda_profiler
(
self
):
def
test_cuda_profiler
(
self
):
self
.
net_profiler
(
'GPU'
,
"OpDetail"
)
exe
=
fluid
.
Executor
(
fluid
.
CUDAPlace
(
0
))
#self.net_profiler('GPU', "OpDetail", use_parallel_executor=True)
for
use_new_api
in
[
False
,
True
]:
self
.
net_profiler
(
exe
,
'GPU'
,
"OpDetail"
,
batch_range
=
[
0
,
100
],
use_new_api
=
use_new_api
)
#self.net_profiler('GPU', "OpDetail", use_parallel_executor=True)
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"profiler is enabled only with GPU"
)
"profiler is enabled only with GPU"
)
def
test_all_profiler
(
self
):
def
test_all_profiler
(
self
):
self
.
net_profiler
(
'All'
,
"AllOpDetail"
)
exe
=
fluid
.
Executor
(
fluid
.
CUDAPlace
(
0
))
#self.net_profiler('All', "AllOpDetail", use_parallel_executor=True)
for
use_new_api
in
[
False
,
True
]:
self
.
net_profiler
(
exe
,
'All'
,
"AllOpDetail"
,
batch_range
=
None
,
use_new_api
=
use_new_api
)
#self.net_profiler('All', "AllOpDetail", use_parallel_executor=True)
class
TestProfilerAPIError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
options
=
utils
.
ProfilerOptions
()
self
.
assertTrue
(
options
[
'profile_path'
]
is
None
)
self
.
assertTrue
(
options
[
'timeline_path'
]
is
None
)
options
=
options
.
with_state
(
'All'
)
self
.
assertTrue
(
options
[
'state'
]
==
'All'
)
try
:
print
(
options
[
'test'
])
except
ValueError
:
pass
global_profiler
=
utils
.
get_profiler
()
with
utils
.
Profiler
(
enabled
=
True
)
as
prof
:
self
.
assertTrue
(
utils
.
get_profiler
()
==
prof
)
self
.
assertTrue
(
global_profiler
!=
prof
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
python/paddle/utils/__init__.py
浏览文件 @
53619873
...
@@ -13,15 +13,13 @@
...
@@ -13,15 +13,13 @@
# limitations under the License.
# limitations under the License.
from
.plot
import
Ploter
from
.plot
import
Ploter
from
.profiler
import
ProfilerOptions
from
.profiler
import
Profiler
from
.profiler
import
get_profiler
__all__
=
[
'dump_config'
,
'Ploter'
]
__all__
=
[
'dump_config'
,
'Ploter'
]
#TODO: define new api under this directory
#TODO: define new api under this directory
# __all__ = ['profiler',
# __all__ = ['unique_name',
# 'profiler.cuda_profiler',
# 'profiler.profiler',
# 'profiler.reset_profiler',
# 'profiler.start_profiler',
# 'profiler.stop_profiler',
# 'unique_name',
# 'load_op_library',
# 'load_op_library',
# 'require_version']
# 'require_version']
python/paddle/utils/profiler.py
浏览文件 @
53619873
# Copyright (c) 20
16
PaddlePaddle Authors. All Rights Reserved
# Copyright (c) 20
20
PaddlePaddle Authors. All Rights Reserved
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# you may not use this file except in compliance with the License.
...
@@ -12,9 +12,124 @@
...
@@ -12,9 +12,124 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
#TODO: define new api of profiler
from
__future__
import
print_function
# __all__ = ['cuda_profiler',
# 'profiler',
import
sys
# 'reset_profiler',
import
warnings
# 'start_profiler',
# 'stop_profiler']
from
..fluid
import
core
from
..fluid.profiler
import
*
__all__
=
[
'ProfilerOptions'
,
'Profiler'
,
'get_profiler'
]
class
ProfilerOptions
(
object
):
def
__init__
(
self
,
options
=
None
):
self
.
options
=
{
'state'
:
'All'
,
'sorted_key'
:
'default'
,
'tracer_level'
:
'Default'
,
'batch_range'
:
[
0
,
sys
.
maxsize
],
'output_thread_detail'
:
False
,
'profile_path'
:
'none'
,
'timeline_path'
:
'none'
,
'op_summary_path'
:
'none'
}
if
options
is
not
None
:
for
key
in
self
.
options
.
keys
():
if
options
.
get
(
key
,
None
)
is
not
None
:
self
.
options
[
key
]
=
options
[
key
]
# function to set one specified option
def
with_state
(
self
,
state
):
self
.
options
[
'state'
]
=
state
return
self
def
__getitem__
(
self
,
name
):
if
self
.
options
.
get
(
name
,
None
)
is
None
:
raise
ValueError
(
"ProfilerOptions does not have an option named %s."
%
name
)
else
:
if
isinstance
(
self
.
options
[
name
],
str
)
and
self
.
options
[
name
]
==
'none'
:
return
None
else
:
return
self
.
options
[
name
]
_current_profiler
=
None
class
Profiler
(
object
):
def
__init__
(
self
,
enabled
=
True
,
options
=
None
):
if
options
is
not
None
:
self
.
profiler_options
=
options
else
:
self
.
profiler_options
=
ProfilerOptions
()
self
.
batch_id
=
0
self
.
enabled
=
enabled
def
__enter__
(
self
):
# record current profiler
global
_current_profiler
self
.
previous_profiler
=
_current_profiler
_current_profiler
=
self
if
self
.
enabled
:
if
self
.
profiler_options
[
'batch_range'
][
0
]
==
0
:
self
.
start
()
return
self
def
__exit__
(
self
,
exception_type
,
exception_value
,
traceback
):
global
_current_profiler
_current_profiler
=
self
.
previous_profiler
if
self
.
enabled
:
self
.
stop
()
def
start
(
self
):
if
self
.
enabled
:
try
:
start_profiler
(
state
=
self
.
profiler_options
[
'state'
],
tracer_option
=
self
.
profiler_options
[
'tracer_level'
])
except
Exception
as
e
:
warnings
.
warn
(
"Profiler is not enabled becuase following exception:
\n
{}"
.
format
(
e
))
def
stop
(
self
):
if
self
.
enabled
:
try
:
stop_profiler
(
sorted_key
=
self
.
profiler_options
[
'sorted_key'
],
profile_path
=
self
.
profiler_options
[
'profile_path'
])
except
Exception
as
e
:
warnings
.
warn
(
"Profiler is not disabled becuase following exception:
\n
{}"
.
format
(
e
))
def
reset
(
self
):
if
self
.
enabled
and
core
.
is_profiler_enabled
():
reset_profiler
()
def
record_step
(
self
,
change_profiler_status
=
True
):
if
not
self
.
enabled
:
return
self
.
batch_id
=
self
.
batch_id
+
1
if
change_profiler_status
:
if
self
.
batch_id
==
self
.
profiler_options
[
'batch_range'
][
0
]:
if
core
.
is_profiler_enabled
():
self
.
reset
()
else
:
self
.
start
()
if
self
.
batch_id
==
self
.
profiler_options
[
'batch_range'
][
1
]:
self
.
stop
()
def
get_profiler
():
global
_current_profiler
if
_current_profiler
is
None
:
_current_profiler
=
Profiler
()
return
_current_profiler
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录