提交 50ff8983 编写于 作者: X Xin Pan

graph neural network for imperative mode

test=develop
上级 8ad672a2
......@@ -94,6 +94,7 @@ class SqueezeOpInferShape : public framework::InferShapeBase {
}
};
// TODO(paddle-dev): Should use OpKernel.
class SqueezeOp : public framework::OperatorBase {
public:
using OperatorBase::OperatorBase;
......
......@@ -430,6 +430,11 @@ class Variable(object):
Returns:
str: The debug string.
"""
if _in_imperative_mode():
# TODO(panyx0718): add imperative debug info.
return 'name %s, dtype: %s shape: %s' % (self.name, self.dtype,
self.shape)
assert isinstance(throw_on_error, bool) and isinstance(with_details,
bool)
protostr = self.desc.serialize_to_string()
......
......@@ -23,7 +23,7 @@ import os
import inspect
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant, NumpyArrayInitializer
from ..framework import Variable, OpProtoHolder
from ..framework import Variable, OpProtoHolder, _in_imperative_mode
from ..param_attr import ParamAttr
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
from .tensor import concat, assign
......@@ -4864,7 +4864,8 @@ def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
if transpose_y:
y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
if x_shape[-1] != y_shape[-2]:
raise ValueError("Invalid inputs for matmul.")
raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
(x_shape, y_shape))
if len(y_shape) > 2 and len(x_shape) > 2:
for i, dim_x in enumerate(x_shape[:-2]):
......@@ -6367,6 +6368,8 @@ def squeeze(input, axes, name=None):
x = layers.data(name='x', shape=[5, 1, 10])
y = layers.sequeeze(input=x, axes=[1])
"""
assert not _in_imperative_mode(), (
"squeeze layer is not supported in imperative mode yet.")
helper = LayerHelper("squeeze", **locals())
out = helper.create_variable_for_type_inference(dtype=input.dtype)
x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import unittest
import numpy as np
import six
import sys
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC
from test_imperative_base import new_program_scope
from paddle.fluid.imperative.base import to_variable
def gen_data():
pass
class GraphConv(fluid.imperative.Layer):
def __init__(self, name_scope, in_features, out_features):
super(GraphConv, self).__init__(name_scope)
self._in_features = in_features
self._out_features = out_features
self.weight = self.create_parameter(
attr=None,
dtype='float32',
shape=[self._in_features, self._out_features])
self.bias = self.create_parameter(
attr=None, dtype='float32', shape=[self._out_features])
def forward(self, features, adj):
support = fluid.layers.matmul(features, self.weight)
# TODO(panyx0718): sparse matmul?
return fluid.layers.matmul(adj, support) + self.bias
class GCN(fluid.imperative.Layer):
def __init__(self, name_scope, num_hidden):
super(GCN, self).__init__(name_scope)
self.gc = GraphConv(self.full_name(), num_hidden, 32)
self.gc2 = GraphConv(self.full_name(), 32, 10)
def forward(self, x, adj):
x = fluid.layers.relu(self.gc(x, adj))
return self.gc2(x, adj)
class TestImperativeGNN(unittest.TestCase):
def test_gnn_float32(self):
seed = 90
with fluid.imperative.guard():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
features = np.zeros([1, 100, 50], dtype=np.float32)
adj = np.zeros([1, 100, 100], dtype=np.float32)
labels = np.zeros([100, 1], dtype=np.int64)
model = GCN('test_gcn', 50)
logits = model(to_variable(features), to_variable(adj))
sys.stderr.write('%s\n' % logits)
logits = fluid.layers.reshape(logits, logits.shape[1:])
# In other example, it's nll with log_softmax. However, paddle's
# log_loss only supports binary classification now.
loss = fluid.layers.softmax_with_cross_entropy(logits,
to_variable(labels))
loss = fluid.layers.reduce_sum(loss)
sys.stderr.write('%s\n' % loss._numpy())
if __name__ == '__main__':
unittest.main()
......@@ -84,6 +84,28 @@ class TestLayer(LayerTest):
self.assertTrue(np.allclose(static_ret, dy_ret._numpy()))
def test_matmul(self):
with self.static_graph():
t = layers.data(name='t', shape=[3, 3], dtype='float32')
t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
ret = layers.matmul(t, t2)
static_ret = self.get_static_graph_result(
feed={
't': np.ones(
[3, 3], dtype='float32'),
't2': np.ones(
[3, 3], dtype='float32')
},
fetch_list=[ret])[0]
with self.dynamic_graph():
t = np.ones([3, 3], dtype='float32')
t2 = np.ones([3, 3], dtype='float32')
ret = layers.matmul(t, t2)
dy_ret = layers.relu(base.to_variable(ret))
self.assertTrue(np.allclose(static_ret, dy_ret._numpy()))
def test_conv2d(self):
with self.static_graph():
images = layers.data(name='pixel', shape=[3, 5, 5], dtype='float32')
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册