未验证 提交 50c68859 编写于 作者: C cc 提交者: GitHub

Fix test_quantization_scale_pass by change the model, test=develop (#25710) (#25985)

上级 97428114
...@@ -31,33 +31,29 @@ os.environ["CUDA_VISIBLE_DEVICES"] = "0" ...@@ -31,33 +31,29 @@ os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["CPU_NUM"] = "1" os.environ["CPU_NUM"] = "1"
def residual_block(img, label, num=1): def conv_net(img, label):
def conv_bn_layer(input, conv_pool_1 = fluid.nets.simple_img_conv_pool(
ch_out, input=img,
filter_size, filter_size=5,
stride, num_filters=20,
padding, pool_size=2,
act='relu', pool_stride=2,
bias_attr=False): pool_type='max',
tmp = fluid.layers.conv2d( act="relu")
input=input, conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
filter_size=filter_size, conv_pool_2 = fluid.nets.simple_img_conv_pool(
num_filters=ch_out, input=conv_pool_1,
stride=stride, filter_size=5,
padding=padding, num_filters=50,
act=None, pool_size=2,
bias_attr=bias_attr) pool_stride=2,
return fluid.layers.batch_norm(input=tmp, act=act) pool_type='avg',
act="relu")
hidden = img hidden = fluid.layers.fc(input=conv_pool_2, size=100, act='relu')
for _ in six.moves.xrange(num): prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
conv = conv_bn_layer(hidden, 20, 3, 1, 1, act=None, bias_attr=True) loss = fluid.layers.cross_entropy(input=prediction, label=label)
short = conv_bn_layer(hidden, 20, 1, 1, 0, act=None) avg_loss = fluid.layers.mean(loss)
hidden = fluid.layers.elementwise_add(x=conv, y=short, act='relu') return avg_loss
fc = fluid.layers.fc(input=hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=fc, label=label)
loss = fluid.layers.mean(loss)
return loss
class TestQuantizationScalePass(unittest.TestCase): class TestQuantizationScalePass(unittest.TestCase):
...@@ -76,7 +72,7 @@ class TestQuantizationScalePass(unittest.TestCase): ...@@ -76,7 +72,7 @@ class TestQuantizationScalePass(unittest.TestCase):
name='image', shape=[1, 28, 28], dtype='float32') name='image', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data( label = fluid.layers.data(
name='label', shape=[1], dtype='int64') name='label', shape=[1], dtype='int64')
loss = residual_block(img, label, 1) loss = conv_net(img, label)
if not is_test: if not is_test:
opt = fluid.optimizer.Adam(learning_rate=0.0001) opt = fluid.optimizer.Adam(learning_rate=0.0001)
opt.minimize(loss) opt.minimize(loss)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册