提交 515543ab 编写于 作者: Y Yuan Gao 提交者: GitHub

Merge pull request #2 from PaddlePaddle/develop

Merge from PaddlePaddle/develop
[submodule "book"]
path = book
url = https://github.com/PaddlePaddle/book.git
......@@ -2,12 +2,12 @@
sha: c25201a00e6b0514370501050cf2a8538ac12270
hooks:
- id: remove-crlf
files: (?!.*third_party)^.*$
files: (?!.*third_party)^.*$ | (?!.*book)^.*$
- repo: https://github.com/reyoung/mirrors-yapf.git
sha: v0.13.2
hooks:
- id: yapf
files: (.*\.(py|bzl)|BUILD|.*\.BUILD|WORKSPACE)$ # Bazel BUILD files follow Python syntax.
files: (.*\.(py|bzl)|BUILD|.*\.BUILD|WORKSPACE)$
- repo: https://github.com/pre-commit/pre-commit-hooks
sha: 7539d8bd1a00a3c1bfd34cdb606d3a6372e83469
hooks:
......@@ -15,7 +15,7 @@
- id: check-merge-conflict
- id: check-symlinks
- id: detect-private-key
files: (?!.*third_party)^.*$
files: (?!.*third_party)^.*$ | (?!.*book)^.*$
- id: end-of-file-fixer
- repo: https://github.com/PaddlePaddle/clang-format-pre-commit-hook.git
sha: 28c0ea8a67a3e2dbbf4822ef44e85b63a0080a29
......
......@@ -4,22 +4,14 @@ cache:
- $HOME/third_party
- $HOME/.ccache
- $HOME/.cache/pip
- $HOME/Library/Caches/Homebrew
sudo: required
dist: trusty
os:
- linux
- osx
env:
- JOB=DOCS
- JOB=BUILD_AND_TEST
- JOB=PRE_COMMIT
matrix:
exclude:
- os: osx
env: JOB=DOCS # Only generate documentation in linux.
- os: osx
env: JOB=PRE_COMMIT # Only check pre-commit hook in linux
addons:
apt:
......@@ -53,11 +45,10 @@ before_install:
fi
fi
fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then paddle/scripts/travis/before_install.osx.sh; fi
- if [[ "$JOB" == "PRE_COMMIT" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi
# Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python
# protobuf version.
- pip install numpy wheel 'protobuf==3.1' sphinx recommonmark sphinx_rtd_theme virtualenv pre-commit requests==2.9.2 LinkChecker
- pip install numpy wheel 'protobuf==3.1' sphinx recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit requests==2.9.2 LinkChecker
script:
- paddle/scripts/travis/main.sh
notifications:
......
......@@ -29,13 +29,16 @@ Luo, Tao
Lyu, Qin
Mao, Hongyue
Qian, Xiaojun
Qiao, Longfei
Qi, Jun
Qin, Duohao
Shen, Guolong
Shi, Guangchuan
Song, Xiang
Wang, Helin
Wang, Jiang
Wang, Yanfei
Wang, Yi
Wang, Yong
Weng, Renliang
Xu, Tianbing
......
Subproject commit 22ed2a01aee872f055b5f5f212428f481cefc10d
......@@ -72,7 +72,7 @@ function( Sphinx_add_target target_name builder conf cache source destination )
${source}
${destination}
COMMENT "Generating sphinx documentation: ${builder}"
COMMAND ln -sf ${destination}/index_*.html ${destination}/index.html
COMMAND cd ${destination} && ln -s ./index_*.html index.html
)
set_property(
......
......@@ -110,14 +110,13 @@ endmacro()
# Get the coverage data.
file(GLOB_RECURSE GCDA_FILES "${COV_PATH}" "*.gcda")
message("GCDA files:")
message("Process GCDA files:")
message("===============================")
# Get a list of all the object directories needed by gcov
# (The directories the .gcda files and .o files are found in)
# and run gcov on those.
foreach(GCDA ${GCDA_FILES})
message("Process: ${GCDA}")
message("------------------------------------------------------------------------------")
get_filename_component(GCDA_DIR ${GCDA} PATH)
#
......@@ -135,7 +134,7 @@ foreach(GCDA ${GCDA_FILES})
# If -p is not specified then the file is named only "the_file.c.gcov"
#
execute_process(
COMMAND ${GCOV_EXECUTABLE} -p -o ${GCDA_DIR} ${GCDA}
COMMAND "${GCOV_EXECUTABLE} -p -o ${GCDA_DIR} ${GCDA} >/dev/null"
WORKING_DIRECTORY ${GCDA_DIR}
)
endforeach()
......@@ -383,7 +382,6 @@ foreach(NOT_COVERED_SRC ${COVERAGE_SRCS_REMAINING})
set(GCOV_FILE_COVERAGE "${GCOV_FILE_COVERAGE}]")
# Generate the final JSON for this file.
message("Generate JSON for non-gcov file: ${NOT_COVERED_SRC}...")
string(CONFIGURE ${SRC_FILE_TEMPLATE} FILE_JSON)
set(JSON_GCOV_FILES "${JSON_GCOV_FILES}${FILE_JSON}, ")
endforeach()
......
......@@ -14,13 +14,14 @@
INCLUDE(ExternalProject)
SET(PROTOBUF_SOURCES_DIR ${THIRD_PARTY_PATH}/protobuf)
SET(PROTOBUF_INSTALL_DIR ${THIRD_PARTY_PATH}/install/protobuf)
SET(PROTOBUF_INCLUDE_DIR "${PROTOBUF_INSTALL_DIR}/include" CACHE PATH "protobuf include directory." FORCE)
FIND_PACKAGE(Protobuf 3.1)
INCLUDE_DIRECTORIES(${PROTOBUF_INCLUDE_DIR})
IF(NOT PROTOBUF_FOUND)
SET(PROTOBUF_SOURCES_DIR ${THIRD_PARTY_PATH}/protobuf)
SET(PROTOBUF_INSTALL_DIR ${THIRD_PARTY_PATH}/install/protobuf)
SET(PROTOBUF_INCLUDE_DIR "${PROTOBUF_INSTALL_DIR}/include" CACHE PATH "protobuf include directory." FORCE)
IF(WIN32)
IF(WIN32)
SET(PROTOBUF_LITE_LIBRARY
"${PROTOBUF_INSTALL_DIR}/lib/libprotobuf-lite.lib" CACHE FILEPATH "protobuf lite library." FORCE)
SET(PROTOBUF_LIBRARY
......@@ -28,7 +29,7 @@ IF(WIN32)
SET(PROTOBUF_PROTOC_LIBRARY
"${PROTOBUF_INSTALL_DIR}/lib/libprotoc.lib" CACHE FILEPATH "protoc library." FORCE)
SET(PROTOBUF_PROTOC_EXECUTABLE "${PROTOBUF_INSTALL_DIR}/bin/protoc.exe" CACHE FILEPATH "protobuf executable." FORCE)
ELSE(WIN32)
ELSE(WIN32)
SET(PROTOBUF_LITE_LIBRARY
"${PROTOBUF_INSTALL_DIR}/lib/libprotobuf-lite.a" CACHE FILEPATH "protobuf lite library." FORCE)
SET(PROTOBUF_LIBRARY
......@@ -36,9 +37,9 @@ ELSE(WIN32)
SET(PROTOBUF_PROTOC_LIBRARY
"${PROTOBUF_INSTALL_DIR}/lib/libprotoc.a" CACHE FILEPATH "protoc library." FORCE)
SET(PROTOBUF_PROTOC_EXECUTABLE "${PROTOBUF_INSTALL_DIR}/bin/protoc" CACHE FILEPATH "protobuf executable." FORCE)
ENDIF(WIN32)
ENDIF(WIN32)
ExternalProject_Add(
ExternalProject_Add(
protobuf
${EXTERNAL_PROJECT_LOG_ARGS}
PREFIX ${PROTOBUF_SOURCES_DIR}
......@@ -54,6 +55,9 @@ ExternalProject_Add(
-DCMAKE_BUILD_TYPE=Release
-DCMAKE_INSTALL_PREFIX=${PROTOBUF_INSTALL_DIR}
-DCMAKE_INSTALL_LIBDIR=lib
)
)
LIST(APPEND external_project_dependencies protobuf)
ENDIF(NOT PROTOBUF_FOUND)
LIST(APPEND external_project_dependencies protobuf)
INCLUDE_DIRECTORIES(${PROTOBUF_INCLUDE_DIR})
......@@ -221,7 +221,3 @@ ENDIF(PYTHONLIBS_FOUND AND PYTHONINTERP_FOUND)
INCLUDE_DIRECTORIES(${PYTHON_INCLUDE_DIR})
INCLUDE_DIRECTORIES(${PYTHON_NUMPY_INCLUDE_DIR})
MESSAGE("[Paddle] Python Executable: ${PYTHON_EXECUTABLE}")
MESSAGE("[Paddle] Python Include: ${PYTHON_INCLUDE_DIRS}")
MESSAGE("[Paddle] Python Libraries: ${PYTHON_LIBRARIES}")
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.v2 as paddle
__all__ = ['resnet_cifar10']
def conv_bn_layer(input,
ch_out,
filter_size,
stride,
padding,
active_type=paddle.activation.Relu(),
ch_in=None):
tmp = paddle.layer.img_conv(
input=input,
filter_size=filter_size,
num_channels=ch_in,
num_filters=ch_out,
stride=stride,
padding=padding,
act=paddle.activation.Linear(),
bias_attr=False)
return paddle.layer.batch_norm(input=tmp, act=active_type)
def shortcut(ipt, n_in, n_out, stride):
if n_in != n_out:
return conv_bn_layer(ipt, n_out, 1, stride, 0,
paddle.activation.Linear())
else:
return ipt
def basicblock(ipt, ch_out, stride):
ch_in = ch_out * 2
tmp = conv_bn_layer(ipt, ch_out, 3, stride, 1)
tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, paddle.activation.Linear())
short = shortcut(ipt, ch_in, ch_out, stride)
return paddle.layer.addto(input=[tmp, short], act=paddle.activation.Relu())
def layer_warp(block_func, ipt, features, count, stride):
tmp = block_func(ipt, features, stride)
for i in range(1, count):
tmp = block_func(tmp, features, 1)
return tmp
def resnet_cifar10(ipt, depth=32):
# depth should be one of 20, 32, 44, 56, 110, 1202
assert (depth - 2) % 6 == 0
n = (depth - 2) / 6
nStages = {16, 64, 128}
conv1 = conv_bn_layer(
ipt, ch_in=3, ch_out=16, filter_size=3, stride=1, padding=1)
res1 = layer_warp(basicblock, conv1, 16, n, 1)
res2 = layer_warp(basicblock, res1, 32, n, 2)
res3 = layer_warp(basicblock, res2, 64, n, 2)
pool = paddle.layer.img_pool(
input=res3, pool_size=8, stride=1, pool_type=paddle.pooling.Avg())
return pool
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
import sys
import paddle.v2 as paddle
from api_v2_vgg import vgg_bn_drop
def main():
datadim = 3 * 32 * 32
classdim = 10
# PaddlePaddle init
paddle.init(use_gpu=False, trainer_count=1)
image = paddle.layer.data(
name="image", type=paddle.data_type.dense_vector(datadim))
# Add neural network config
# option 1. resnet
# net = resnet_cifar10(image, depth=32)
# option 2. vgg
net = vgg_bn_drop(image)
out = paddle.layer.fc(input=net,
size=classdim,
act=paddle.activation.Softmax())
lbl = paddle.layer.data(
name="label", type=paddle.data_type.integer_value(classdim))
cost = paddle.layer.classification_cost(input=out, label=lbl)
# Create parameters
parameters = paddle.parameters.create(cost)
# Create optimizer
momentum_optimizer = paddle.optimizer.Momentum(
momentum=0.9,
regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128),
learning_rate=0.1 / 128.0,
learning_rate_decay_a=0.1,
learning_rate_decay_b=50000 * 100,
learning_rate_schedule='discexp',
batch_size=128)
# End batch and end pass event handler
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "\nPass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
else:
sys.stdout.write('.')
sys.stdout.flush()
if isinstance(event, paddle.event.EndPass):
result = trainer.test(
reader=paddle.batch(
paddle.dataset.cifar.test10(), batch_size=128),
feeding={'image': 0,
'label': 1})
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
# Create trainer
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=momentum_optimizer)
trainer.train(
reader=paddle.batch(
paddle.reader.shuffle(
paddle.dataset.cifar.train10(), buf_size=50000),
batch_size=128),
num_passes=5,
event_handler=event_handler,
feeding={'image': 0,
'label': 1})
if __name__ == '__main__':
main()
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.v2 as paddle
__all__ = ['vgg_bn_drop']
def vgg_bn_drop(input):
def conv_block(ipt, num_filter, groups, dropouts, num_channels=None):
return paddle.networks.img_conv_group(
input=ipt,
num_channels=num_channels,
pool_size=2,
pool_stride=2,
conv_num_filter=[num_filter] * groups,
conv_filter_size=3,
conv_act=paddle.activation.Relu(),
conv_with_batchnorm=True,
conv_batchnorm_drop_rate=dropouts,
pool_type=paddle.pooling.Max())
conv1 = conv_block(input, 64, 2, [0.3, 0], 3)
conv2 = conv_block(conv1, 128, 2, [0.4, 0])
conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
drop = paddle.layer.dropout(input=conv5, dropout_rate=0.5)
fc1 = paddle.layer.fc(input=drop, size=512, act=paddle.activation.Linear())
bn = paddle.layer.batch_norm(
input=fc1,
act=paddle.activation.Relu(),
layer_attr=paddle.attr.Extra(drop_rate=0.5))
fc2 = paddle.layer.fc(input=bn, size=512, act=paddle.activation.Linear())
return fc2
import paddle.v2 as paddle
import paddle.v2.dataset.uci_housing as uci_housing
def main():
# init
paddle.init(use_gpu=False, trainer_count=1)
# network config
x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13))
y_predict = paddle.layer.fc(input=x,
param_attr=paddle.attr.Param(name='w'),
size=1,
act=paddle.activation.Linear(),
bias_attr=paddle.attr.Param(name='b'))
y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1))
cost = paddle.layer.regression_cost(input=y_predict, label=y)
# create parameters
parameters = paddle.parameters.create(cost)
# create optimizer
optimizer = paddle.optimizer.Momentum(momentum=0)
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=optimizer)
# event_handler to print training and testing info
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "Pass %d, Batch %d, Cost %f" % (
event.pass_id, event.batch_id, event.cost)
if isinstance(event, paddle.event.EndPass):
if (event.pass_id + 1) % 10 == 0:
result = trainer.test(
reader=paddle.batch(
uci_housing.test(), batch_size=2),
feeding={'x': 0,
'y': 1})
print "Test %d, %.2f" % (event.pass_id, result.cost)
# training
trainer.train(
reader=paddle.batch(
paddle.reader.shuffle(
uci_housing.train(), buf_size=500),
batch_size=2),
feeding={'x': 0,
'y': 1},
event_handler=event_handler,
num_passes=30)
if __name__ == '__main__':
main()
......@@ -5,3 +5,6 @@ plot.png
train.log
*pyc
.ipynb_checkpoints
params.pkl
params.tar
params.tar.gz
import paddle.v2 as paddle
import gzip
def softmax_regression(img):
predict = paddle.layer.fc(input=img,
size=10,
act=paddle.activation.Softmax())
return predict
def multilayer_perceptron(img):
# The first fully-connected layer
hidden1 = paddle.layer.fc(input=img, size=128, act=paddle.activation.Relu())
# The second fully-connected layer and the according activation function
hidden2 = paddle.layer.fc(input=hidden1,
size=64,
act=paddle.activation.Relu())
# The thrid fully-connected layer, note that the hidden size should be 10,
# which is the number of unique digits
predict = paddle.layer.fc(input=hidden2,
size=10,
act=paddle.activation.Softmax())
return predict
def convolutional_neural_network(img):
# first conv layer
conv_pool_1 = paddle.networks.simple_img_conv_pool(
input=img,
filter_size=5,
num_filters=20,
num_channel=1,
pool_size=2,
pool_stride=2,
act=paddle.activation.Tanh())
# second conv layer
conv_pool_2 = paddle.networks.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
num_channel=20,
pool_size=2,
pool_stride=2,
act=paddle.activation.Tanh())
# The first fully-connected layer
fc1 = paddle.layer.fc(input=conv_pool_2,
size=128,
act=paddle.activation.Tanh())
# The softmax layer, note that the hidden size should be 10,
# which is the number of unique digits
predict = paddle.layer.fc(input=fc1,
size=10,
act=paddle.activation.Softmax())
return predict
def main():
......@@ -9,52 +63,73 @@ def main():
name='pixel', type=paddle.data_type.dense_vector(784))
label = paddle.layer.data(
name='label', type=paddle.data_type.integer_value(10))
hidden1 = paddle.layer.fc(input=images, size=200)
hidden2 = paddle.layer.fc(input=hidden1, size=200)
inference = paddle.layer.fc(input=hidden2,
size=10,
act=paddle.activation.Softmax())
cost = paddle.layer.classification_cost(input=inference, label=label)
# Here we can build the prediction network in different ways. Please
# choose one by uncomment corresponding line.
predict = softmax_regression(images)
#predict = multilayer_perceptron(images)
#predict = convolutional_neural_network(images)
cost = paddle.layer.classification_cost(input=predict, label=label)
try:
with gzip.open('params.tar.gz', 'r') as f:
parameters = paddle.parameters.Parameters.from_tar(f)
except IOError:
parameters = paddle.parameters.create(cost)
adam_optimizer = paddle.optimizer.Adam(learning_rate=0.01)
optimizer = paddle.optimizer.Momentum(
learning_rate=0.1 / 128.0,
momentum=0.9,
regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128))
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=adam_optimizer)
update_equation=optimizer)
lists = []
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 1000 == 0:
result = trainer.test(reader=paddle.reader.batched(
paddle.dataset.mnist.test(), batch_size=256))
print "Pass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
print "Pass %d, Batch %d, Cost %f, %s, Testing metrics %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics,
result.metrics)
with gzip.open('params.tar.gz', 'w') as f:
parameters.to_tar(f)
else:
pass
elif isinstance(event, paddle.event.EndPass):
result = trainer.test(reader=paddle.batch(
paddle.dataset.mnist.test(), batch_size=128))
print "Test with Pass %d, Cost %f, %s\n" % (
event.pass_id, result.cost, result.metrics)
lists.append((event.pass_id, result.cost,
result.metrics['classification_error_evaluator']))
trainer.train(
reader=paddle.reader.batched(
reader=paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=8192),
batch_size=32),
event_handler=event_handler)
batch_size=128),
event_handler=event_handler,
num_passes=100)
# find the best pass
best = sorted(lists, key=lambda list: float(list[1]))[0]
print 'Best pass is %s, testing Avgcost is %s' % (best[0], best[1])
print 'The classification accuracy is %.2f%%' % (100 - float(best[2]) * 100)
test_creator = paddle.dataset.mnist.test()
test_data = []
for item in test_creator():
test_data.append((item[0], ))
if len(test_data) == 100:
break
# output is a softmax layer. It returns probabilities.
# Shape should be (100, 10)
probs = paddle.infer(
output=inference,
parameters=parameters,
reader=paddle.reader.batched(
paddle.reader.firstn(
paddle.reader.map_readers(lambda item: (item[0], ),
paddle.dataset.mnist.test()),
n=100),
batch_size=32))
output_layer=predict, parameters=parameters, input=test_data)
print probs.shape
......
import paddle.v2 as paddle
import cPickle
import copy
def main():
paddle.init(use_gpu=False)
movie_title_dict = paddle.dataset.movielens.get_movie_title_dict()
uid = paddle.layer.data(
name='user_id',
type=paddle.data_type.integer_value(
paddle.dataset.movielens.max_user_id() + 1))
usr_emb = paddle.layer.embedding(input=uid, size=32)
usr_gender_id = paddle.layer.data(
name='gender_id', type=paddle.data_type.integer_value(2))
usr_gender_emb = paddle.layer.embedding(input=usr_gender_id, size=16)
usr_age_id = paddle.layer.data(
name='age_id',
type=paddle.data_type.integer_value(
len(paddle.dataset.movielens.age_table)))
usr_age_emb = paddle.layer.embedding(input=usr_age_id, size=16)
usr_job_id = paddle.layer.data(
name='job_id',
type=paddle.data_type.integer_value(paddle.dataset.movielens.max_job_id(
) + 1))
usr_job_emb = paddle.layer.embedding(input=usr_job_id, size=16)
usr_combined_features = paddle.layer.fc(
input=[usr_emb, usr_gender_emb, usr_age_emb, usr_job_emb],
size=200,
act=paddle.activation.Tanh())
mov_id = paddle.layer.data(
name='movie_id',
type=paddle.data_type.integer_value(
paddle.dataset.movielens.max_movie_id() + 1))
mov_emb = paddle.layer.embedding(input=mov_id, size=32)
mov_categories = paddle.layer.data(
name='category_id',
type=paddle.data_type.sparse_binary_vector(
len(paddle.dataset.movielens.movie_categories())))
mov_categories_hidden = paddle.layer.fc(input=mov_categories, size=32)
mov_title_id = paddle.layer.data(
name='movie_title',
type=paddle.data_type.integer_value_sequence(len(movie_title_dict)))
mov_title_emb = paddle.layer.embedding(input=mov_title_id, size=32)
mov_title_conv = paddle.networks.sequence_conv_pool(
input=mov_title_emb, hidden_size=32, context_len=3)
mov_combined_features = paddle.layer.fc(
input=[mov_emb, mov_categories_hidden, mov_title_conv],
size=200,
act=paddle.activation.Tanh())
inference = paddle.layer.cos_sim(
a=usr_combined_features, b=mov_combined_features, size=1, scale=5)
cost = paddle.layer.regression_cost(
input=inference,
label=paddle.layer.data(
name='score', type=paddle.data_type.dense_vector(1)))
parameters = paddle.parameters.create(cost)
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=paddle.optimizer.Adam(
learning_rate=1e-4))
feeding = {
'user_id': 0,
'gender_id': 1,
'age_id': 2,
'job_id': 3,
'movie_id': 4,
'category_id': 5,
'movie_title': 6,
'score': 7
}
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "Pass %d Batch %d Cost %.2f" % (
event.pass_id, event.batch_id, event.cost)
trainer.train(
reader=paddle.batch(
paddle.reader.shuffle(
paddle.dataset.movielens.train(), buf_size=8192),
batch_size=256),
event_handler=event_handler,
feeding=feeding,
num_passes=1)
user_id = 234
movie_id = 345
user = paddle.dataset.movielens.user_info()[user_id]
movie = paddle.dataset.movielens.movie_info()[movie_id]
feature = user.value() + movie.value()
def reader():
yield feature
infer_dict = copy.copy(feeding)
del infer_dict['score']
prediction = paddle.infer(
output=inference,
parameters=parameters,
reader=paddle.batch(
reader, batch_size=32),
feeding=infer_dict)
print(prediction + 5) / 2
if __name__ == '__main__':
main()
import sys
import math
import numpy as np
import paddle.v2 as paddle
import paddle.v2.dataset.conll05 as conll05
def db_lstm():
word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_len = len(verb_dict)
mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 512
depth = 8
#8 features
def d_type(size):
return paddle.data_type.integer_value_sequence(size)
word = paddle.layer.data(name='word_data', type=d_type(word_dict_len))
predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len))
ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len))
ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len))
ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len))
ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len))
ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len))
mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len))
target = paddle.layer.data(name='target', type=d_type(label_dict_len))
default_std = 1 / math.sqrt(hidden_dim) / 3.0
emb_para = paddle.attr.Param(name='emb', initial_std=0., learning_rate=0.)
std_0 = paddle.attr.Param(initial_std=0.)
std_default = paddle.attr.Param(initial_std=default_std)
predicate_embedding = paddle.layer.embedding(
size=word_dim,
input=predicate,
param_attr=paddle.attr.Param(
name='vemb', initial_std=default_std))
mark_embedding = paddle.layer.embedding(
size=mark_dim, input=mark, param_attr=std_0)
word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [
paddle.layer.embedding(
size=word_dim, input=x, param_attr=emb_para) for x in word_input
]
emb_layers.append(predicate_embedding)
emb_layers.append(mark_embedding)
hidden_0 = paddle.layer.mixed(
size=hidden_dim,
bias_attr=std_default,
input=[
paddle.layer.full_matrix_projection(
input=emb, param_attr=std_default) for emb in emb_layers
])
mix_hidden_lr = 1e-3
lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0)
hidden_para_attr = paddle.attr.Param(
initial_std=default_std, learning_rate=mix_hidden_lr)
lstm_0 = paddle.layer.lstmemory(
input=hidden_0,
act=paddle.activation.Relu(),
gate_act=paddle.activation.Sigmoid(),
state_act=paddle.activation.Sigmoid(),
bias_attr=std_0,
param_attr=lstm_para_attr)
#stack L-LSTM and R-LSTM with direct edges
input_tmp = [hidden_0, lstm_0]
for i in range(1, depth):
mix_hidden = paddle.layer.mixed(
size=hidden_dim,
bias_attr=std_default,
input=[
paddle.layer.full_matrix_projection(
input=input_tmp[0], param_attr=hidden_para_attr),
paddle.layer.full_matrix_projection(
input=input_tmp[1], param_attr=lstm_para_attr)
])
lstm = paddle.layer.lstmemory(
input=mix_hidden,
act=paddle.activation.Relu(),
gate_act=paddle.activation.Sigmoid(),
state_act=paddle.activation.Sigmoid(),
reverse=((i % 2) == 1),
bias_attr=std_0,
param_attr=lstm_para_attr)
input_tmp = [mix_hidden, lstm]
feature_out = paddle.layer.mixed(
size=label_dict_len,
bias_attr=std_default,
input=[
paddle.layer.full_matrix_projection(
input=input_tmp[0], param_attr=hidden_para_attr),
paddle.layer.full_matrix_projection(
input=input_tmp[1], param_attr=lstm_para_attr)
], )
crf_cost = paddle.layer.crf(size=label_dict_len,
input=feature_out,
label=target,
param_attr=paddle.attr.Param(
name='crfw',
initial_std=default_std,
learning_rate=mix_hidden_lr))
crf_dec = paddle.layer.crf_decoding(
name='crf_dec_l',
size=label_dict_len,
input=feature_out,
label=target,
param_attr=paddle.attr.Param(name='crfw'))
return crf_cost, crf_dec
def load_parameter(file_name, h, w):
with open(file_name, 'rb') as f:
f.read(16) # skip header.
return np.fromfile(f, dtype=np.float32).reshape(h, w)
def main():
paddle.init(use_gpu=False, trainer_count=1)
# define network topology
crf_cost, crf_dec = db_lstm()
# create parameters
parameters = paddle.parameters.create([crf_cost, crf_dec])
# create optimizer
optimizer = paddle.optimizer.Momentum(
momentum=0,
learning_rate=2e-2,
regularization=paddle.optimizer.L2Regularization(rate=8e-4),
model_average=paddle.optimizer.ModelAverage(
average_window=0.5, max_average_window=10000), )
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "Pass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
trainer = paddle.trainer.SGD(cost=crf_cost,
parameters=parameters,
update_equation=optimizer)
parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32))
trn_reader = paddle.batch(
paddle.reader.shuffle(
conll05.test(), buf_size=8192), batch_size=10)
feeding = {
'word_data': 0,
'ctx_n2_data': 1,
'ctx_n1_data': 2,
'ctx_0_data': 3,
'ctx_p1_data': 4,
'ctx_p2_data': 5,
'verb_data': 6,
'mark_data': 7,
'target': 8
}
trainer.train(
reader=trn_reader,
event_handler=event_handler,
num_passes=10000,
feeding=feeding)
if __name__ == '__main__':
main()
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import paddle.v2 as paddle
def convolution_net(input_dim, class_dim=2, emb_dim=128, hid_dim=128):
data = paddle.layer.data("word",
paddle.data_type.integer_value_sequence(input_dim))
emb = paddle.layer.embedding(input=data, size=emb_dim)
conv_3 = paddle.networks.sequence_conv_pool(
input=emb, context_len=3, hidden_size=hid_dim)
conv_4 = paddle.networks.sequence_conv_pool(
input=emb, context_len=4, hidden_size=hid_dim)
output = paddle.layer.fc(input=[conv_3, conv_4],
size=class_dim,
act=paddle.activation.Softmax())
lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
cost = paddle.layer.classification_cost(input=output, label=lbl)
return cost
def stacked_lstm_net(input_dim,
class_dim=2,
emb_dim=128,
hid_dim=512,
stacked_num=3):
"""
A Wrapper for sentiment classification task.
This network uses bi-directional recurrent network,
consisting three LSTM layers. This configure is referred to
the paper as following url, but use fewer layrs.
http://www.aclweb.org/anthology/P15-1109
input_dim: here is word dictionary dimension.
class_dim: number of categories.
emb_dim: dimension of word embedding.
hid_dim: dimension of hidden layer.
stacked_num: number of stacked lstm-hidden layer.
"""
assert stacked_num % 2 == 1
layer_attr = paddle.attr.Extra(drop_rate=0.5)
fc_para_attr = paddle.attr.Param(learning_rate=1e-3)
lstm_para_attr = paddle.attr.Param(initial_std=0., learning_rate=1.)
para_attr = [fc_para_attr, lstm_para_attr]
bias_attr = paddle.attr.Param(initial_std=0., l2_rate=0.)
relu = paddle.activation.Relu()
linear = paddle.activation.Linear()
data = paddle.layer.data("word",
paddle.data_type.integer_value_sequence(input_dim))
emb = paddle.layer.embedding(input=data, size=emb_dim)
fc1 = paddle.layer.fc(input=emb,
size=hid_dim,
act=linear,
bias_attr=bias_attr)
lstm1 = paddle.layer.lstmemory(
input=fc1, act=relu, bias_attr=bias_attr, layer_attr=layer_attr)
inputs = [fc1, lstm1]
for i in range(2, stacked_num + 1):
fc = paddle.layer.fc(input=inputs,
size=hid_dim,
act=linear,
param_attr=para_attr,
bias_attr=bias_attr)
lstm = paddle.layer.lstmemory(
input=fc,
reverse=(i % 2) == 0,
act=relu,
bias_attr=bias_attr,
layer_attr=layer_attr)
inputs = [fc, lstm]
fc_last = paddle.layer.pooling(
input=inputs[0], pooling_type=paddle.pooling.Max())
lstm_last = paddle.layer.pooling(
input=inputs[1], pooling_type=paddle.pooling.Max())
output = paddle.layer.fc(input=[fc_last, lstm_last],
size=class_dim,
act=paddle.activation.Softmax(),
bias_attr=bias_attr,
param_attr=para_attr)
lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
cost = paddle.layer.classification_cost(input=output, label=lbl)
return cost
if __name__ == '__main__':
# init
paddle.init(use_gpu=False)
#data
print 'load dictionary...'
word_dict = paddle.dataset.imdb.word_dict()
dict_dim = len(word_dict)
class_dim = 2
train_reader = paddle.batch(
paddle.reader.shuffle(
lambda: paddle.dataset.imdb.train(word_dict), buf_size=1000),
batch_size=100)
test_reader = paddle.batch(
lambda: paddle.dataset.imdb.test(word_dict), batch_size=100)
feeding = {'word': 0, 'label': 1}
# network config
# Please choose the way to build the network
# by uncommenting the corresponding line.
cost = convolution_net(dict_dim, class_dim=class_dim)
# cost = stacked_lstm_net(dict_dim, class_dim=class_dim, stacked_num=3)
# create parameters
parameters = paddle.parameters.create(cost)
# create optimizer
adam_optimizer = paddle.optimizer.Adam(
learning_rate=2e-3,
regularization=paddle.optimizer.L2Regularization(rate=8e-4),
model_average=paddle.optimizer.ModelAverage(average_window=0.5))
# End batch and end pass event handler
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "\nPass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
else:
sys.stdout.write('.')
sys.stdout.flush()
if isinstance(event, paddle.event.EndPass):
result = trainer.test(reader=test_reader, feeding=feeding)
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
# create trainer
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=adam_optimizer)
trainer.train(
reader=train_reader,
event_handler=event_handler,
feeding=feeding,
num_passes=2)
import sys
import paddle.v2 as paddle
def seqToseq_net(source_dict_dim, target_dict_dim):
### Network Architecture
word_vector_dim = 512 # dimension of word vector
decoder_size = 512 # dimension of hidden unit in GRU Decoder network
encoder_size = 512 # dimension of hidden unit in GRU Encoder network
#### Encoder
src_word_id = paddle.layer.data(
name='source_language_word',
type=paddle.data_type.integer_value_sequence(source_dict_dim))
src_embedding = paddle.layer.embedding(
input=src_word_id,
size=word_vector_dim,
param_attr=paddle.attr.ParamAttr(name='_source_language_embedding'))
src_forward = paddle.networks.simple_gru(
input=src_embedding, size=encoder_size)
src_backward = paddle.networks.simple_gru(
input=src_embedding, size=encoder_size, reverse=True)
encoded_vector = paddle.layer.concat(input=[src_forward, src_backward])
#### Decoder
with paddle.layer.mixed(size=decoder_size) as encoded_proj:
encoded_proj += paddle.layer.full_matrix_projection(
input=encoded_vector)
backward_first = paddle.layer.first_seq(input=src_backward)
with paddle.layer.mixed(
size=decoder_size, act=paddle.activation.Tanh()) as decoder_boot:
decoder_boot += paddle.layer.full_matrix_projection(
input=backward_first)
def gru_decoder_with_attention(enc_vec, enc_proj, current_word):
decoder_mem = paddle.layer.memory(
name='gru_decoder', size=decoder_size, boot_layer=decoder_boot)
context = paddle.networks.simple_attention(
encoded_sequence=enc_vec,
encoded_proj=enc_proj,
decoder_state=decoder_mem)
with paddle.layer.mixed(size=decoder_size * 3) as decoder_inputs:
decoder_inputs += paddle.layer.full_matrix_projection(input=context)
decoder_inputs += paddle.layer.full_matrix_projection(
input=current_word)
gru_step = paddle.layer.gru_step(
name='gru_decoder',
input=decoder_inputs,
output_mem=decoder_mem,
size=decoder_size)
with paddle.layer.mixed(
size=target_dict_dim,
bias_attr=True,
act=paddle.activation.Softmax()) as out:
out += paddle.layer.full_matrix_projection(input=gru_step)
return out
decoder_group_name = "decoder_group"
group_input1 = paddle.layer.StaticInputV2(input=encoded_vector, is_seq=True)
group_input2 = paddle.layer.StaticInputV2(input=encoded_proj, is_seq=True)
group_inputs = [group_input1, group_input2]
trg_embedding = paddle.layer.embedding(
input=paddle.layer.data(
name='target_language_word',
type=paddle.data_type.integer_value_sequence(target_dict_dim)),
size=word_vector_dim,
param_attr=paddle.attr.ParamAttr(name='_target_language_embedding'))
group_inputs.append(trg_embedding)
# For decoder equipped with attention mechanism, in training,
# target embeding (the groudtruth) is the data input,
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder = paddle.layer.recurrent_group(
name=decoder_group_name,
step=gru_decoder_with_attention,
input=group_inputs)
lbl = paddle.layer.data(
name='target_language_next_word',
type=paddle.data_type.integer_value_sequence(target_dict_dim))
cost = paddle.layer.classification_cost(input=decoder, label=lbl)
return cost
def main():
paddle.init(use_gpu=False, trainer_count=1)
# source and target dict dim.
dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
# define network topology
cost = seqToseq_net(source_dict_dim, target_dict_dim)
parameters = paddle.parameters.create(cost)
# define optimize method and trainer
optimizer = paddle.optimizer.Adam(
learning_rate=5e-5,
regularization=paddle.optimizer.L2Regularization(rate=1e-3))
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=optimizer)
# define data reader
feeding = {
'source_language_word': 0,
'target_language_word': 1,
'target_language_next_word': 2
}
wmt14_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(dict_size=dict_size), buf_size=8192),
batch_size=5)
# define event_handler callback
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 10 == 0:
print "\nPass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
else:
sys.stdout.write('.')
sys.stdout.flush()
# start to train
trainer.train(
reader=wmt14_reader,
event_handler=event_handler,
num_passes=10000,
feeding=feeding)
if __name__ == '__main__':
main()
import math
import paddle.v2 as paddle
dictsize = 1953
embsize = 32
hiddensize = 256
N = 5
def wordemb(inlayer):
wordemb = paddle.layer.table_projection(
input=inlayer,
size=embsize,
param_attr=paddle.attr.Param(
name="_proj",
initial_std=0.001,
learning_rate=1,
l2_rate=0, ))
return wordemb
def main():
paddle.init(use_gpu=False, trainer_count=1)
word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)
firstword = paddle.layer.data(
name="firstw", type=paddle.data_type.integer_value(dict_size))
secondword = paddle.layer.data(
name="secondw", type=paddle.data_type.integer_value(dict_size))
thirdword = paddle.layer.data(
name="thirdw", type=paddle.data_type.integer_value(dict_size))
fourthword = paddle.layer.data(
name="fourthw", type=paddle.data_type.integer_value(dict_size))
nextword = paddle.layer.data(
name="fifthw", type=paddle.data_type.integer_value(dict_size))
Efirst = wordemb(firstword)
Esecond = wordemb(secondword)
Ethird = wordemb(thirdword)
Efourth = wordemb(fourthword)
contextemb = paddle.layer.concat(input=[Efirst, Esecond, Ethird, Efourth])
hidden1 = paddle.layer.fc(input=contextemb,
size=hiddensize,
act=paddle.activation.Sigmoid(),
layer_attr=paddle.attr.Extra(drop_rate=0.5),
bias_attr=paddle.attr.Param(learning_rate=2),
param_attr=paddle.attr.Param(
initial_std=1. / math.sqrt(embsize * 8),
learning_rate=1))
predictword = paddle.layer.fc(input=hidden1,
size=dict_size,
bias_attr=paddle.attr.Param(learning_rate=2),
act=paddle.activation.Softmax())
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
result = trainer.test(
paddle.batch(
paddle.dataset.imikolov.test(word_dict, N), 32))
print "Pass %d, Batch %d, Cost %f, %s, Testing metrics %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics,
result.metrics)
cost = paddle.layer.classification_cost(input=predictword, label=nextword)
parameters = paddle.parameters.create(cost)
adam_optimizer = paddle.optimizer.Adam(
learning_rate=3e-3,
regularization=paddle.optimizer.L2Regularization(8e-4))
trainer = paddle.trainer.SGD(cost, parameters, adam_optimizer)
trainer.train(
paddle.batch(paddle.dataset.imikolov.train(word_dict, N), 32),
num_passes=30,
event_handler=event_handler)
if __name__ == '__main__':
main()
API中文手册
============
API
===
DataProvider API
----------------
模型配置 API
------------
.. toctree::
:maxdepth: 1
data_provider/dataprovider_cn.rst
data_provider/pydataprovider2_cn.rst
v2/model_configs.rst
.. _api_trainer_config:
Model Config API
----------------
数据 API
--------
.. toctree::
:maxdepth: 1
trainer_config_helpers/optimizers.rst
trainer_config_helpers/data_sources.rst
trainer_config_helpers/layers.rst
trainer_config_helpers/activations.rst
trainer_config_helpers/poolings.rst
trainer_config_helpers/networks.rst
trainer_config_helpers/evaluators.rst
trainer_config_helpers/attrs.rst
v2/data.rst
Applications API
----------------
训练 API
--------
.. toctree::
:maxdepth: 1
predict/swig_py_paddle_cn.rst
v2/run_logic.rst
\ No newline at end of file
API
===
DataProvider API
Model Config API
----------------
.. toctree::
:maxdepth: 1
data_provider/dataprovider_en.rst
data_provider/pydataprovider2_en.rst
.. _api_trainer_config:
v2/model_configs.rst
Model Config API
----------------
Data API
--------
.. toctree::
:maxdepth: 1
trainer_config_helpers/optimizers.rst
trainer_config_helpers/data_sources.rst
trainer_config_helpers/layers.rst
trainer_config_helpers/activations.rst
trainer_config_helpers/poolings.rst
trainer_config_helpers/networks.rst
trainer_config_helpers/evaluators.rst
trainer_config_helpers/attrs.rst
v2/data.rst
Applications API
----------------
Train API
---------
.. toctree::
:maxdepth: 1
predict/swig_py_paddle_en.rst
v2/run_logic.rst
\ No newline at end of file
API中文手册
============
DataProvider API
----------------
.. toctree::
:maxdepth: 1
data_provider/dataprovider_cn.rst
data_provider/pydataprovider2_cn.rst
.. _api_trainer_config:
Model Config API
----------------
.. toctree::
:maxdepth: 1
trainer_config_helpers/optimizers.rst
trainer_config_helpers/data_sources.rst
trainer_config_helpers/layers.rst
trainer_config_helpers/activations.rst
trainer_config_helpers/poolings.rst
trainer_config_helpers/networks.rst
trainer_config_helpers/evaluators.rst
trainer_config_helpers/attrs.rst
Applications API
----------------
.. toctree::
:maxdepth: 1
predict/swig_py_paddle_cn.rst
API
===
DataProvider API
----------------
.. toctree::
:maxdepth: 1
data_provider/dataprovider_en.rst
data_provider/pydataprovider2_en.rst
.. _api_trainer_config:
Model Config API
----------------
.. toctree::
:maxdepth: 1
trainer_config_helpers/optimizers.rst
trainer_config_helpers/data_sources.rst
trainer_config_helpers/layers.rst
trainer_config_helpers/activations.rst
trainer_config_helpers/poolings.rst
trainer_config_helpers/networks.rst
trainer_config_helpers/evaluators.rst
trainer_config_helpers/attrs.rst
Applications API
----------------
.. toctree::
:maxdepth: 1
predict/swig_py_paddle_en.rst
================
Data Related API
================
#########
DataTypes
#########
.. automodule:: paddle.v2.data_type
:members:
##########
DataFeeder
##########
.. automodule:: paddle.v2.data_feeder
:members:
######
Reader
######
.. automodule:: paddle.v2.reader
:members:
.. automodule:: paddle.v2.reader.creator
:members:
#########
minibatch
#########
.. automodule:: paddle.v2.minibatch
:members:
#######
Dataset
#######
.. automodule:: paddle.v2.dataset
:members:
mnist
+++++
.. automodule:: paddle.v2.dataset.mnist
:members:
cifar
+++++
.. automodule:: paddle.v2.dataset.cifar
:members:
conll05
+++++++
.. automodule:: paddle.v2.dataset.conll05
:members:
imdb
++++
.. automodule:: paddle.v2.dataset.imdb
:members:
imikolov
++++++++
.. automodule:: paddle.v2.dataset.imikolov
:members:
movielens
+++++++++
.. automodule:: paddle.v2.dataset.movielens
:members:
sentiment
+++++++++
.. automodule:: paddle.v2.dataset.sentiment
:members:
uci_housing
+++++++++++
.. automodule:: paddle.v2.dataset.uci_housing
:members:
#########################
Configuration Related API
#########################
======
Layers
======
.. automodule:: paddle.v2.layer
:members:
==========
Attributes
==========
.. automodule:: paddle.v2.attr
:members:
===========
Activations
===========
.. automodule:: paddle.v2.activation
:members:
========
Poolings
========
.. automodule:: paddle.v2.pooling
:members:
========
Networks
========
.. automodule:: paddle.v2.networks
:members:
==========
Optimizers
==========
.. automodule:: paddle.v2.optimizer
:members:
###########
Trainer API
###########
==========
Parameters
==========
.. automodule:: paddle.v2.parameters
:members:
=======
Trainer
=======
.. automodule:: paddle.v2.trainer
:members:
=====
Event
=====
.. automodule:: paddle.v2.event
:members:
=========
Inference
=========
.. autofunction:: paddle.v2.infer
\ No newline at end of file
......@@ -4,9 +4,10 @@ At training and testing time, PaddlePaddle programs need to read data. To ease t
- A *reader* is a function that reads data (from file, network, random number generator, etc) and yields data items.
- A *reader creator* is a function that returns a reader function.
- A *reader* decorator is a function, which accepts one or more readers, and returns a reader.
- A *reader decorator* is a function, which accepts one or more readers, and returns a reader.
- A *batch reader* is a function that reads data (from *reader*, file, network, random number generator, etc) and yields a batch of data items.
and provide frequently used reader creators and reader decorators.
and provide function which converts reader to batch reader, frequently used reader creators and reader decorators.
## Data Reader Interface
......@@ -30,16 +31,61 @@ def reader_creator_random_image(width, height):
An example implementation for multiple item data reader creator:
```python
def reader_creator_random_imageand_label(widht, height, label):
def reader_creator_random_image_and_label(width, height, label):
def reader():
while True:
yield numpy.random.uniform(-1, 1, size=width*height), label
return reader
```
## Batch Reader Interface
*batch reader* can be any function with no parameter that creates a iterable (anything can be used in `for x in iterable`). The output of the iterable should be a batch (list) of data items. Each item inside the list must be a tuple.
Here are valid outputs:
```python
# a mini batch of three data items. Each data item consist three columns of data, each of which is 1.
[(1, 1, 1),
(2, 2, 2),
(3, 3, 3)]
# a mini batch of three data items, each data item is a list (single column).
[([1,1,1],),
([2,2,2],),
([3,3,3],),
```
Please note that each item inside the list must be a tuple, below is an invalid output:
```python
# wrong, [1,1,1] needs to be inside a tuple: ([1,1,1],).
# Otherwise it's ambiguous whether [1,1,1] means a single column of data [1, 1, 1],
# or three column of datas, each of which is 1.
[[1,1,1],
[2,2,2],
[3,3,3]]
```
It's easy to convert from reader to batch reader:
```python
mnist_train = paddle.dataset.mnist.train()
mnist_train_batch_reader = paddle.batch(mnist_train, 128)
```
Also easy to create custom batch reader:
```python
def custom_batch_reader():
while True:
batch = []
for i in xrange(128):
batch.append((numpy.random.uniform(-1, 1, 28*28),)) # note that it's a tuple being appended.
yield batch
mnist_random_image_batch_reader = custom_batch_reader
```
## Usage
data reader, mapping from item(s) read to data layer, batch size and number of total pass will be passed into `paddle.train`:
batch reader, mapping from item(s) read to data layer, batch size and number of total pass will be passed into `paddle.train`:
```python
# two data layer is created:
......@@ -47,8 +93,8 @@ image_layer = paddle.layer.data("image", ...)
label_layer = paddle.layer.data("label", ...)
# ...
paddle.train(paddle.dataset.mnist, {"image":0, "label":1}, 128, 10, ...)
batch_reader = paddle.batch(paddle.dataset.mnist.train(), 128)
paddle.train(batch_reader, {"image":0, "label":1}, 128, 10, ...)
```
## Data Reader Decorator
......@@ -64,7 +110,7 @@ Since reading data may take time and training can not proceed without data. It i
Use `paddle.reader.buffered` to prefetch data:
```python
buffered_reader = paddle.reader.buffered(paddle.dataset.mnist, 100)
buffered_reader = paddle.reader.buffered(paddle.dataset.mnist.train(), 100)
```
`buffered_reader` will try to buffer (prefetch) `100` data entries.
......@@ -91,10 +137,10 @@ def reader_creator_bool(t):
true_reader = reader_creator_bool(True)
false_reader = reader_creator_bool(False)
reader = paddle.reader.compose(paddle.dataset.mnist, data_reader_creator_random_image(20, 20), true_reader, false_reader)
# Skipped 1 because paddle.dataset.mnist produces two items per data entry.
reader = paddle.reader.compose(paddle.dataset.mnist.train(), data_reader_creator_random_image(20, 20), true_reader, false_reader)
# Skipped 1 because paddle.dataset.mnist.train() produces two items per data entry.
# And we don't care second item at this time.
paddle.train(reader, {"true_image":0, "fake_image": 2, "true_label": 3, "false_label": 4}, ...)
paddle.train(paddle.batch(reader, 128), {"true_image":0, "fake_image": 2, "true_label": 3, "false_label": 4}, ...)
```
### Shuffle
......@@ -103,16 +149,20 @@ Given shuffle buffer size `n`, `paddle.reader.shuffle` will return a data reader
Example:
```python
reader = paddle.reader.shuffle(paddle.dataset.mnist, 512)
reader = paddle.reader.shuffle(paddle.dataset.mnist.train(), 512)
```
## Q & A
### Why return only a single entry, but not a mini batch?
### Why reader return only a single entry, but not a mini batch?
Always returning a single entry make reusing existing data readers much easier (e.g., if existing reader return not a single entry but 3 entries, training code will be more complex because it need to handle cases like batch size 2).
We provide function `paddle.batch` to turn (single entry) reader into batch reader.
If a mini batch is returned, data reader need to take care of batch size. But batch size is a concept for training, it makes more sense for user to specify batch size as a parameter for `train`.
### Why do we need batch reader, isn't train take reader and batch_size as arguments sufficient?
Practically, always return a single entry make reusing existing data readers much easier (e.g., if existing reader return not a single entry but 3 entries, training code will be more complex because it need to handle cases like batch size 2).
In most of the case, train taking reader and batch_size as arguments would be sufficent. However sometimes user want to customize order of data entries inside a mini batch. Or even change batch size dynamically.
### Why use a dictionary but not a list to provide mapping?
......@@ -137,7 +187,7 @@ def image_reader_creator(image_path, label_path, n):
# images_reader_creator creates a reader
reader = image_reader_creator("/path/to/image_file", "/path/to/label_file", 1024)
paddle.train(reader, {"image":0, "label":1}, ...)
paddle.train(paddle.batch(reader, 128), {"image":0, "label":1}, ...)
```
### How is `paddle.train` implemented
......@@ -145,17 +195,8 @@ paddle.train(reader, {"image":0, "label":1}, ...)
An example implementation of paddle.train could be:
```python
def make_minibatch(reader, minibatch_size):
def ret():
r = reader()
buf = [r.next() for x in xrange(minibatch_size)]
while len(buf) > 0:
yield buf
buf = [r.next() for x in xrange(minibatch_size)]
return ret
def train(reader, mapping, batch_size, total_pass):
def train(batch_reader, mapping, batch_size, total_pass):
for pass_idx in range(total_pass):
for mini_batch in make_minibatch(reader): # this loop will never end in online learning.
for mini_batch in batch_reader(): # this loop will never end in online learning.
do_forward_backward(mini_batch, mapping)
```
安装PaddlePaddle的Docker镜像
============================
PaddlePaddle的Docker容器使用方式
================================
PaddlePaddle项目提供官方 `Docker <https://www.docker.com/>`_ 镜像。Docker镜像是我们目前唯一官方支持的部署和运行方式
PaddlePaddle目前唯一官方支持的运行的方式是Docker容器。因为Docker能在所有主要操作系统(包括Linux,Mac OS X和Windows)上运行。 请注意,您需要更改 `Dockers设置 <https://github.com/PaddlePaddle/Paddle/issues/627>`_ 才能充分利用Mac OS X和Windows上的硬件资源
下述内容将分为如下几个类别描述。
* PaddlePaddle提供的Docker镜像版本
* 下载和运行Docker镜像
* 注意事项
通过Docker容器开发PaddlePaddle
------------------------------
PaddlePaddle提供的Docker镜像版本
--------------------------------
开发人员可以在Docker中开发PaddlePaddle。这样开发人员可以以一致的方式在不同的平台上工作 - Linux,Mac OS X和Windows。
我们提供了12个 `Docker image <https://hub.docker.com/r/paddledev/paddle/tags/>`_ ,他们的image name都是 :code:`paddledev/paddle` ,tag分别为
1. 将开发环境构建为Docker镜像
+-----------------+------------------+------------------------+-----------------------+
| | normal | devel | demo |
+=================+==================+========================+=======================+
| CPU | cpu-latest | cpu-devel-latest | cpu-demo-latest |
+-----------------+------------------+------------------------+-----------------------+
| GPU | gpu-latest | gpu-devel-latest | gpu-demo-latest |
+-----------------+------------------+------------------------+-----------------------+
| CPU WITHOUT AVX | cpu-noavx-latest | cpu-noavx-devel-latest | cpu-noavx-demo-latest |
+-----------------+------------------+------------------------+-----------------------+
| GPU WITHOUT AVX | gpu-noavx-latest | gpu-noavx-devel-latest | gpu-noavx-demo-latest |
+-----------------+------------------+------------------------+-----------------------+
.. code-block:: bash
其中,横向包括三个版本,normal,devel和demo。
git clone --recursive https://github.com/PaddlePaddle/Paddle
cd Paddle
docker build -t paddle:dev -f paddle/scripts/docker/Dockerfile .
* Normal: 正常的Docker image,只包括paddle的二进制
* Devel: 包括Paddle的二进制、编译环境和源代码
* Demo: 包括Paddle运行demo所需要的依赖
纵向包括四个版本,他们是。
请注意,默认情况下,:code:`docker build` 不会将源码导入到镜像中并编译它。如果我们想这样做,需要设置一个参数:
* CPU: CPU版本。需要支持AVX指令集的CPU
* GPU: GPU版本。需要支持AVX指令集的CPU
* CPU WITHOUT AVX: CPU版本,不支持AVX指令集的CPU也可以运行
* GPU WITHOUT AVX: GPU版本,不需要AVX指令集的CPU也可以运行。
.. code-block:: bash
用户可以选择对应版本的docker image。使用如下脚本可以确定本机的CPU是否支持 :code:`AVX` 指令集\:
docker build -t paddle:dev -f paddle/scripts/docker/Dockerfile --build-arg BUILD_AND_INSTALL=ON .
.. code-block:: bash
if cat /proc/cpuinfo | grep -q avx ; then echo "Support AVX"; else echo "Not support AVX"; fi
2. 运行开发环境
当我们编译好了 :code:`paddle:dev`, 我们可以在docker容器里做开发,源代码可以通过挂载本地文件来被载入Docker的开发环境里面:
.. code-block:: bash
docker run -d -p 2202:22 -v $PWD:/paddle paddle:dev
以上代码会启动一个带有PaddlePaddle开发环境的docker容器,源代码会被挂载到 :code:`/paddle` 。
请注意, :code:`paddle:dev` 的默认入口是 :code:`sshd` 。以上的 :code:`docker run` 命令其实会启动一个在2202端口监听的SSHD服务器。这样,我们就能SSH进入我们的开发容器了:
.. code-block:: bash
ssh root@localhost -p 2202
3. 在Docker开发环境中编译与安装PaddlPaddle代码
如果输出 :code:`Support AVX`,则可以选择上表中的AVX版本PaddlePaddle。否则需要选择非AVX的PaddlePaddle。选择普通CPU版本的devel版本的image,则可以使用 :code:`paddledev/paddle:cpu-devel-latest` 来引用这个image。
当在容器里面的时候,可以用脚本 :code:`paddle/scripts/docker/build.sh` 来编译、安装与测试PaddlePaddle:
PaddlePaddle提供的镜像并不包含任何命令运行,想要运行PaddlePaddle,您需要进入镜像运行PaddlePaddle
程序或者自定义一个含有启动脚本的image。具体请参考注意事项中的 :code:`使用ssh访问PaddlePaddle镜像`
.. code-block:: bash
下载和运行Docker镜像
--------------------
/paddle/paddle/scripts/docker/build.sh
为了运行PaddlePaddle的docker镜像,您需要在机器中安装好Docker。安装Docker需要您的机器
至少具有3.10以上的linux kernel。安装方法请参考
`Docker的官方文档 <https://docs.docker.com/engine/installation/>`_ 。如果您使用
mac osx或者是windows机器,请参考
`mac osx的安装文档 <https://docs.docker.com/engine/installation/mac/>`_ 和
`windows 的安装文档 <https://docs.docker.com/engine/installation/windows/>`_ 。
以上指令会在 :code:`/paddle/build` 中编译PaddlePaddle。通过以下指令可以运行单元测试:
您可以使用 :code:`docker pull` 命令预先下载镜像,也可以直接执行
:code:`docker run` 命令运行镜像。执行方法如下:
.. code-block:: bash
cd /paddle/build
ctest
纯CPU和GPU的docker镜像
----------------------
对于每一个PaddlePaddle版本,我们都会发布两个Docker镜像:纯CPU的和GPU的。我们通过设置 `dockerhub.com <https://hub.docker.com/r/paddledev/paddle/>`_ 自动运行以下两个命令:
.. code-block:: bash
$ docker run -it paddledev/paddle:cpu-latest
docker build -t paddle:cpu -f paddle/scripts/docker/Dockerfile .
docker build -t paddle:gpu -f paddle/scripts/docker/Dockerfile.gpu .
即可启动和进入PaddlePaddle的container。如果运行GPU版本的PaddlePaddle,则需要先将
cuda相关的Driver和设备映射进container中,脚本类似于
以交互容器方式运行纯CPU的镜像:
.. code-block:: bash
$ export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
$ export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
$ docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:gpu-latest
docker run -it --rm paddledev/paddle:cpu-latest /bin/bash
进入Docker container后,运行 :code:`paddle version` 即可打印出PaddlePaddle的版本和构建
信息。安装完成的PaddlePaddle主体包括三个部分, :code:`paddle` 脚本, python的
:code:`paddle` 包和 :code:`py_paddle` 包。其中\:
或者,可以以后台进程方式运行容器:
* :code:`paddle` 脚本和 :code:`paddle` 的python包是PaddlePaddle的训练主要程序。使用
:code:`paddle` 脚本可以启动PaddlePaddle的训练进程和pserver。而 :code:`paddle` 脚本
中的二进制使用了 :code:`paddle` 的python包来做配置文件解析等工作。
* python包 :code:`py_paddle` 是一个swig封装的PaddlePaddle包,用来做预测和简单的定制化
训练。
.. code-block:: bash
注意事项
--------
docker run -d -p 2202:22 paddledev/paddle:cpu-latest
性能问题
++++++++
然后用密码 :code:`root` SSH进入容器:
由于Docker是基于容器的轻量化虚拟方案,所以在CPU的运算性能上并不会有严重的影响。
而GPU的驱动和设备全部映射到了容器内,所以GPU在运算性能上也不会有严重的影响。
.. code-block:: bash
但是如果使用了高性能的网卡,例如RDMA网卡(RoCE 40GbE 或者 IB 56GbE),或者高性能的
以太网卡 (10GbE)。推荐使用将本地网卡,即 "--net=host" 来进行训练。而不使用docker
的网桥来进行网络通信。
ssh -p 2202 root@localhost
远程访问问题和二次开发
++++++++++++++++++++++
SSH方式的一个优点是我们可以从多个终端进入容器。比如,一个终端运行vi,另一个终端运行Python。另一个好处是我们可以把PaddlePaddle容器运行在远程服务器上,并在笔记本上通过SSH与其连接。
由于PaddlePaddle的Docker镜像并不包含任何预定义的运行命令。所以如果想要在后台启用ssh
远程访问,则需要进行一定的二次开发,将ssh装入系统内并开启远程访问。二次开发可以
使用Dockerfile构建一个全新的docker image。需要参考
`Dockerfile的文档 <https://docs.docker.com/engine/reference/builder/>`_ 和
`Dockerfile的最佳实践 <https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/>`_
两个文档。
简单的含有ssh的Dockerfile如下
以上方法在GPU镜像里也能用-只是请不要忘记按装CUDA驱动,以及告诉Docker
.. code-block:: bash
FROM paddledev/paddle:cpu-latest
export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:gpu-latest
MAINTAINER PaddlePaddle dev team <paddle-dev@baidu.com>
RUN apt-get update
RUN apt-get install -y openssh-server
RUN mkdir /var/run/sshd
RUN echo 'root:root' | chpasswd
非AVX镜像
---------
RUN sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config
RUN sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
纯CPU镜像以及GPU镜像都会用到AVX指令集,但是2008年之前生产的旧电脑不支持AVX。以下指令能检查Linux电脑是否支持AVX:
EXPOSE 22
CMD ["/usr/sbin/sshd", "-D"]
.. code-block:: bash
if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi
使用该Dockerfile构建出镜像,然后运行这个container即可。相关命令为\:
如果输出是No,我们就需要手动编译一个非AVX版本的镜像:
.. code-block:: bash
# cd到含有Dockerfile的路径中
$ docker build . -t paddle_ssh
# 运行这个container,将宿主机的8022端口映射到container的22端口上
$ docker run -d -p 8022:22 --name paddle_ssh_machine paddle_ssh
cd ~
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
docker build --build-arg WITH_AVX=OFF -t paddle:cpu-noavx -f paddle/scripts/docker/Dockerfile .
docker build --build-arg WITH_AVX=OFF -t paddle:gpu-noavx -f paddle/scripts/docker/Dockerfile.gpu .
执行如下命令即可以关闭这个container,并且删除container中的数据\:
.. code-block:: bash
文档
----
# 关闭container
$ docker stop paddle_ssh_machine
# 删除container
$ docker rm paddle_ssh_machine
Paddle的Docker镜像带有一个通过 `woboq code browser
<https://github.com/woboq/woboq_codebrowser>`_ 生成的HTML版本的C++源代码,便于用户浏览C++源码。
如果想要在外部机器访问这个container,即可以使用ssh访问宿主机的8022端口。用户名为
root,密码也是root。命令为\:
只要在Docker里启动PaddlePaddle的时候给它一个名字,就可以再运行另一个Nginx Docker镜像来服务HTML代码:
.. code-block:: bash
$ ssh -p 8022 root@YOUR_HOST_MACHINE
docker run -d --name paddle-cpu-doc paddle:cpu
docker run -d --volumes-from paddle-cpu-doc -p 8088:80 nginx
至此,您就可以远程的使用PaddlePaddle啦
接着我们就能够打开浏览器在 http://localhost:8088/paddle/ 浏览代码
......@@ -42,7 +42,7 @@ Windows -- in a consistent way.
.. code-block:: bash
docker run -d -p 2202:22 -v $PWD:/paddle paddle:dev
docker run -d -p 2202:22 -p 8888:8888 -v $PWD:/paddle paddle:dev
This runs a container of the development environment Docker image
with the local source tree mounted to :code:`/paddle` of the
......@@ -82,6 +82,29 @@ Windows -- in a consistent way.
cd /paddle/build
ctest
4. Run PaddlePaddle Book under Docker Container
The Jupyter Notebook is an open-source web application that allows
you to create and share documents that contain live code, equations,
visualizations and explanatory text in a single browser.
PaddlePaddle Book is an interactive Jupyter Notebook for users and developers.
We already exposed port 8888 for this book. If you want to
dig deeper into deep learning, PaddlePaddle Book definitely is your best choice.
Once you are inside the container, simply issue the command:
.. code-block:: bash
jupyter notebook
Then, you would back and paste the address into the local browser:
.. code-block:: text
http://localhost:8888/
That's all. Enjoy your journey!
CPU-only and GPU Images
-----------------------
......
......@@ -43,22 +43,55 @@ docker push [YOUR_REPO]/paddle:mypaddle
注意上述命令中`[YOUR_REPO]`表示读者所使用的Docker镜像仓库地址,读者需要替换成自己使用的仓库地址。下文使用`[YOUR_REPO]/paddle:mypaddle`这个地址来表示此步骤所构建出的镜像。
### 上传训练文件
### 准备训练数据
本文使用PaddlePaddle官方的[recommendation demo](http://www.paddlepaddle.org/doc/demo/index.html#recommendation)作为这次训练的内容,我们将训练文件与数据放在一个job name命名的目录中,上传到volume所在的共享存储(使用不同分布式存储会有不同的挂载方式,需要要先挂载这个目录,然后拷贝数据)。完成后volume中的文件内容大致如下:
这里我们通过在Kubernetes集群上启动一个Job来下载并切割数据,也可以通过修改[k8s_train](./src/k8s_train/README.md)的内容来定制image.
```bash
[root@paddle-kubernetes-node0 mfs]# tree -d
在启动Job之前,需要根据不同的分布式存储来绑定一个[persistentVolumeClaim](https://kubernetes.io/docs/user-guide/persistent-volumes/),生成的数据将会存储在这个volume下.
```yaml
apiVersion: batch/v1
kind: Job
metadata:
name: paddle-data
spec:
template:
metadata:
name: pi
spec:
hostNetwork: true
containers:
- name: paddle-data
image: paddledev/paddle-tutorial:k8s_data
imagePullPolicy: Always
volumeMounts:
- mountPath: "/mnt"
name: nfs
env:
- name: OUT_DIR
value: /home/work/mfs/paddle-cluster-job
- name: SPLIT_COUNT
value: "3"
volumes:
- name: nfs
persistentVolumeClaim:
claimName: mfs
restartPolicy: Never
```
完成后volume中的文件内容大致如下:
```base
[root@paddle-kubernetes-node0 nfsdir]$ tree -d
.
└── paddle-cluster-job
├── data
│   ├── 0
│   │
│   ├── 1
│   │
│   └── 2
├── output
└── recommendation
`-- paddle-cluster-job
|-- 0
| `-- data
|-- 1
| `-- data
|-- 2
| `-- data
|-- output
|-- quick_start
```
目录中paddle-cluster-job是本次训练对应的job name,本次训练要求有3个PaddlePaddle节点,在paddle-cluster-job/data目录中存放切分好的数据,文件夹0,1,2分别代表3个节点的trainer_id。recommendation文件夹内存放训练文件,output文件夹存放训练结果与日志。
......@@ -118,15 +151,16 @@ spec:
`env`字段表示容器的环境变量,我们将`paddle`运行的一些参数通过这种方式传递到容器内。
`JOB_PATH`表示共享存储挂载的路径,`JOB_NAME`表示job名字,`TRAIN_CONFIG_DIR`表示本次训练文件所在目录,这三个变量组合就可以找到本次训练需要的文件路径。
`CONF_PADDLE_NIC`表示`paddle pserver`进程需要的`--nics`参数,即网卡名
`CONF_PADDLE_PORT`表示`paddle pserver``--port`参数,`CONF_PADDLE_PORTS_NUM`则表示稠密更新的端口数量,也就是`--ports_num`参数。
`CONF_PADDLE_PORTS_NUM_SPARSE`表示稀疏更新的端口数量,也就是`--ports_num_for_sparse`参数。
`CONF_PADDLE_GRADIENT_NUM`表示训练节点数量,即`--num_gradient_servers`参数
环境变量 | 说明
--- | ---
JOB_PATH | 共享存储挂在的路径
JOB_NAME | Job的名字
TRAIN_CONFIG_DIR | 本次训练文件所在目录,与JOB_PATH,JOB_NAME组合可以找到本次训练需要的文件路径
CONF_PADDLE_NIC | `paddle pserver`进程需要的`--nics`参数,即网卡名
CONF_PADDLE_PORT | `paddle paserver``--port`参数
CONF_PADDLE_PORTS_NUM | 稠密更新的端口数量,即`--ports_num`参数
CONF_PADDLE_PORTS_NUM_SPARSE | 稀疏更新的端口数量,即`--ports_num_for_sparse`参数
CONF_PADDLE_GRADIENT_NUM | 训练节点数量,即`--num_gradient_servers参数`
这些参数的具体描述,读者可以查看[这里](http://www.paddlepaddle.org/doc/ui/cmd_argument/detail_introduction.html#parameter-server-and-distributed-communication)
......
......@@ -132,6 +132,7 @@ def startPaddle(idMap={}, train_args_dict=None):
logDir = JOB_PATH_OUTPUT + "/node_" + str(trainerId)
if not os.path.exists(JOB_PATH_OUTPUT):
os.makedirs(JOB_PATH_OUTPUT)
if not os.path.exists(logDir):
os.mkdir(logDir)
copyCommand = 'cp -rf ' + JOB_PATH + \
"/" + str(trainerId) + "/data/*" + " ./data/"
......
......@@ -15,13 +15,19 @@ import sys
import os, subprocess
import shlex
from recommonmark import parser, transform
try:
import py_paddle
import paddle
import paddle.v2
except ImportError:
print("Must install paddle python package before generating documentation")
sys.exit(1)
MarkdownParser = parser.CommonMarkParser
AutoStructify = transform.AutoStructify
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
sys.path.insert(0, '@PROJ_ROOT@/python')
templates_path = ["@PROJ_ROOT@/doc_theme/templates"]
# -- General configuration ------------------------------------------------
......
......@@ -15,14 +15,20 @@ import sys
import os, subprocess
import shlex
from recommonmark import parser, transform
try:
import py_paddle
import paddle
import paddle.v2
except ImportError:
print("Must install paddle python package before generating documentation")
sys.exit(1)
MarkdownParser = parser.CommonMarkParser
AutoStructify = transform.AutoStructify
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
sys.path.insert(0, '@PROJ_ROOT@/python')
templates_path = ["@PROJ_ROOT@/doc_theme/templates"]
# -- General configuration ------------------------------------------------
......
......@@ -156,14 +156,14 @@ define_py_data_sources2(train_list='data/train.list',
obj="process",
args={"dictionary": word_dict})
```
You can refer to the following link for more detailed examples and data formats: <a href = "../../api/data_provider/pydataprovider2_en.html">PyDataProvider2</a>.
You can refer to the following link for more detailed examples and data formats: <a href = "../../api/v1/data_provider/pydataprovider2_en.html">PyDataProvider2</a>.
## Network Architecture
We will describe four kinds of network architectures in this section.
<center> ![](./src/PipelineNetwork_en.jpg) </center>
First, you will build a logistic regression model. Later, you will also get chance to build other more powerful network architectures.
For more detailed documentation, you could refer to: <a href = "../../api/trainer_config_helpers/layers.html">layer documentation</a>. All configuration files are in `demo/quick_start` directory.
For more detailed documentation, you could refer to: <a href = "../../api/v1/trainer_config_helpers/layers.html">layer documentation</a>. All configuration files are in `demo/quick_start` directory.
### Logistic Regression
The architecture is illustrated in the following picture:
......@@ -366,7 +366,7 @@ You can use single layer LSTM model with Dropout for our text classification pro
<br>
## Optimization Algorithm
<a href = "../../api/trainer_config_helpers/optimizers.html">Optimization algorithms</a> include Momentum, RMSProp, AdaDelta, AdaGrad, Adam, and Adamax. You can use Adam optimization method here, with L2 regularization and gradient clipping, because Adam has been proved to work very well for training recurrent neural network.
<a href = "../../api/v1/trainer_config_helpers/optimizers.html">Optimization algorithms</a> include Momentum, RMSProp, AdaDelta, AdaGrad, Adam, and Adamax. You can use Adam optimization method here, with L2 regularization and gradient clipping, because Adam has been proved to work very well for training recurrent neural network.
```python
settings(batch_size=128,
......@@ -407,7 +407,7 @@ paddle train \
--init_model_path=./output/pass-0000x
```
We will give an example of performing prediction using Recurrent model on a dataset with no labels. You can refer to <a href = "../../api/predict/swig_py_paddle_en.html">Python Prediction API</a> tutorial,or other <a href = "../../tutorials/index_en.html">demo</a> for the prediction process using Python. You can also use the following script for inference or evaluation.
We will give an example of performing prediction using Recurrent model on a dataset with no labels. You can refer to <a href = "../../api/v1/predict/swig_py_paddle_en.html">Python Prediction API</a> tutorial,or other <a href = "../../tutorials/index_en.html">demo</a> for the prediction process using Python. You can also use the following script for inference or evaluation.
inference script (predict.sh):
......
......@@ -144,9 +144,7 @@ void Arguments::setSlotSequenceDim(size_t idx, IVector* vec) throw(RangeError) {
a.cpuSequenceDims = m->cast<paddle::IVector>(vec->getSharedPtr());
}
float Arguments::sumCosts() const {
return paddle::Argument::sumCosts(m->outputs);
}
float Arguments::sum() const { return paddle::Argument::sum(m->outputs); }
int64_t Arguments::getBatchSize(size_t idx) const throw(RangeError) {
auto& a = m->getArg(idx);
......
......@@ -142,6 +142,20 @@ Parameter* GradientMachine::getParameter(size_t i) throw(RangeError) {
}
}
size_t GradientMachine::getNonStaticParameterSize() const {
return m->machine->getNonStaticParameters().size();
}
Parameter* GradientMachine::getNonStaticParameter(size_t i) throw(RangeError) {
auto params = m->machine->getNonStaticParameters();
if (i < params.size()) {
return Parameter::createFromSharedPtr(
&m->machine->getNonStaticParameters()[i]);
} else {
throw RangeError();
}
}
void GradientMachine::randParameters() { m->machine->randParameters(); }
Arguments* GradientMachine::getLayerOutput(const std::string& layerName) const
......
......@@ -453,7 +453,7 @@ public:
IVector* vec) throw(RangeError);
void setSlotSequenceDim(size_t idx, IVector* vec) throw(RangeError);
float sumCosts() const;
float sum() const;
private:
static Arguments* createByPaddleArgumentVector(void* ptr);
......@@ -771,6 +771,9 @@ public:
size_t getParameterSize() const;
Parameter* getParameter(size_t i) throw(RangeError);
size_t getNonStaticParameterSize() const;
Parameter* getNonStaticParameter(size_t i) throw(RangeError);
void randParameters();
Arguments* getLayerOutput(const std::string& layerName) const
......
......@@ -22,7 +22,7 @@ class TestArguments(unittest.TestCase):
args = swig_paddle.Arguments.createArguments(1)
args.setSlotValue(0, m)
self.assertAlmostEqual(27.0, args.sumCosts())
self.assertAlmostEqual(27.0, args.sum())
mat = args.getSlotValue(0)
assert isinstance(mat, swig_paddle.Matrix)
......
......@@ -346,8 +346,10 @@ Evaluator* MultiGradientMachine::makeEvaluator() const {
void MultiGradientMachine::eval(Evaluator* evaluator) const {
for (auto& thread : threads_) {
SetDevice device(thread->getDeviceId());
if (thread->hasInputData()) {
thread->getGradientMachine()->eval(evaluator);
}
}
}
void MultiGradientMachine::getOutArgs(std::vector<Argument>* outArgs,
......@@ -356,14 +358,19 @@ void MultiGradientMachine::getOutArgs(std::vector<Argument>* outArgs,
REGISTER_TIMER("waitOutArgs");
thread->waitOutArgsReady();
}
outArgs_.resize(threads_[0]->getOutArgs().size());
outArgs_.resize(threads_[threads_.size() - 1]->getOutArgs().size());
REGISTER_TIMER("copyOutArgs");
for (size_t i = 0; i < outArgs_.size(); ++i) {
std::vector<Argument> args;
args.reserve(threads_.size());
for (auto& thread : threads_) {
args.push_back(thread->getOutArgs()[i]);
// If the thread input is empty, then the output is empty.
auto tmp = thread->getOutArgs();
if (tmp.size() > 0) {
args.push_back(tmp[i]);
}
}
outArgs_[i].concat(args, useGpu_, outArgStream_, passType);
}
......@@ -534,7 +541,7 @@ void TrainerThread::prefetch() {
void TrainerThread::forward() {
if (!inArgsCopied_) {
REGISTER_TIMER("copyInArgs");
copyInArgs();
batchSize_ = copyInArgs();
} else {
inArgsCopied_ = false;
}
......@@ -564,7 +571,12 @@ void TrainerThread::forward() {
{
REGISTER_TIMER("thread_forward");
gradientMachine_->forward(inArgs_, &outArgs_, multiMachine_->getPassType());
if (batchSize_ > 0) {
gradientMachine_->forward(
inArgs_, &outArgs_, multiMachine_->getPassType());
} else {
outArgs_.clear();
}
}
outArgsReadySem_.post();
}
......@@ -574,7 +586,13 @@ void TrainerThread::backward() {
if (multiMachine_->isPassGrad()) {
copyOutputGrad();
}
if (batchSize_ > 0) {
gradientMachine_->backward(backwardCallback_);
} else {
for (size_t i = parameters_.size(); i > 0; i--) {
backwardCallback(parameters_[i - 1].get());
}
}
if (multiMachine_->hasNonstaticCpuParamters()) {
mergeCpuGradients();
}
......@@ -732,7 +750,7 @@ void TrainerThread::notifyValueReady(int paramId) {
notifyValueDispatch(paramId);
}
void TrainerThread::copyInArgs() {
int TrainerThread::copyInArgs() {
const std::vector<Argument>& fullInArgs = multiMachine_->getInArgs();
int numThreads = multiMachine_->getAllThreads().size();
int32_t numSequences = fullInArgs[0].getNumSequences();
......@@ -748,7 +766,7 @@ void TrainerThread::copyInArgs() {
}
if (copySize == 0) {
return;
return 0;
}
for (size_t i = 0; i < fullInArgs.size(); i++) {
......@@ -758,6 +776,7 @@ void TrainerThread::copyInArgs() {
copySize,
FLAGS_parallel_nn ? false : multiMachine_->useGpu());
}
return copySize;
}
void TrainerThread::mergeCpuGradients() {
......
......@@ -387,6 +387,9 @@ public:
/// copy the output gradient from the main GradientMachine.
void copyOutputGrad();
/// Whether the thread has input data.
bool hasInputData() { return batchSize_ != 0; }
protected:
void mergeCpuGradients();
......@@ -407,7 +410,7 @@ protected:
void copyGradToBufferThread();
void gradCollectThread();
void copyInArgs();
int copyInArgs();
void forward();
void backward();
void backwardCallback(Parameter* para);
......@@ -467,6 +470,7 @@ protected:
/// indicate whether inArgs is copied before forward()
bool inArgsCopied_;
int batchSize_;
};
} // namespace paddle
......@@ -24,7 +24,7 @@ real getCostSum(LayerPtr& testLayer, MatrixPtr weights) {
if (weights) {
outArgs[0].value->dotMul(*outArgs[0].value, *weights);
}
return Argument::sumCosts(outArgs);
return Argument::sum(outArgs);
}
real getDiffAndPrint(real newCost1,
......@@ -241,7 +241,7 @@ void testBatchState(LayerPtr testLayer,
std::vector<Argument> args;
args.push_back(out);
EXPECT_EQ(0, Argument::sumCosts(args)) << "testBatchState failed";
EXPECT_EQ(0, Argument::sum(args)) << "testBatchState failed";
for (size_t seqId = 0; seqId < numSequences; ++seqId) {
start[seqId] += seqLens[seqId];
}
......@@ -672,7 +672,7 @@ void testLayerGradKernel(TestConfig testConf,
outArgs[0].value->dotMul(*testLayer->getOutput().value, *weights);
}
real cost = Argument::sumCosts(outArgs);
real cost = Argument::sum(outArgs);
LOG(INFO) << " cost " << cost;
EXPECT_FALSE(std::isnan(cost));
......
......@@ -163,7 +163,7 @@ struct Argument {
: sequenceStartPositions->getData(false);
}
static inline real sumCosts(const std::vector<Argument>& arguments) {
static inline real sum(const std::vector<Argument>& arguments) {
real cost = 0;
for (auto& arg : arguments) {
if (arg.value) {
......
......@@ -10,9 +10,11 @@ add_test(NAME socket_test
add_unittest_without_exec(test_ProtoServer
test_ProtoServer.cpp)
add_test(NAME test_ProtoServer
IF(NOT ON_TRAVIS)
add_test(NAME test_ProtoServer
COMMAND ${PROJ_ROOT}/paddle/.set_port.sh -p port
${CMAKE_CURRENT_BINARY_DIR}/test_ProtoServer)
ENDIF(NOT ON_TRAVIS)
# TODO(yuyang18): Run test_ProtoServer when with rdma
# add_test(NAME test_ProtoServerRDMA
......
......@@ -195,6 +195,12 @@ def __monkeypatch_gradient_machine__():
swig_paddle.GradientMachine.getParameters = getParameters
def getNonStaticParameters(self):
return (self.getNonStaticParameter(i)
for i in xrange(self.getNonStaticParameterSize()))
swig_paddle.GradientMachine.getNonStaticParameters = getNonStaticParameters
def getLayerOutputs(self, layerNames):
"""
getLayerOutputs. get outputs of layers and return a numpy matrix dict.
......
......@@ -5,40 +5,54 @@ ARG DEBIAN_FRONTEND=noninteractive
ARG UBUNTU_MIRROR
RUN /bin/bash -c 'if [[ -n ${UBUNTU_MIRROR} ]]; then sed -i 's#http://archive.ubuntu.com#${UBUNTU_MIRROR}#g' /etc/apt/sources.list; fi'
# ENV variables
ARG BUILD_WOBOQ
ARG BUILD_AND_INSTALL
ARG WITH_AVX
ARG WITH_DOC
ARG WITH_STYLE_CHECK
ENV BUILD_WOBOQ=${BUILD_WOBOQ:-OFF}
ENV BUILD_AND_INSTALL=${BUILD_AND_INSTALL:-OFF}
ENV WITH_GPU=OFF
ENV WITH_AVX=${WITH_AVX:-ON}
ENV WITH_DOC=${WITH_DOC:-OFF}
ENV WITH_STYLE_CHECK=${WITH_STYLE_CHECK:-OFF}
ENV HOME /root
# Add bash enhancements
COPY ./paddle/scripts/docker/root/ /root/
RUN apt-get update && \
apt-get install -y git python-pip python-dev openssh-server bison && \
apt-get install -y wget unzip tar xz-utils bzip2 gzip coreutils && \
apt-get install -y curl sed grep graphviz libjpeg-dev zlib1g-dev && \
apt-get install -y python-numpy python-matplotlib gcc g++ gfortran && \
apt-get install -y automake && \
apt-get install -y automake locales clang-format-3.8 && \
apt-get clean -y
# git credential to skip password typing
RUN git config --global credential.helper store
# Fix locales to en_US.UTF-8
RUN localedef -i en_US -f UTF-8 en_US.UTF-8
RUN pip install --upgrade pip && \
pip install -U "protobuf==3.1.0" && \
pip install -U 'protobuf==3.1.0' && \
pip install -U wheel pillow BeautifulSoup && \
pip install -U docopt PyYAML sphinx && \
pip install -U sphinx_rtd_theme recommonmark jupyter
pip install -U sphinx-rtd-theme==0.1.9 recommonmark && \
pip install -U pre-commit 'requests==2.9.2' jupyter
RUN curl -sSL https://cmake.org/files/v3.4/cmake-3.4.1.tar.gz | tar -xz && \
cd cmake-3.4.1 && ./bootstrap && make -j `nproc` && make install && \
cd .. && rm -rf cmake-3.4.1
ARG BUILD_WOBOQ
ARG BUILD_AND_INSTALL
ARG WITH_AVX
ARG WITH_DOC
ARG WITH_STYLE_CHECK
ENV BUILD_WOBOQ=${BUILD_WOBOQ:-OFF}
ENV BUILD_AND_INSTALL=${BUILD_AND_INSTALL:-OFF}
ENV WITH_GPU=OFF
ENV WITH_AVX=${WITH_AVX:-ON}
ENV WITH_DOC=${WITH_DOC:-OFF}
ENV WITH_STYLE_CHECK=${WITH_STYLE_CHECK:-OFF}
RUN mkdir /paddle
COPY . /paddle/
RUN cd /paddle/ && git submodule update --init --recursive
RUN /paddle/paddle/scripts/docker/build.sh
VOLUME ["/usr/share/nginx/html/data", "/usr/share/nginx/html/paddle"]
# Configure OpenSSH server. c.f. https://docs.docker.com/engine/examples/running_ssh_service
......@@ -48,12 +62,9 @@ RUN sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config
RUN sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
EXPOSE 22
# Jupyter Notebook directory.
RUN mkdir /notes/
WORKDIR "/notes"
# Jupyter Notebook: Paddle book
EXPOSE 8888
RUN mkdir -p /opt/bin
COPY ./paddle/scripts/docker/entrypoint /opt/bin/
CMD ["/opt/bin/entrypoint"]
......@@ -5,40 +5,54 @@ ARG DEBIAN_FRONTEND=noninteractive
ARG UBUNTU_MIRROR
RUN /bin/bash -c 'if [[ -n ${UBUNTU_MIRROR} ]]; then sed -i 's#http://archive.ubuntu.com#${UBUNTU_MIRROR}#g' /etc/apt/sources.list; fi'
# ENV variables
ARG BUILD_WOBOQ
ARG BUILD_AND_INSTALL
ARG WITH_AVX
ARG WITH_DOC
ARG WITH_STYLE_CHECK
ENV BUILD_WOBOQ=${BUILD_WOBOQ:-OFF}
ENV BUILD_AND_INSTALL=${BUILD_AND_INSTALL:-OFF}
ENV WITH_GPU=ON
ENV WITH_AVX=${WITH_AVX:-ON}
ENV WITH_DOC=${WITH_DOC:-OFF}
ENV WITH_STYLE_CHECK=${WITH_STYLE_CHECK:-OFF}
ENV HOME /root
# Add bash enhancements
COPY ./paddle/scripts/docker/root/ /root/
RUN apt-get update && \
apt-get install -y git python-pip python-dev openssh-server bison && \
apt-get install -y wget unzip tar xz-utils bzip2 gzip coreutils && \
apt-get install -y curl sed grep graphviz libjpeg-dev zlib1g-dev && \
apt-get install -y python-numpy python-matplotlib gcc g++ gfortran && \
apt-get install -y automake && \
apt-get install -y automake locales clang-format-3.8 && \
apt-get clean -y
# git credential to skip password typing
RUN git config --global credential.helper store
# Fix locales to en_US.UTF-8
RUN localedef -i en_US -f UTF-8 en_US.UTF-8
RUN pip install --upgrade pip && \
pip install -U "protobuf==3.1.0" && \
pip install -U 'protobuf==3.1.0' && \
pip install -U wheel pillow BeautifulSoup && \
pip install -U docopt PyYAML sphinx && \
pip install -U sphinx_rtd_theme recommonmark jupyter
pip install -U sphinx-rtd-theme==0.1.9 recommonmark && \
pip install -U pre-commit 'requests==2.9.2' jupyter
RUN curl -sSL https://cmake.org/files/v3.4/cmake-3.4.1.tar.gz | tar -xz && \
cd cmake-3.4.1 && ./bootstrap && make -j `nproc` && make install && \
cd .. && rm -rf cmake-3.4.1
ARG BUILD_WOBOQ
ARG BUILD_AND_INSTALL
ARG WITH_AVX
ARG WITH_DOC
ARG WITH_STYLE_CHECK
ENV BUILD_WOBOQ=${BUILD_WOBOQ:-OFF}
ENV BUILD_AND_INSTALL=${BUILD_AND_INSTALL:-OFF}
ENV WITH_GPU=ON
ENV WITH_AVX=${WITH_AVX:-ON}
ENV WITH_DOC=${WITH_DOC:-OFF}
ENV WITH_STYLE_CHECK=${WITH_STYLE_CHECK:-OFF}
RUN mkdir /paddle
COPY . /paddle/
RUN cd /paddle/ && git submodule update --init --recursive
RUN /paddle/paddle/scripts/docker/build.sh
VOLUME ["/usr/share/nginx/html/data", "/usr/share/nginx/html/paddle"]
# Configure OpenSSH server. c.f. https://docs.docker.com/engine/examples/running_ssh_service
......@@ -48,12 +62,9 @@ RUN sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config
RUN sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
EXPOSE 22
# Jupyter Notebook directory.
RUN mkdir /notes/
WORKDIR "/notes"
# Jupyter Notebook: Paddle book
EXPOSE 8888
RUN mkdir -p /opt/bin
COPY ./paddle/scripts/docker/entrypoint /opt/bin/
CMD ["/opt/bin/entrypoint"]
......@@ -17,7 +17,8 @@ if [[ ${BUILD_AND_INSTALL:-OFF} == 'ON' ]]; then
fi
mkdir -p /paddle/build # -p means no error if exists
cd /paddle/build
# clean local cmake and third_party cache
cd /paddle/build && rm -rf * && rm -rf ../third_party
cmake .. \
-DWITH_DOC=${WITH_DOC:-OFF} \
-DWITH_GPU=${WITH_GPU:-OFF} \
......
#!/bin/bash
LOG=/var/log/all
touch $LOG
/usr/sbin/sshd -D >> $LOG &
jupyter notebook --ip=0.0.0.0 /notes/ >> $LOG &
tail -f $LOG
/usr/sbin/sshd -D &
jupyter notebook --ip=0.0.0.0 /paddle/book/
# Locales
export LC_ALL=en_US.UTF-8
export LANG=en_US.UTF-8
export LANGUAGE=en_US.UTF-8
# Aliases
alias rm='rm -i'
alias cp='cp -i'
alias mv='mv -i'
alias ls='ls -hFG'
alias l='ls -lF'
alias ll='ls -alF'
alias lt='ls -ltrF'
alias ll='ls -alF'
alias lls='ls -alSrF'
alias llt='ls -altrF'
# Colorize directory listing
alias ls="ls -ph --color=auto"
# Colorize grep
if echo hello|grep --color=auto l >/dev/null 2>&1; then
export GREP_OPTIONS="--color=auto" GREP_COLOR="1;31"
fi
# Shell
export CLICOLOR="1"
YELLOW="\[\033[1;33m\]"
NO_COLOUR="\[\033[0m\]"
GREEN="\[\033[1;32m\]"
WHITE="\[\033[1;37m\]"
source ~/.scripts/git-prompt.sh
export PS1="\[\033[1;33m\]λ $WHITE\h $GREEN\w$YELLOW\$(__git_ps1 \" \[\033[35m\]{\[\033[36m\]%s\[\033[35m\]}\")$NO_COLOUR "
# Git
source ~/.scripts/git-completion.sh
[user]
name =
email =
[alias]
st = status --branch --short
ci = commit
br = branch
co = checkout
df = diff
l = log --pretty=format:\"%h %ad | %s%d [%an]\" --graph --date=short
ll = log --stat
[merge]
tool = vimdiff
[core]
excludesfile = ~/.gitignore
editor = vim
[color]
branch = auto
diff = auto
status = auto
[color "branch"]
current = yellow reverse
local = yellow
remote = green
[color "diff"]
meta = yellow bold
frag = magenta bold
old = red bold
new = green bold
[color "status"]
added = yellow
changed = green
untracked = cyan
[push]
default = matching
\ No newline at end of file
此差异已折叠。
# bash/zsh git prompt support
#
# Copyright (C) 2006,2007 Shawn O. Pearce <spearce@spearce.org>
# Distributed under the GNU General Public License, version 2.0.
#
# This script allows you to see repository status in your prompt.
#
# To enable:
#
# 1) Copy this file to somewhere (e.g. ~/.git-prompt.sh).
# 2) Add the following line to your .bashrc/.zshrc:
# source ~/.git-prompt.sh
# 3a) Change your PS1 to call __git_ps1 as
# command-substitution:
# Bash: PS1='[\u@\h \W$(__git_ps1 " (%s)")]\$ '
# ZSH: setopt PROMPT_SUBST ; PS1='[%n@%m %c$(__git_ps1 " (%s)")]\$ '
# the optional argument will be used as format string.
# 3b) Alternatively, for a slightly faster prompt, __git_ps1 can
# be used for PROMPT_COMMAND in Bash or for precmd() in Zsh
# with two parameters, <pre> and <post>, which are strings
# you would put in $PS1 before and after the status string
# generated by the git-prompt machinery. e.g.
# Bash: PROMPT_COMMAND='__git_ps1 "\u@\h:\w" "\\\$ "'
# will show username, at-sign, host, colon, cwd, then
# various status string, followed by dollar and SP, as
# your prompt.
# ZSH: precmd () { __git_ps1 "%n" ":%~$ " "|%s" }
# will show username, pipe, then various status string,
# followed by colon, cwd, dollar and SP, as your prompt.
# Optionally, you can supply a third argument with a printf
# format string to finetune the output of the branch status
#
# The repository status will be displayed only if you are currently in a
# git repository. The %s token is the placeholder for the shown status.
#
# The prompt status always includes the current branch name.
#
# In addition, if you set GIT_PS1_SHOWDIRTYSTATE to a nonempty value,
# unstaged (*) and staged (+) changes will be shown next to the branch
# name. You can configure this per-repository with the
# bash.showDirtyState variable, which defaults to true once
# GIT_PS1_SHOWDIRTYSTATE is enabled.
#
# You can also see if currently something is stashed, by setting
# GIT_PS1_SHOWSTASHSTATE to a nonempty value. If something is stashed,
# then a '$' will be shown next to the branch name.
#
# If you would like to see if there're untracked files, then you can set
# GIT_PS1_SHOWUNTRACKEDFILES to a nonempty value. If there're untracked
# files, then a '%' will be shown next to the branch name. You can
# configure this per-repository with the bash.showUntrackedFiles
# variable, which defaults to true once GIT_PS1_SHOWUNTRACKEDFILES is
# enabled.
#
# If you would like to see the difference between HEAD and its upstream,
# set GIT_PS1_SHOWUPSTREAM="auto". A "<" indicates you are behind, ">"
# indicates you are ahead, "<>" indicates you have diverged and "="
# indicates that there is no difference. You can further control
# behaviour by setting GIT_PS1_SHOWUPSTREAM to a space-separated list
# of values:
#
# verbose show number of commits ahead/behind (+/-) upstream
# legacy don't use the '--count' option available in recent
# versions of git-rev-list
# git always compare HEAD to @{upstream}
# svn always compare HEAD to your SVN upstream
#
# By default, __git_ps1 will compare HEAD to your SVN upstream if it can
# find one, or @{upstream} otherwise. Once you have set
# GIT_PS1_SHOWUPSTREAM, you can override it on a per-repository basis by
# setting the bash.showUpstream config variable.
#
# If you would like to see more information about the identity of
# commits checked out as a detached HEAD, set GIT_PS1_DESCRIBE_STYLE
# to one of these values:
#
# contains relative to newer annotated tag (v1.6.3.2~35)
# branch relative to newer tag or branch (master~4)
# describe relative to older annotated tag (v1.6.3.1-13-gdd42c2f)
# default exactly matching tag
#
# If you would like a colored hint about the current dirty state, set
# GIT_PS1_SHOWCOLORHINTS to a nonempty value. The colors are based on
# the colored output of "git status -sb" and are available only when
# using __git_ps1 for PROMPT_COMMAND or precmd.
# stores the divergence from upstream in $p
# used by GIT_PS1_SHOWUPSTREAM
__git_ps1_show_upstream ()
{
local key value
local svn_remote svn_url_pattern count n
local upstream=git legacy="" verbose=""
svn_remote=()
# get some config options from git-config
local output="$(git config -z --get-regexp '^(svn-remote\..*\.url|bash\.showupstream)$' 2>/dev/null | tr '\0\n' '\n ')"
while read -r key value; do
case "$key" in
bash.showupstream)
GIT_PS1_SHOWUPSTREAM="$value"
if [[ -z "${GIT_PS1_SHOWUPSTREAM}" ]]; then
p=""
return
fi
;;
svn-remote.*.url)
svn_remote[$((${#svn_remote[@]} + 1))]="$value"
svn_url_pattern+="\\|$value"
upstream=svn+git # default upstream is SVN if available, else git
;;
esac
done <<< "$output"
# parse configuration values
for option in ${GIT_PS1_SHOWUPSTREAM}; do
case "$option" in
git|svn) upstream="$option" ;;
verbose) verbose=1 ;;
legacy) legacy=1 ;;
esac
done
# Find our upstream
case "$upstream" in
git) upstream="@{upstream}" ;;
svn*)
# get the upstream from the "git-svn-id: ..." in a commit message
# (git-svn uses essentially the same procedure internally)
local -a svn_upstream
svn_upstream=($(git log --first-parent -1 \
--grep="^git-svn-id: \(${svn_url_pattern#??}\)" 2>/dev/null))
if [[ 0 -ne ${#svn_upstream[@]} ]]; then
svn_upstream=${svn_upstream[${#svn_upstream[@]} - 2]}
svn_upstream=${svn_upstream%@*}
local n_stop="${#svn_remote[@]}"
for ((n=1; n <= n_stop; n++)); do
svn_upstream=${svn_upstream#${svn_remote[$n]}}
done
if [[ -z "$svn_upstream" ]]; then
# default branch name for checkouts with no layout:
upstream=${GIT_SVN_ID:-git-svn}
else
upstream=${svn_upstream#/}
fi
elif [[ "svn+git" = "$upstream" ]]; then
upstream="@{upstream}"
fi
;;
esac
# Find how many commits we are ahead/behind our upstream
if [[ -z "$legacy" ]]; then
count="$(git rev-list --count --left-right \
"$upstream"...HEAD 2>/dev/null)"
else
# produce equivalent output to --count for older versions of git
local commits
if commits="$(git rev-list --left-right "$upstream"...HEAD 2>/dev/null)"
then
local commit behind=0 ahead=0
for commit in $commits
do
case "$commit" in
"<"*) ((behind++)) ;;
*) ((ahead++)) ;;
esac
done
count="$behind $ahead"
else
count=""
fi
fi
# calculate the result
if [[ -z "$verbose" ]]; then
case "$count" in
"") # no upstream
p="" ;;
"0 0") # equal to upstream
p="=" ;;
"0 "*) # ahead of upstream
p=">" ;;
*" 0") # behind upstream
p="<" ;;
*) # diverged from upstream
p="<>" ;;
esac
else
case "$count" in
"") # no upstream
p="" ;;
"0 0") # equal to upstream
p=" u=" ;;
"0 "*) # ahead of upstream
p=" u+${count#0 }" ;;
*" 0") # behind upstream
p=" u-${count% 0}" ;;
*) # diverged from upstream
p=" u+${count#* }-${count% *}" ;;
esac
fi
}
# Helper function that is meant to be called from __git_ps1. It
# injects color codes into the appropriate gitstring variables used
# to build a gitstring.
__git_ps1_colorize_gitstring ()
{
if [[ -n ${ZSH_VERSION-} ]]; then
local c_red='%F{red}'
local c_green='%F{green}'
local c_lblue='%F{blue}'
local c_clear='%f'
else
# Using \[ and \] around colors is necessary to prevent
# issues with command line editing/browsing/completion!
local c_red='\[\e[31m\]'
local c_green='\[\e[32m\]'
local c_lblue='\[\e[1;34m\]'
local c_clear='\[\e[0m\]'
fi
local bad_color=$c_red
local ok_color=$c_green
local flags_color="$c_lblue"
local branch_color=""
if [ $detached = no ]; then
branch_color="$ok_color"
else
branch_color="$bad_color"
fi
c="$branch_color$c"
z="$c_clear$z"
if [ "$w" = "*" ]; then
w="$bad_color$w"
fi
if [ -n "$i" ]; then
i="$ok_color$i"
fi
if [ -n "$s" ]; then
s="$flags_color$s"
fi
if [ -n "$u" ]; then
u="$bad_color$u"
fi
r="$c_clear$r"
}
# __git_ps1 accepts 0 or 1 arguments (i.e., format string)
# when called from PS1 using command substitution
# in this mode it prints text to add to bash PS1 prompt (includes branch name)
#
# __git_ps1 requires 2 or 3 arguments when called from PROMPT_COMMAND (pc)
# in that case it _sets_ PS1. The arguments are parts of a PS1 string.
# when two arguments are given, the first is prepended and the second appended
# to the state string when assigned to PS1.
# The optional third parameter will be used as printf format string to further
# customize the output of the git-status string.
# In this mode you can request colored hints using GIT_PS1_SHOWCOLORHINTS=true
__git_ps1 ()
{
local pcmode=no
local detached=no
local ps1pc_start='\u@\h:\w '
local ps1pc_end='\$ '
local printf_format=' (%s)'
case "$#" in
2|3) pcmode=yes
ps1pc_start="$1"
ps1pc_end="$2"
printf_format="${3:-$printf_format}"
;;
0|1) printf_format="${1:-$printf_format}"
;;
*) return
;;
esac
local repo_info rev_parse_exit_code
repo_info="$(git rev-parse --git-dir --is-inside-git-dir \
--is-bare-repository --is-inside-work-tree \
--short HEAD 2>/dev/null)"
rev_parse_exit_code="$?"
if [ -z "$repo_info" ]; then
if [ $pcmode = yes ]; then
#In PC mode PS1 always needs to be set
PS1="$ps1pc_start$ps1pc_end"
fi
return
fi
local short_sha
if [ "$rev_parse_exit_code" = "0" ]; then
short_sha="${repo_info##*$'\n'}"
repo_info="${repo_info%$'\n'*}"
fi
local inside_worktree="${repo_info##*$'\n'}"
repo_info="${repo_info%$'\n'*}"
local bare_repo="${repo_info##*$'\n'}"
repo_info="${repo_info%$'\n'*}"
local inside_gitdir="${repo_info##*$'\n'}"
local g="${repo_info%$'\n'*}"
local r=""
local b=""
local step=""
local total=""
if [ -d "$g/rebase-merge" ]; then
read b 2>/dev/null <"$g/rebase-merge/head-name"
read step 2>/dev/null <"$g/rebase-merge/msgnum"
read total 2>/dev/null <"$g/rebase-merge/end"
if [ -f "$g/rebase-merge/interactive" ]; then
r="|REBASE-i"
else
r="|REBASE-m"
fi
else
if [ -d "$g/rebase-apply" ]; then
read step 2>/dev/null <"$g/rebase-apply/next"
read total 2>/dev/null <"$g/rebase-apply/last"
if [ -f "$g/rebase-apply/rebasing" ]; then
read b 2>/dev/null <"$g/rebase-apply/head-name"
r="|REBASE"
elif [ -f "$g/rebase-apply/applying" ]; then
r="|AM"
else
r="|AM/REBASE"
fi
elif [ -f "$g/MERGE_HEAD" ]; then
r="|MERGING"
elif [ -f "$g/CHERRY_PICK_HEAD" ]; then
r="|CHERRY-PICKING"
elif [ -f "$g/REVERT_HEAD" ]; then
r="|REVERTING"
elif [ -f "$g/BISECT_LOG" ]; then
r="|BISECTING"
fi
if [ -n "$b" ]; then
:
elif [ -h "$g/HEAD" ]; then
# symlink symbolic ref
b="$(git symbolic-ref HEAD 2>/dev/null)"
else
local head=""
if ! read head 2>/dev/null <"$g/HEAD"; then
if [ $pcmode = yes ]; then
PS1="$ps1pc_start$ps1pc_end"
fi
return
fi
# is it a symbolic ref?
b="${head#ref: }"
if [ "$head" = "$b" ]; then
detached=yes
b="$(
case "${GIT_PS1_DESCRIBE_STYLE-}" in
(contains)
git describe --contains HEAD ;;
(branch)
git describe --contains --all HEAD ;;
(describe)
git describe HEAD ;;
(* | default)
git describe --tags --exact-match HEAD ;;
esac 2>/dev/null)" ||
b="$short_sha..."
b="($b)"
fi
fi
fi
if [ -n "$step" ] && [ -n "$total" ]; then
r="$r $step/$total"
fi
local w=""
local i=""
local s=""
local u=""
local c=""
local p=""
if [ "true" = "$inside_gitdir" ]; then
if [ "true" = "$bare_repo" ]; then
c="BARE:"
else
b="GIT_DIR!"
fi
elif [ "true" = "$inside_worktree" ]; then
if [ -n "${GIT_PS1_SHOWDIRTYSTATE-}" ] &&
[ "$(git config --bool bash.showDirtyState)" != "false" ]
then
git diff --no-ext-diff --quiet --exit-code || w="*"
if [ -n "$short_sha" ]; then
git diff-index --cached --quiet HEAD -- || i="+"
else
i="#"
fi
fi
if [ -n "${GIT_PS1_SHOWSTASHSTATE-}" ] &&
[ -r "$g/refs/stash" ]; then
s="$"
fi
if [ -n "${GIT_PS1_SHOWUNTRACKEDFILES-}" ] &&
[ "$(git config --bool bash.showUntrackedFiles)" != "false" ] &&
git ls-files --others --exclude-standard --error-unmatch -- '*' >/dev/null 2>/dev/null
then
u="%${ZSH_VERSION+%}"
fi
if [ -n "${GIT_PS1_SHOWUPSTREAM-}" ]; then
__git_ps1_show_upstream
fi
fi
local z="${GIT_PS1_STATESEPARATOR-" "}"
# NO color option unless in PROMPT_COMMAND mode
if [ $pcmode = yes ] && [ -n "${GIT_PS1_SHOWCOLORHINTS-}" ]; then
__git_ps1_colorize_gitstring
fi
local f="$w$i$s$u"
local gitstring="$c${b##refs/heads/}${f:+$z$f}$r$p"
if [ $pcmode = yes ]; then
if [[ -n ${ZSH_VERSION-} ]]; then
gitstring=$(printf -- "$printf_format" "$gitstring")
else
printf -v gitstring -- "$printf_format" "$gitstring"
fi
PS1="$ps1pc_start$gitstring$ps1pc_end"
else
printf -- "$printf_format" "$gitstring"
fi
}
#!/bin/bash
brew update
brew tap homebrew/science
brew install openblas swig md5sha1sum
......@@ -2,18 +2,11 @@
source ./common.sh
NPROC=1
if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then
export PYTHONPATH=/opt/python/2.7.12/lib/python2.7/site-packages
export PYTHONHOME=/opt/python/2.7.12
export PATH=/opt/python/2.7.12/bin:${PATH}
cmake .. -DCMAKE_Fortran_COMPILER=/usr/bin/gfortran-4.8 -DON_TRAVIS=ON -DON_COVERALLS=ON -DCOVERALLS_UPLOAD=ON ${EXTRA_CMAKE_OPTS}
NRPOC=`nproc`
make -j $NPROC
make coveralls
sudo make install
elif [[ "$TRAVIS_OS_NAME" == "osx" ]]; then
export PYTHONPATH=/usr/local/lib/python2.7/site-packages
cmake .. -DON_TRAVIS=ON -DON_COVERALLS=ON -DCOVERALLS_UPLOAD=ON ${EXTRA_CMAKE_OPTS}
NPROC=`sysctl -n hw.ncpu`
make -j $NPROC
fi
export PYTHONPATH=/opt/python/2.7.12/lib/python2.7/site-packages
export PYTHONHOME=/opt/python/2.7.12
export PATH=/opt/python/2.7.12/bin:${PATH}
cmake .. -DCMAKE_Fortran_COMPILER=/usr/bin/gfortran-4.8 -DON_TRAVIS=ON -DON_COVERALLS=ON -DCOVERALLS_UPLOAD=ON ${EXTRA_CMAKE_OPTS}
NRPOC=`nproc`
make -j $NPROC
make coveralls
sudo make install
......@@ -2,8 +2,12 @@
# Add set -e, cd to directory.
source ./common.sh
# Compile Documentation only.
cmake .. -DCMAKE_BUILD_TYPE=Debug -DCMAKE_Fortran_COMPILER=/usr/bin/gfortran-4.8 -DWITH_GPU=OFF -DWITH_DOC=OFF -DWITH_STYLE_CHECK=OFF ${EXTRA_CMAKE_OPTS}
mkdir output
make DESTDIR=./output install -j `nproc`
pip install ./output/usr/local/opt/paddle/share/wheels/*
rm -rf *
cmake .. -DCMAKE_BUILD_TYPE=Debug -DCMAKE_Fortran_COMPILER=/usr/bin/gfortran-4.8 -DWITH_GPU=OFF -DWITH_DOC=ON ${EXTRA_CMAKE_OPTS}
make paddle_docs paddle_docs_cn
......@@ -25,26 +29,41 @@ TARGET_BRANCH="gh-pages"
# Only deploy master branch to build latest documentation.
SOURCE_BRANCH="master"
# If is not a Github pull request, and in master branch.
if [ "$TRAVIS_PULL_REQUEST" != "false" -o "$TRAVIS_BRANCH" != "$SOURCE_BRANCH" ]; then
exit 0
fi
# Clone the repo to output directory
git clone $REPO output
cd output
# checkout github page branch
git checkout $TARGET_BRANCH || git checkout --orphan $TARGET_BRANCH
function deploy_docs() {
SOURCE_BRANCH=$1
DIR=$2
# If is not a Github pull request
if [ "$TRAVIS_PULL_REQUEST" != "false" ]; then
exit 0
fi
# If it is not watched branch.
if [ "$TRAVIS_BRANCH" != "$SOURCE_BRANCH" ]; then
return
fi
# remove old docs. mv new docs.
rm -rf doc doc_cn
mv ../doc/cn/html doc_cn
mv ../doc/en/html doc
# checkout github page branch
git checkout $TARGET_BRANCH || git checkout --orphan $TARGET_BRANCH
mkdir -p ${DIR}
# remove old docs. mv new docs.
set +e
rm -rf ${DIR}/doc ${DIR}/doc_cn
set -e
mv ../doc/cn/html ${DIR}/doc_cn
mv ../doc/en/html ${DIR}/doc
git add .
}
deploy_docs "master" "."
deploy_docs "develop" "./develop/"
# Check is there anything changed.
set +e
git diff --exit-code >/dev/null
git diff --cached --exit-code >/dev/null
if [ $? -eq 0 ]; then
echo "No changes to the output on this push; exiting."
exit 0
......@@ -57,7 +76,6 @@ if [ -n $SSL_KEY ]; then # Only push updated docs for github.com/PaddlePaddle/P
git config user.name "Travis CI"
git config user.email "paddle-dev@baidu.com"
git commit -m "Deploy to GitHub Pages: ${SHA}"
# Set ssh private key
openssl aes-256-cbc -K $SSL_KEY -iv $SSL_IV -in ../../paddle/scripts/travis/deploy_key.enc -out deploy_key -d
chmod 600 deploy_key
......
......@@ -72,6 +72,7 @@ setup(name="py_paddle",
packages=['py_paddle'],
include_dirs = include_dirs,
install_requires = [
'nltk>=3.2.2',
'numpy>=1.8.0', # The numpy is required.
'protobuf>=3.0.0' # The paddle protobuf version
],
......
......@@ -208,7 +208,7 @@ real Tester::forwardOneBatch(const DataBatch& dataBatch,
return 0.0; // In this case, there is no meaning to calculate cost
}
return Argument::sumCosts(outArgs);
return Argument::sum(outArgs);
}
void Tester::testOnePassBatch(int passId) {
......
......@@ -310,7 +310,7 @@ real Trainer::checkGradient() {
std::vector<Argument> outArgs;
trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
real cost = Argument::sumCosts(outArgs);
real cost = Argument::sum(outArgs);
LOG(INFO) << "original cost=" << cost;
trainerInternal_.getGradientMachine()->backward();
......@@ -340,7 +340,7 @@ real Trainer::checkGradient() {
parameter->getBuf(PARAMETER_VALUE)->copyFrom(newPara);
parameter->setValueUpdated();
trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
real newCost1 = Argument::sumCosts(outArgs);
real newCost1 = Argument::sum(outArgs);
for (size_t i = 0; i < dim; ++i) {
newp[i] = oldp[i] - step * d[i];
......@@ -349,7 +349,7 @@ real Trainer::checkGradient() {
parameter->getBuf(PARAMETER_VALUE)->copyFrom(newPara);
parameter->setValueUpdated();
trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
real newCost2 = Argument::sumCosts(outArgs);
real newCost2 = Argument::sum(outArgs);
real trueDelta = 0.5 * (newCost1 - newCost2);
real diff = (1e-20 + trueDelta) / (1e-20 + delta) - 1;
......@@ -575,7 +575,7 @@ real Trainer::calcGradient(const DataBatch& dataBatch,
trainerInternal_.getGradientMachine()->forwardBackward(
inArgs, &outArgs, PASS_TRAIN);
real cost = Argument::sumCosts(outArgs);
real cost = Argument::sum(outArgs);
offset = 0;
for (auto& para : parameters) {
......
......@@ -134,7 +134,7 @@ void TrainerInternal::trainOneBatch(int64_t batchId,
real cost = 0;
{
REGISTER_TIMER("sumCost");
cost = Argument::sumCosts(*outArgs);
cost = Argument::sum(*outArgs);
}
if (batchId % intconfig_->log_period == 0) {
......
......@@ -45,6 +45,23 @@ class CacheType(object):
class InputType(object):
"""
InputType is the base class for paddle input types.
.. note::
this is a base class, and should never be used by user.
:param dim: dimension of input. If the input is an integer, it means the
value range. Otherwise, it means the size of layer.
:type dim: int
:param seq_type: sequence type of input. 0 means it is not a sequence. 1
means it is a variable length sequence. 2 means it is a
nested sequence.
:type seq_type: int
:param type: data type of input.
:type type: int
"""
__slots__ = ['dim', 'seq_type', 'type']
def __init__(self, dim, seq_type, tp):
......@@ -54,19 +71,63 @@ class InputType(object):
def dense_slot(dim, seq_type=SequenceType.NO_SEQUENCE):
"""
Dense Vector. It means the input feature is dense float vector. For example,
if the input is an image with 28*28 pixels, the input of Paddle neural
network should be a dense vector with dimension 784.
:param dim: dimension of this vector.
:type dim: int
:param seq_type: sequence type of input.
:type seq_type: int
:return: An input type object.
:rtype: InputType
"""
return InputType(dim, seq_type, DataType.Dense)
def sparse_non_value_slot(dim, seq_type=SequenceType.NO_SEQUENCE):
"""
Sparse binary vector. It means the input feature is a sparse vector and the
every element in this vector is either zero or one.
:param dim: dimension of this vector.
:type dim: int
:param seq_type: sequence type of this input.
:type seq_type: int
:return: An input type object.
:rtype: InputType
"""
return InputType(dim, seq_type, DataType.SparseNonValue)
def sparse_value_slot(dim, seq_type=SequenceType.NO_SEQUENCE):
"""
Sparse vector. It means the input feature is a sparse vector. Most of the
elements in this vector are zero, others could be any float value.
:param dim: dimension of this vector.
:type dim: int
:param seq_type: sequence type of this input.
:type seq_type: int
:return: An input type object.
:rtype: InputType
"""
return InputType(dim, seq_type, DataType.SparseValue)
def index_slot(dim, seq_type=SequenceType.NO_SEQUENCE):
return InputType(dim, seq_type, DataType.Index)
def index_slot(value_range, seq_type=SequenceType.NO_SEQUENCE):
"""
Data type of integer.
:param seq_type: sequence type of this input.
:type seq_type: int
:param value_range: range of this integer.
:type value_range: int
:return: An input type object
:rtype: InputType
"""
return InputType(value_range, seq_type, DataType.Index)
dense_vector = dense_slot
......@@ -76,6 +137,14 @@ integer_value = index_slot
def dense_vector_sequence(dim):
"""
Data type of a sequence of dense vector.
:param dim: dimension of dense vector.
:type dim: int
:return: An input type object
:rtype: InputType
"""
return dense_vector(dim, seq_type=SequenceType.SEQUENCE)
......@@ -84,6 +153,15 @@ def dense_vector_sub_sequence(dim):
def sparse_binary_vector_sequence(dim):
"""
Data type of a sequence of sparse vector, which every element is either zero
or one.
:param dim: dimension of sparse vector.
:type dim: int
:return: An input type object
:rtype: InputType
"""
return sparse_binary_vector(dim, seq_type=SequenceType.SEQUENCE)
......@@ -92,6 +170,15 @@ def sparse_binary_vector_sub_sequence(dim):
def sparse_vector_sequence(dim):
"""
Data type of a sequence of sparse vector, which most elements are zero,
others could be any float value.
:param dim: dimension of sparse vector.
:type dim: int
:return: An input type object
:rtype: InputType
"""
return sparse_vector(dim, seq_type=SequenceType.SEQUENCE)
......@@ -99,8 +186,14 @@ def sparse_vector_sub_sequence(dim):
return sparse_vector(dim, seq_type=SequenceType.SUB_SEQUENCE)
def integer_value_sequence(dim):
return integer_value(dim, seq_type=SequenceType.SEQUENCE)
def integer_value_sequence(value_range):
"""
Data type of a sequence of integer.
:param value_range: range of each element.
:type value_range: int
"""
return integer_value(value_range, seq_type=SequenceType.SEQUENCE)
def integer_value_sub_sequence(dim):
......
......@@ -39,6 +39,7 @@ register_unary_math_op('abs', act.AbsActivation())
register_unary_math_op('sigmoid', act.SigmoidActivation())
register_unary_math_op('tanh', act.TanhActivation())
register_unary_math_op('square', act.SquareActivation())
register_unary_math_op('relu', act.ReluActivation())
def add(layeroutput, other):
......
......@@ -795,17 +795,16 @@ def data_layer(name, size, height=None, width=None, layer_attr=None):
.. code-block:: python
data = data_layer(name="input",
size=1000)
data = data_layer(name="input", size=1000)
:param name: Name of this data layer.
:type name: basestring
:param size: Size of this data layer.
:type size: int
:param height: Height of this data layer, used for image
:type size: int|None
:type height: int|None
:param width: Width of this data layer, used for image
:type size: int|None
:type width: int|None
:param layer_attr: Extra Layer Attribute.
:type layer_attr: ExtraLayerAttribute.
:return: LayerOutput object.
......
......@@ -7,8 +7,9 @@ x = layer_math.exp(x)
x = layer_math.log(x)
x = layer_math.abs(x)
x = layer_math.sigmoid(x)
x = layer_math.tanh(x)
x = layer_math.square(x)
x = layer_math.square(x)
x = layer_math.relu(x)
y = 1 + x
y = y + 1
y = x + y
......
......@@ -65,13 +65,28 @@ layers {
}
}
}
layers {
name: "__tanh_0__"
type: "mixed"
size: 100
active_type: "tanh"
inputs {
input_layer_name: "__sigmoid_0__"
proj_conf {
type: "identity"
name: "___tanh_0__.w0"
input_size: 100
output_size: 100
}
}
}
layers {
name: "__square_0__"
type: "mixed"
size: 100
active_type: "square"
inputs {
input_layer_name: "__sigmoid_0__"
input_layer_name: "__tanh_0__"
proj_conf {
type: "identity"
name: "___square_0__.w0"
......@@ -81,15 +96,15 @@ layers {
}
}
layers {
name: "__square_1__"
name: "__relu_0__"
type: "mixed"
size: 100
active_type: "square"
active_type: "relu"
inputs {
input_layer_name: "__square_0__"
proj_conf {
type: "identity"
name: "___square_1__.w0"
name: "___relu_0__.w0"
input_size: 100
output_size: 100
}
......@@ -101,7 +116,7 @@ layers {
size: 100
active_type: ""
inputs {
input_layer_name: "__square_1__"
input_layer_name: "__relu_0__"
}
slope: 1.0
intercept: 1
......@@ -123,7 +138,7 @@ layers {
size: 100
active_type: ""
inputs {
input_layer_name: "__square_1__"
input_layer_name: "__relu_0__"
proj_conf {
type: "identity"
name: "___mixed_0__.w0"
......@@ -147,7 +162,7 @@ layers {
size: 100
active_type: ""
inputs {
input_layer_name: "__square_1__"
input_layer_name: "__relu_0__"
}
slope: -1.0
intercept: 0.0
......@@ -339,8 +354,9 @@ sub_models {
layer_names: "__log_0__"
layer_names: "__abs_0__"
layer_names: "__sigmoid_0__"
layer_names: "__tanh_0__"
layer_names: "__square_0__"
layer_names: "__square_1__"
layer_names: "__relu_0__"
layer_names: "__slope_intercept_layer_0__"
layer_names: "__slope_intercept_layer_1__"
layer_names: "__mixed_0__"
......
......@@ -20,18 +20,20 @@ import event
import data_type
import topology
import data_feeder
import networks
from . import dataset
from . import reader
import attr
import pooling
import inferencer
import inference
import networks
import py_paddle.swig_paddle as api
import minibatch
__all__ = [
'optimizer', 'layer', 'activation', 'parameters', 'init', 'trainer',
'event', 'data_type', 'attr', 'pooling', 'data_feeder', 'dataset', 'reader',
'topology', 'networks', 'inferencer', 'infer'
'topology', 'networks', 'infer'
]
......@@ -43,4 +45,5 @@ def init(**kwargs):
api.initPaddle(*args)
infer = inferencer.infer
infer = inference.infer
batch = minibatch.batch
......@@ -12,26 +12,15 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers.activations import *
import paddle.trainer_config_helpers.activations
import copy
__all__ = [
"Base", "Tanh", "Sigmoid", "Softmax", "Identity", "Linear",
'SequenceSoftmax', "Exp", "Relu", "BRelu", "SoftRelu", "STanh", "Abs",
"Square", "Log"
]
__all__ = []
Base = BaseActivation
Tanh = TanhActivation
Sigmoid = SigmoidActivation
Softmax = SoftmaxActivation
SequenceSoftmax = SequenceSoftmaxActivation
Identity = IdentityActivation
Linear = Identity
Relu = ReluActivation
BRelu = BReluActivation
SoftRelu = SoftReluActivation
STanh = STanhActivation
Abs = AbsActivation
Square = SquareActivation
Exp = ExpActivation
Log = LogActivation
suffix = 'Activation'
for act in paddle.trainer_config_helpers.activations.__all__:
new_name = act[:-len(suffix)]
globals()[new_name] = copy.copy(
getattr(paddle.trainer_config_helpers.activations, act))
globals()[new_name].__name__ = new_name
__all__.append(new_name)
......@@ -12,12 +12,16 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers.attrs import *
import paddle.trainer_config_helpers.attrs
__all__ = [
"Param",
"Extra",
]
Param = ParameterAttribute
Extra = ExtraLayerAttribute
Param = paddle.trainer_config_helpers.attrs.ParameterAttribute
Extra = paddle.trainer_config_helpers.attrs.ExtraLayerAttribute
for each in paddle.trainer_config_helpers.attrs.__all__:
globals()[each] = getattr(paddle.trainer_config_helpers.attrs, each)
__all__.append(each)
......@@ -13,15 +13,59 @@
# limitations under the License.
import collections
import re
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
import paddle.trainer_config_helpers as conf_helps
class LayerType(type):
def __new__(cls, name, bases, attrs):
method_name = attrs.get('METHOD_NAME', None)
if method_name is not None:
method = getattr(conf_helps, method_name)
if method.__doc__ is not None:
mapper = attrs.get("__map_docstr__", None)
if mapper is not None:
attrs['__doc__'] = LayerType.__map_docstr__(
mapper(method.__doc__),
method_name=method_name,
name=name)
else:
attrs['__doc__'] = LayerType.__map_docstr__(
method.__doc__, method_name=method_name, name=name)
return super(LayerType, cls).__new__(cls, name, bases, attrs)
@staticmethod
def __map_docstr__(doc, name, method_name):
assert isinstance(doc, basestring)
# replace LayerOutput to paddle.v2.config_base.Layer
doc = doc.replace("LayerOutput", "paddle.v2.config_base.Layer")
doc = doc.replace('ParameterAttribute',
'paddle.v2.attr.ParameterAttribute')
doc = re.sub(r'ExtraLayerAttribute[^\s]?',
'paddle.v2.attr.ExtraAttribute', doc)
# xxx_layer to xxx
doc = re.sub(r"(?P<name>[a-z]+)_layer", r"\g<name>", doc)
# XxxxActivation to paddle.v2.Activation.Xxxx
doc = re.sub(r"(?P<name>[A-Z][a-zA-Z]+)Activation",
r"paddle.v2.Activation.\g<name>", doc)
# TODO(yuyang18): Add more rules if needed.
return doc
class Layer(object):
__metaclass__ = LayerType
def __init__(self, name=None, parent_layers=None):
assert isinstance(parent_layers, dict)
self.name = name
self.__contex__ = {}
self.__parent_layers__ = parent_layers
def to_proto(self, context):
......@@ -39,16 +83,38 @@ class Layer(object):
self.__parent_layers__[layer_name])
kwargs[layer_name] = v1_layer
if self.name is None:
if self.context_name() is None:
return self.to_proto_impl(**kwargs)
elif self.name not in context:
context[self.name] = self.to_proto_impl(**kwargs)
elif self.context_name() not in context:
context[self.context_name()] = self.to_proto_impl(**kwargs)
self.__contex__ = context
if self.use_context_name():
return context[self.context_name()]
else:
return context[self.name]
def to_proto_impl(self, **kwargs):
raise NotImplementedError()
def context_name(self):
"""
Context name means the context which stores `to_proto_impl` result.
If multiple layer share same context_name, the `to_proto_impl` of them
will be invoked only once.
"""
return self.name
def use_context_name(self):
return False
def calculate_size(self):
"""
lazy calculate size of the layer, should be called when to_proto_impl of
this layer is called.
:return:
"""
return self.__contex__[self.context_name()].size
def __convert_to_v2__(method_name, parent_names, is_default_name=True):
if is_default_name:
......@@ -57,6 +123,8 @@ def __convert_to_v2__(method_name, parent_names, is_default_name=True):
wrapper = None
class V2LayerImpl(Layer):
METHOD_NAME = method_name
def __init__(self, **kwargs):
parent_layers = dict()
other_kwargs = dict()
......
......@@ -12,13 +12,20 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from py_paddle import swig_paddle
from py_paddle import DataProviderConverter
import data_type
import paddle.trainer.PyDataProvider2 as pydp2
__all__ = ['DataFeeder']
def default_feeding_map(data_types):
reader_dict = dict()
for i, tp in enumerate(data_types):
reader_dict[tp[0]] = i
return reader_dict
class DataFeeder(DataProviderConverter):
"""
DataFeeder converts the data returned by paddle.reader into a data structure
......@@ -30,6 +37,9 @@ class DataFeeder(DataProviderConverter):
The example usage:
.. code-block:: python
data_types = [('image', paddle.data_type.dense_vector(784)),
('label', paddle.data_type.integer_value(10))]
reader_dict = {'image':0, 'label':1}
......@@ -43,49 +53,51 @@ class DataFeeder(DataProviderConverter):
# [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ] # second sample
# ]
arg = feeder(minibatch_data)
"""
def __init__(self, data_types, reader_dict):
"""
.. note::
This module is for internal use only. Users should use the `reader`
interface.
:param data_types: A list to specify data name and type. Each item is
a tuple of (data_name, data_type). For example:
[('image', paddle.data_type.dense_vector(784)),
('label', paddle.data_type.integer_value(10))]
a tuple of (data_name, data_type).
:type data_types: A list of tuple
:type data_types: list
:param reader_dict: A dictionary to specify the position of each data
in the input data.
:type reader_dict: dict()
:type feeding: dict
"""
def __init__(self, data_types, feeding=None):
self.input_names = []
input_types = []
self.reader_dict = reader_dict
if feeding is None:
feeding = default_feeding_map(data_types)
self.feeding = feeding
for each in data_types:
self.input_names.append(each[0])
assert isinstance(each[1], data_type.InputType)
if not isinstance(each[1], pydp2.InputType):
raise TypeError("second item in each data_type should be an "
"InputType")
input_types.append(each[1])
DataProviderConverter.__init__(self, input_types)
def __len__(self):
return len(self.input_names)
def convert(self, dat, argument=None):
"""
:param dat: A list of mini-batch data. Each sample is a list or tuple
one feature or multiple features.
for example:
[
([0.2, 0.2], ), # first sample
([0.8, 0.3], ), # second sample
]
or,
[
[[0.2, 0.2], ], # first sample
[[0.8, 0.3], ], # second sample
]
:type dat: List
:type dat: list
:param argument: An Arguments object contains this mini-batch data with
one or multiple features. The Arguments definition is
in the API.
:type argument: swig_paddle.Arguments
:type argument: py_paddle.swig_paddle.Arguments
"""
def reorder_data(data):
......@@ -93,7 +105,7 @@ class DataFeeder(DataProviderConverter):
for each in data:
reorder = []
for name in self.input_names:
reorder.append(each[self.reader_dict[name]])
reorder.append(each[self.feeding[name]])
retv.append(reorder)
return retv
......
......@@ -12,11 +12,15 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer.PyDataProvider2 import \
InputType, DataType, dense_vector, sparse_binary_vector,\
sparse_vector, integer_value, integer_value_sequence
import paddle.trainer.PyDataProvider2 as pydp2
__all__ = [
'InputType', 'DataType', 'dense_vector', 'sparse_binary_vector',
'sparse_vector', 'integer_value', 'integer_value_sequence'
import_list = [
nm for nm in dir(pydp2)
if '_' in nm and nm[0] != '_' and ('value' in nm or 'vector' in nm)
]
import_list.extend(['InputType'])
for nm in import_list:
globals()[nm] = getattr(pydp2, nm)
__all__ = import_list
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Dataset package.
"""
import mnist
import imikolov
import imdb
import cifar
import movielens
import conll05
import uci_housing
import sentiment
import wmt14
__all__ = ['mnist']
__all__ = [
'mnist', 'imikolov', 'imdb', 'cifar', 'movielens', 'conll05', 'sentiment'
'uci_housing', 'wmt14'
]
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
CIFAR dataset: https://www.cs.toronto.edu/~kriz/cifar.html
TODO(yuyang18): Complete the comments.
"""
import cPickle
import itertools
import numpy
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import requests
import hashlib
import os
import shutil
import sys
__all__ = ['DATA_HOME', 'download', 'md5file']
......@@ -27,9 +42,24 @@ def download(url, module_name, md5sum):
filename = os.path.join(dirname, url.split('/')[-1])
if not (os.path.exists(filename) and md5file(filename) == md5sum):
print "Cache file %s not found, downloading %s" % (filename, url)
r = requests.get(url, stream=True)
total_length = r.headers.get('content-length')
if total_length is None:
with open(filename, 'w') as f:
shutil.copyfileobj(r.raw, f)
else:
with open(filename, 'w') as f:
dl = 0
total_length = int(total_length)
for data in r.iter_content(chunk_size=4096):
dl += len(data)
f.write(data)
done = int(50 * dl / total_length)
sys.stdout.write("\r[%s%s]" % ('=' * done,
' ' * (50 - done)))
sys.stdout.flush()
return filename
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tarfile
import gzip
import itertools
from common import download
"""
Conll 2005 dataset. Paddle semantic role labeling Book and demo use this
dataset as an example. Because Conll 2005 is not free in public, the default
downloaded URL is test set of Conll 2005 (which is public). Users can change
URL and MD5 to their Conll dataset.
TODO(yuyang18): Complete comments.
"""
__all__ = ['test, get_dict', 'get_embedding']
DATA_URL = 'http://www.cs.upc.edu/~srlconll/conll05st-tests.tar.gz'
DATA_MD5 = '387719152ae52d60422c016e92a742fc'
WORDDICT_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/wordDict.txt'
WORDDICT_MD5 = 'ea7fb7d4c75cc6254716f0177a506baa'
VERBDICT_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/verbDict.txt'
VERBDICT_MD5 = '0d2977293bbb6cbefab5b0f97db1e77c'
TRGDICT_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/targetDict.txt'
TRGDICT_MD5 = 'd8c7f03ceb5fc2e5a0fa7503a4353751'
EMB_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/emb'
EMB_MD5 = 'bf436eb0faa1f6f9103017f8be57cdb7'
UNK_IDX = 0
def load_dict(filename):
d = dict()
with open(filename, 'r') as f:
for i, line in enumerate(f):
d[line.strip()] = i
return d
def corpus_reader(data_path, words_name, props_name):
"""
Read one corpus. It returns an iterator. Each element of
this iterator is a tuple including sentence and labels. The sentence is
consist of a list of word IDs. The labels include a list of label IDs.
:return: a iterator of data.
:rtype: iterator
"""
def reader():
tf = tarfile.open(data_path)
wf = tf.extractfile(words_name)
pf = tf.extractfile(props_name)
with gzip.GzipFile(fileobj=wf) as words_file, gzip.GzipFile(
fileobj=pf) as props_file:
sentences = []
labels = []
one_seg = []
for word, label in itertools.izip(words_file, props_file):
word = word.strip()
label = label.strip().split()
if len(label) == 0: # end of sentence
for i in xrange(len(one_seg[0])):
a_kind_lable = [x[i] for x in one_seg]
labels.append(a_kind_lable)
if len(labels) >= 1:
verb_list = []
for x in labels[0]:
if x != '-':
verb_list.append(x)
for i, lbl in enumerate(labels[1:]):
cur_tag = 'O'
is_in_bracket = False
lbl_seq = []
verb_word = ''
for l in lbl:
if l == '*' and is_in_bracket == False:
lbl_seq.append('O')
elif l == '*' and is_in_bracket == True:
lbl_seq.append('I-' + cur_tag)
elif l == '*)':
lbl_seq.append('I-' + cur_tag)
is_in_bracket = False
elif l.find('(') != -1 and l.find(')') != -1:
cur_tag = l[1:l.find('*')]
lbl_seq.append('B-' + cur_tag)
is_in_bracket = False
elif l.find('(') != -1 and l.find(')') == -1:
cur_tag = l[1:l.find('*')]
lbl_seq.append('B-' + cur_tag)
is_in_bracket = True
else:
raise RuntimeError('Unexpected label: %s' %
l)
yield sentences, verb_list[i], lbl_seq
sentences = []
labels = []
one_seg = []
else:
sentences.append(word)
one_seg.append(label)
pf.close()
wf.close()
tf.close()
return reader
def reader_creator(corpus_reader,
word_dict=None,
predicate_dict=None,
label_dict=None):
def reader():
for sentence, predicate, labels in corpus_reader():
sen_len = len(sentence)
verb_index = labels.index('B-V')
mark = [0] * len(labels)
if verb_index > 0:
mark[verb_index - 1] = 1
ctx_n1 = sentence[verb_index - 1]
else:
ctx_n1 = 'bos'
if verb_index > 1:
mark[verb_index - 2] = 1
ctx_n2 = sentence[verb_index - 2]
else:
ctx_n2 = 'bos'
mark[verb_index] = 1
ctx_0 = sentence[verb_index]
if verb_index < len(labels) - 1:
mark[verb_index + 1] = 1
ctx_p1 = sentence[verb_index + 1]
else:
ctx_p1 = 'eos'
if verb_index < len(labels) - 2:
mark[verb_index + 2] = 1
ctx_p2 = sentence[verb_index + 2]
else:
ctx_p2 = 'eos'
word_idx = [word_dict.get(w, UNK_IDX) for w in sentence]
ctx_n2_idx = [word_dict.get(ctx_n2, UNK_IDX)] * sen_len
ctx_n1_idx = [word_dict.get(ctx_n1, UNK_IDX)] * sen_len
ctx_0_idx = [word_dict.get(ctx_0, UNK_IDX)] * sen_len
ctx_p1_idx = [word_dict.get(ctx_p1, UNK_IDX)] * sen_len
ctx_p2_idx = [word_dict.get(ctx_p2, UNK_IDX)] * sen_len
pred_idx = [predicate_dict.get(predicate)] * sen_len
label_idx = [label_dict.get(w) for w in labels]
yield word_idx, ctx_n2_idx, ctx_n1_idx, \
ctx_0_idx, ctx_p1_idx, ctx_p2_idx, pred_idx, mark, label_idx
return reader
def get_dict():
word_dict = load_dict(download(WORDDICT_URL, 'conll05st', WORDDICT_MD5))
verb_dict = load_dict(download(VERBDICT_URL, 'conll05st', VERBDICT_MD5))
label_dict = load_dict(download(TRGDICT_URL, 'conll05st', TRGDICT_MD5))
return word_dict, verb_dict, label_dict
def get_embedding():
return download(EMB_URL, 'conll05st', EMB_MD5)
def test():
word_dict, verb_dict, label_dict = get_dict()
reader = corpus_reader(
download(DATA_URL, 'conll05st', DATA_MD5),
words_name='conll05st-release/test.wsj/words/test.wsj.words.gz',
props_name='conll05st-release/test.wsj/props/test.wsj.props.gz')
return reader_creator(reader, word_dict, verb_dict, label_dict)
# /usr/bin/env python
# -*- coding:utf-8 -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
......@@ -16,7 +13,10 @@
# limitations under the License.
"""
IMDB dataset: http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz
TODO(yuyang18): Complete comments.
"""
import paddle.v2.dataset.common
import tarfile
import Queue
......@@ -118,3 +118,8 @@ def test(word_idx):
return reader_creator(
re.compile("aclImdb/test/pos/.*\.txt$"),
re.compile("aclImdb/test/neg/.*\.txt$"), word_idx, 1000)
def word_dict():
return build_dict(
re.compile("aclImdb/((train)|(test))/((pos)|(neg))/.*\.txt$"), 150)
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
imikolov's simple dataset: http://www.fit.vutbr.cz/~imikolov/rnnlm/
Complete comments.
"""
import paddle.v2.dataset.common
import tarfile
__all__ = ['train', 'test']
__all__ = ['train', 'test', 'build_dict']
URL = 'http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz'
MD5 = '30177ea32e27c525793142b6bf2c8e2d'
......@@ -24,7 +39,9 @@ def word_count(f, word_freq=None):
return word_freq
def build_dict(train_filename, test_filename):
def build_dict():
train_filename = './simple-examples/data/ptb.train.txt'
test_filename = './simple-examples/data/ptb.valid.txt'
with tarfile.open(
paddle.v2.dataset.common.download(
paddle.v2.dataset.imikolov.URL, 'imikolov',
......@@ -32,27 +49,22 @@ def build_dict(train_filename, test_filename):
trainf = tf.extractfile(train_filename)
testf = tf.extractfile(test_filename)
word_freq = word_count(testf, word_count(trainf))
if '<unk>' in word_freq:
# remove <unk> for now, since we will set it as last index
del word_freq['<unk>']
TYPO_FREQ = 50
word_freq = filter(lambda x: x[1] > TYPO_FREQ, word_freq.items())
dictionary = sorted(word_freq, key=lambda x: (-x[1], x[0]))
words, _ = list(zip(*dictionary))
word_freq_sorted = sorted(word_freq, key=lambda x: (-x[1], x[0]))
words, _ = list(zip(*word_freq_sorted))
word_idx = dict(zip(words, xrange(len(words))))
word_idx['<unk>'] = len(words)
return word_idx
word_idx = {}
def reader_creator(filename, n):
global word_idx
if len(word_idx) == 0:
word_idx = build_dict('./simple-examples/data/ptb.train.txt',
'./simple-examples/data/ptb.valid.txt')
def reader_creator(filename, word_idx, n):
def reader():
with tarfile.open(
paddle.v2.dataset.common.download(
......@@ -71,9 +83,9 @@ def reader_creator(filename, n):
return reader
def train(n):
return reader_creator('./simple-examples/data/ptb.train.txt', n)
def train(word_idx, n):
return reader_creator('./simple-examples/data/ptb.train.txt', word_idx, n)
def test(n):
return reader_creator('./simple-examples/data/ptb.valid.txt', n)
def test(word_idx, n):
return reader_creator('./simple-examples/data/ptb.valid.txt', word_idx, n)
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MNIST dataset.
This module will download dataset from http://yann.lecun.com/exdb/mnist/ and
parse train set and test set into paddle reader creators.
"""
import paddle.v2.dataset.common
import subprocess
......@@ -59,6 +75,15 @@ def reader_creator(image_filename, label_filename, buffer_size):
def train():
"""
MNIST train set creator.
It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].
:return: Train reader creator
:rtype: callable
"""
return reader_creator(
paddle.v2.dataset.common.download(TRAIN_IMAGE_URL, 'mnist',
TRAIN_IMAGE_MD5),
......@@ -67,6 +92,15 @@ def train():
def test():
"""
MNIST test set cretor.
It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].
:return: Test reader creator.
:rtype: callable
"""
return reader_creator(
paddle.v2.dataset.common.download(TEST_IMAGE_URL, 'mnist',
TEST_IMAGE_MD5),
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册