Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
5118968d
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5118968d
编写于
3月 16, 2021
作者:
L
Leo Chen
提交者:
GitHub
3月 16, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] add npu kernel for softmax_with_cross_entropy (#31656)
* init * fix bugs
上级
925432d8
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
364 addition
and
0 deletion
+364
-0
paddle/fluid/operators/npu_op_runner.h
paddle/fluid/operators/npu_op_runner.h
+2
-0
paddle/fluid/operators/softmax_with_cross_entropy_op_npu.cc
paddle/fluid/operators/softmax_with_cross_entropy_op_npu.cc
+203
-0
python/paddle/fluid/tests/unittests/npu/test_softmax_with_cross_entropy_op_npu.py
...s/unittests/npu/test_softmax_with_cross_entropy_op_npu.py
+159
-0
未找到文件。
paddle/fluid/operators/npu_op_runner.h
浏览文件 @
5118968d
...
...
@@ -82,6 +82,8 @@ class NpuOpRunner {
aclopAttr
*
attr_
{
nullptr
};
};
aclDataType
ConvertToNpuDtype
(
framework
::
proto
::
VarType
::
Type
dtype
);
}
// namespace operators
}
// namespace paddle
#endif
paddle/fluid/operators/softmax_with_cross_entropy_op_npu.cc
0 → 100644
浏览文件 @
5118968d
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/softmax.h"
#include <memory>
#include <string>
#include "paddle/fluid/operators/math/cross_entropy.h"
#include "paddle/fluid/operators/npu_op_runner.h"
#include "paddle/fluid/operators/softmax_op.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
SoftmaxWithCrossEntropyNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
logits
=
ctx
.
Input
<
Tensor
>
(
"Logits"
);
auto
*
labels
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
softmax
=
ctx
.
Output
<
Tensor
>
(
"Softmax"
);
auto
*
loss
=
ctx
.
Output
<
Tensor
>
(
"Loss"
);
int
cls_num
=
logits
->
dims
()[
1
];
const
int
rank
=
logits
->
dims
().
size
();
const
int
axis
=
CanonicalAxis
(
ctx
.
Attr
<
int
>
(
"axis"
),
rank
);
std
::
vector
<
int
>
axes
;
for
(
auto
i
=
axis
;
i
<
logits
->
dims
().
size
();
++
i
)
{
axes
.
push_back
(
i
);
}
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
// softmax
softmax
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner_softmax
=
NpuOpRunner
(
"SoftmaxV2"
,
{
*
logits
},
{
*
softmax
},
{{
"axes"
,
axes
}});
runner_softmax
.
Run
(
stream
);
// cast label from int64/int32 to int32
Tensor
tmp_labels
(
framework
::
proto
::
VarType
::
INT32
);
if
(
labels
->
type
()
!=
framework
::
proto
::
VarType
::
INT32
)
{
tmp_labels
.
Resize
(
labels
->
dims
());
tmp_labels
.
mutable_data
(
ctx
.
GetPlace
(),
framework
::
proto
::
VarType
::
INT32
);
auto
dst_dtype
=
ConvertToNpuDtype
(
framework
::
proto
::
VarType
::
INT32
);
auto
runner_cast_label
=
NpuOpRunner
(
"Cast"
,
{
*
labels
},
{
tmp_labels
},
{{
"dst_type"
,
static_cast
<
int
>
(
dst_dtype
)}});
runner_cast_label
.
Run
(
stream
);
labels
=
&
tmp_labels
;
}
// on and off
Tensor
on_tensor
(
framework
::
proto
::
VarType
::
INT32
);
on_tensor
.
mutable_data
<
int
>
({
1
},
ctx
.
GetPlace
());
TensorFromVector
(
std
::
vector
<
int
>
{
static_cast
<
int
>
(
1
)},
ctx
.
device_context
(),
&
on_tensor
);
Tensor
off_tensor
(
framework
::
proto
::
VarType
::
INT32
);
off_tensor
.
mutable_data
<
int
>
({
1
},
ctx
.
GetPlace
());
TensorFromVector
(
std
::
vector
<
int
>
{
static_cast
<
int
>
(
0
)},
ctx
.
device_context
(),
&
off_tensor
);
// one_hot
Tensor
tmp_onehot
(
on_tensor
.
type
());
tmp_onehot
.
Resize
(
logits
->
dims
());
tmp_onehot
.
mutable_data
<
int
>
(
ctx
.
GetPlace
());
auto
runner_onehot
=
NpuOpRunner
(
"OneHotD"
,
{
*
labels
,
on_tensor
,
off_tensor
},
{
tmp_onehot
},
{{
"axis"
,
-
1
},
{
"depth"
,
cls_num
}});
runner_onehot
.
Run
(
stream
);
// cast one_hot from int32 to T
Tensor
cast_onehot
(
logits
->
type
());
cast_onehot
.
Resize
(
tmp_onehot
.
dims
());
cast_onehot
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dst_dtype
=
ConvertToNpuDtype
(
logits
->
type
());
auto
runner_cast_onehot
=
NpuOpRunner
(
"Cast"
,
{
tmp_onehot
},
{
cast_onehot
},
{{
"dst_type"
,
static_cast
<
int
>
(
dst_dtype
)}});
runner_cast_onehot
.
Run
(
stream
);
// SoftmaxCrossEntropyWithLogits
Tensor
backprop
(
logits
->
type
());
backprop
.
Resize
(
logits
->
dims
());
backprop
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
loss
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// SoftmaxCrossEntropyWithLogits requires loss to be of shape [batch_size]
auto
loss_dims
=
loss
->
dims
();
loss
->
Resize
({
loss_dims
[
0
]});
auto
runner_s
=
NpuOpRunner
(
"SoftmaxCrossEntropyWithLogits"
,
{
*
logits
,
cast_onehot
},
{
*
loss
,
backprop
},
{});
runner_s
.
Run
(
stream
);
loss
->
Resize
(
loss_dims
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
SoftmaxWithCrossEntropyGradNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
labels
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
softmax
=
ctx
.
Input
<
Tensor
>
(
"Softmax"
);
auto
*
loss_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
auto
*
logits_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Logits"
));
int
cls_num
=
softmax
->
dims
()[
1
];
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
// cast label from int64/int32 to int32
Tensor
tmp_labels
(
framework
::
proto
::
VarType
::
INT32
);
if
(
labels
->
type
()
!=
framework
::
proto
::
VarType
::
INT32
)
{
tmp_labels
.
Resize
(
labels
->
dims
());
tmp_labels
.
mutable_data
(
ctx
.
GetPlace
(),
framework
::
proto
::
VarType
::
INT32
);
auto
dst_dtype
=
ConvertToNpuDtype
(
framework
::
proto
::
VarType
::
INT32
);
auto
runner_cast_label
=
NpuOpRunner
(
"Cast"
,
{
*
labels
},
{
tmp_labels
},
{{
"dst_type"
,
static_cast
<
int
>
(
dst_dtype
)}});
runner_cast_label
.
Run
(
stream
);
labels
=
&
tmp_labels
;
}
// on and off
Tensor
on_tensor
(
framework
::
proto
::
VarType
::
INT32
);
on_tensor
.
mutable_data
<
int
>
({
1
},
ctx
.
GetPlace
());
TensorFromVector
(
std
::
vector
<
int
>
{
static_cast
<
int
>
(
1
)},
ctx
.
device_context
(),
&
on_tensor
);
Tensor
off_tensor
(
framework
::
proto
::
VarType
::
INT32
);
off_tensor
.
mutable_data
<
int
>
({
1
},
ctx
.
GetPlace
());
TensorFromVector
(
std
::
vector
<
int
>
{
static_cast
<
int
>
(
0
)},
ctx
.
device_context
(),
&
off_tensor
);
// one_hot
Tensor
tmp_onehot
(
on_tensor
.
type
());
tmp_onehot
.
Resize
(
softmax
->
dims
());
tmp_onehot
.
mutable_data
<
int
>
(
ctx
.
GetPlace
());
auto
runner_onehot
=
NpuOpRunner
(
"OneHotD"
,
{
*
labels
,
on_tensor
,
off_tensor
},
{
tmp_onehot
},
{{
"axis"
,
-
1
},
{
"depth"
,
cls_num
}});
runner_onehot
.
Run
(
stream
);
// cast one_hot from int32 to T
Tensor
cast_onehot
(
softmax
->
type
());
cast_onehot
.
Resize
(
tmp_onehot
.
dims
());
cast_onehot
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dst_dtype
=
ConvertToNpuDtype
(
softmax
->
type
());
auto
runner_cast_onehot
=
NpuOpRunner
(
"Cast"
,
{
tmp_onehot
},
{
cast_onehot
},
{{
"dst_type"
,
static_cast
<
int
>
(
dst_dtype
)}});
runner_cast_onehot
.
Run
(
stream
);
// sub
Tensor
tmp_sub
(
softmax
->
type
());
tmp_sub
.
Resize
(
softmax
->
dims
());
tmp_sub
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner_sub
=
NpuOpRunner
(
"Sub"
,
{
*
softmax
,
cast_onehot
},
{
tmp_sub
},
{});
runner_sub
.
Run
(
stream
);
// mul
logits_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner_mul
=
NpuOpRunner
(
"Mul"
,
{
*
loss_grad
,
tmp_sub
},
{
*
logits_grad
},
{});
runner_mul
.
Run
(
stream
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_NPU_KERNEL
(
softmax_with_cross_entropy
,
ops
::
SoftmaxWithCrossEntropyNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
SoftmaxWithCrossEntropyNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_NPU_KERNEL
(
softmax_with_cross_entropy_grad
,
ops
::
SoftmaxWithCrossEntropyGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
SoftmaxWithCrossEntropyGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
paddle
::
platform
::
float16
>
);
python/paddle/fluid/tests/unittests/npu/test_softmax_with_cross_entropy_op_npu.py
0 → 100644
浏览文件 @
5118968d
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
from
test_softmax_op
import
stable_softmax
from
test_softmax_with_cross_entropy_op
import
cross_entropy
paddle
.
enable_static
()
SEED
=
2021
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestSoftmaxWithCrossEntropyOp
(
OpTest
):
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
initParams
(
self
):
self
.
set_npu
()
self
.
op_type
=
"softmax_with_cross_entropy"
self
.
numeric_stable_mode
=
False
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
soft_label
=
False
self
.
init_dtype
()
self
.
axis
=
-
1
self
.
ignore_index
=
-
1
self
.
shape
=
[
41
,
37
]
np
.
random
.
seed
(
SEED
)
def
setUp
(
self
):
self
.
initParams
()
logits
=
getattr
(
self
,
"logits"
,
np
.
random
.
uniform
(
0.1
,
1.0
,
self
.
shape
).
astype
(
self
.
dtype
))
softmax
=
np
.
apply_along_axis
(
stable_softmax
,
self
.
axis
,
logits
)
if
self
.
soft_label
:
labels
=
np
.
random
.
uniform
(
0.1
,
1.0
,
self
.
shape
).
astype
(
self
.
dtype
)
labels
/=
np
.
sum
(
labels
,
axis
=
self
.
axis
,
keepdims
=
True
)
else
:
axis_dim
=
self
.
shape
[
self
.
axis
]
self
.
shape
[
self
.
axis
]
=
1
labels
=
np
.
random
.
randint
(
0
,
axis_dim
,
self
.
shape
,
dtype
=
"int64"
)
loss
=
cross_entropy
(
softmax
,
labels
,
self
.
soft_label
,
self
.
axis
,
self
.
ignore_index
)
self
.
inputs
=
{
"Logits"
:
logits
,
"Label"
:
labels
}
self
.
outputs
=
{
"Softmax"
:
softmax
.
astype
(
self
.
dtype
),
"Loss"
:
loss
.
astype
(
self
.
dtype
)
}
self
.
attrs
=
{
"numeric_stable_mode"
:
self
.
numeric_stable_mode
,
"soft_label"
:
self
.
soft_label
,
"ignore_index"
:
self
.
ignore_index
,
}
if
self
.
axis
!=
-
1
:
self
.
attrs
[
'axis'
]
=
self
.
axis
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_dygraph
=
False
)
# TODO(ascendrc): Add grad test
# def test_check_grad(self):
# if self.dtype == np.float16:
# return
# self.check_grad(['X'], 'Out')
#
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestPowNet
(
unittest
.
TestCase
):
def
_test
(
self
,
run_npu
=
True
):
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
np
.
random
.
seed
(
SEED
)
a_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
b_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
label_np
=
np
.
random
.
randint
(
2
,
size
=
(
32
,
1
)).
astype
(
'int64'
)
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
a
=
paddle
.
static
.
data
(
name
=
"a"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
b
=
paddle
.
static
.
data
(
name
=
"b"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
label
=
paddle
.
static
.
data
(
name
=
"label"
,
shape
=
[
32
,
1
],
dtype
=
'int64'
)
sum
=
paddle
.
add
(
a
,
b
)
z
=
paddle
.
pow
(
sum
,
2.0
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
z
,
size
=
128
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
)
cost
=
fluid
.
layers
.
softmax_with_cross_entropy
(
prediction
,
label
)
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
sgd
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
sgd
.
minimize
(
loss
)
if
run_npu
:
place
=
paddle
.
NPUPlace
(
0
)
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
print
(
"Start run on {}"
.
format
(
place
))
for
epoch
in
range
(
100
):
pred_res
,
loss_res
=
exe
.
run
(
main_prog
,
feed
=
{
"a"
:
a_np
,
"b"
:
b_np
,
"label"
:
label_np
},
fetch_list
=
[
prediction
,
loss
])
if
epoch
%
10
==
0
:
print
(
"Epoch {} | Prediction[0]: {}, Loss: {}"
.
format
(
epoch
,
pred_res
[
0
],
loss_res
))
return
pred_res
,
loss_res
def
test_npu
(
self
):
cpu_pred
,
cpu_loss
=
self
.
_test
(
False
)
npu_pred
,
npu_loss
=
self
.
_test
(
True
)
self
.
assertTrue
(
np
.
allclose
(
npu_pred
,
cpu_pred
))
self
.
assertTrue
(
np
.
allclose
(
npu_loss
,
cpu_loss
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录