Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
507c1430
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
507c1430
编写于
7月 26, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
im2col cfo cpu code clean
上级
4eeed0b5
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
270 addition
and
198 deletion
+270
-198
paddle/fluid/operators/math/im2col.cc
paddle/fluid/operators/math/im2col.cc
+5
-198
paddle/fluid/operators/math/im2col_cfo_cpu.h
paddle/fluid/operators/math/im2col_cfo_cpu.h
+265
-0
未找到文件。
paddle/fluid/operators/math/im2col.cc
浏览文件 @
507c1430
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/operators/math/im2col.h"
#include <vector>
#include "paddle/fluid/operators/math/im2col_cfo_cpu.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -35,210 +36,16 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
PADDLE_ENFORCE
(
im
.
dims
().
size
()
==
3
);
PADDLE_ENFORCE
(
col
->
dims
().
size
()
==
5
);
int
im_channels
=
im
.
dims
()[
0
];
int
im_height
=
im
.
dims
()[
1
];
int
im_width
=
im
.
dims
()[
2
];
int
filter_height
=
col
->
dims
()[
1
];
int
filter_width
=
col
->
dims
()[
2
];
int
output_height
=
col
->
dims
()[
3
];
int
output_width
=
col
->
dims
()[
4
];
int
channels_col
=
im_channels
*
filter_height
*
filter_width
;
const
T
*
im_data
=
im
.
data
<
T
>
();
T
*
col_data
=
col
->
data
<
T
>
();
// TODO(TJ): change me to template
// further optimize: padding == 1 need special
if
(
stride
[
0
]
==
1
&&
stride
[
1
]
==
1
&&
dilation
[
0
]
==
1
&&
dilation
[
1
]
==
1
)
{
int
col_matrix_width
=
output_width
*
output_height
;
int
im_size
=
im_height
*
im_width
;
if
(
padding
[
0
]
==
0
&&
padding
[
1
]
==
0
)
{
size_t
copy_size
=
sizeof
(
T
)
*
output_width
;
for
(
int
oh
=
0
;
oh
<
output_height
;
++
oh
)
{
const
T
*
im_data_start
=
im_data
+
oh
*
im_width
;
T
*
dst_data
=
col_data
+
oh
*
output_width
;
for
(
int
ic
=
0
;
ic
<
im_channels
;
++
ic
)
{
const
T
*
src_data
=
im_data_start
+
ic
*
im_size
;
for
(
int
kh
=
0
;
kh
<
filter_height
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
filter_width
;
++
kw
)
{
std
::
memcpy
(
dst_data
,
src_data
+
kw
,
copy_size
);
dst_data
=
dst_data
+
col_matrix_width
;
}
src_data
=
src_data
+
im_width
;
}
}
}
return
;
im2col_sh1sw1dh1dw1ph0pw0
<
T
>
(
im
,
col
);
}
else
{
int
plh
=
padding
[
0
];
int
plw
=
padding
[
1
];
int
prh
=
(
output_height
-
1
)
*
stride
[
0
]
+
filter_height
-
im_height
-
plh
;
int
prw
=
(
output_width
-
1
)
*
stride
[
1
]
+
filter_width
-
im_width
-
plw
;
// fill height padding : 0 ~ plh-1, (oh-prh) ~ (oh-1)
// TODO(TJ): refine ph*xxx
assert
(
plh
==
prh
);
// because stride_h == 1
int
col_block_fh
=
filter_width
*
col_matrix_width
;
// fw*oh*ow
int
col_block_ic
=
filter_height
*
col_block_fh
;
// fh*fw*oh*ow
for
(
int
ph
=
0
;
ph
<
plh
;
++
ph
)
{
int
sz
=
output_width
*
(
plh
-
ph
);
size_t
copy_sz
=
sizeof
(
T
)
*
sz
;
T
*
col_start_l
=
col_data
+
ph
*
col_block_fh
;
T
*
col_start_r
=
col_data
+
(
filter_height
-
ph
-
1
)
*
col_block_fh
+
col_matrix_width
-
sz
;
for
(
int
ic
=
0
;
ic
<
im_channels
;
++
ic
)
{
T
*
dst_data_l
=
col_start_l
+
ic
*
col_block_ic
;
T
*
dst_data_r
=
col_start_r
+
ic
*
col_block_ic
;
for
(
int
kw
=
0
;
kw
<
filter_width
;
++
kw
)
{
std
::
memset
(
dst_data_l
,
0
,
copy_sz
);
std
::
memset
(
dst_data_r
,
0
,
copy_sz
);
dst_data_l
=
dst_data_l
+
col_matrix_width
;
dst_data_r
=
dst_data_r
+
col_matrix_width
;
}
}
}
// fill width padding
assert
(
plw
==
prw
);
// because stride_w == 1
if
(
plw
==
1
)
{
auto
pad
=
static_cast
<
T
>
(
0
);
// padding zero
for
(
int
ic
=
0
;
ic
<
im_channels
;
++
ic
)
{
// TODO(TJ): use add and resue stride
T
*
dst_data_ic
=
col_data
+
ic
*
col_block_ic
;
for
(
int
kh
=
0
;
kh
<
filter_height
;
++
kh
)
{
T
*
dst_data_kh
=
dst_data_ic
+
kh
*
col_block_fh
;
for
(
T
*
dst_data
:
{
dst_data_kh
,
dst_data_kh
+
(
filter_width
-
prw
)
*
col_matrix_width
+
output_width
-
1
})
{
// TODO(TJ): from plh, saving repeated assignment
for
(
int
oh
=
0
;
oh
<
output_height
;
++
oh
)
{
*
dst_data
=
pad
;
dst_data
=
dst_data
+
output_width
;
}
}
}
}
}
else
{
// padding_size > 1
for
(
int
ic
=
0
;
ic
<
im_channels
;
++
ic
)
{
// TODO(TJ): use add and resue stride
T
*
dst_data_ic
=
col_data
+
ic
*
col_block_ic
;
for
(
int
kh
=
0
;
kh
<
filter_height
;
++
kh
)
{
T
*
dst_data_kh
=
dst_data_ic
+
kh
*
col_block_fh
;
for
(
int
kw
=
0
;
kw
<
plw
;
++
kw
)
{
// TODO(TJ): reuse array outside this for
size_t
sz
=
sizeof
(
T
)
*
(
plw
-
kw
);
T
*
dst_data
=
dst_data_kh
+
kw
*
col_matrix_width
;
// TODO(TJ): from plh, saving repeated assignment
for
(
int
oh
=
0
;
oh
<
output_height
;
++
oh
)
{
std
::
memset
(
dst_data
,
0
,
sz
);
dst_data
=
dst_data
+
output_width
;
}
}
// TODO(TJ): use reverse to save cache
for
(
int
kw
=
0
;
kw
<
prw
;
++
kw
)
{
// TODO(TJ): reuse array outside this for
auto
num
=
(
prw
-
kw
);
size_t
sz
=
sizeof
(
T
)
*
num
;
T
*
dst_data
=
dst_data_kh
+
(
filter_width
-
1
-
kw
)
*
col_matrix_width
+
output_width
-
num
;
// TODO(TJ): from plh, saving repeated assignment
for
(
int
oh
=
0
;
oh
<
output_height
;
++
oh
)
{
std
::
memset
(
dst_data
,
0
,
sz
);
dst_data
=
dst_data
+
output_width
;
}
}
}
}
}
// fill im_data
// padding cover two cases:
// 1. kw > 2*pw: kw = 3, pw = 1
// 0 x x x x ... x x x x 0
// 1 1 1 1 1 1
// ==>
// 0 x ... x x
// x x ... x x
// x x ... x 0
// 2. kw < 2*pw: kw = 3, pw = 2
// 0 0 x x x ... x x x 0 0
// 1 1 1 1 1 1
// ==>
// 0 0 x ... x x x
// 0 x x ... x x 0
// x x x ... x 0 0
// TODO(TJ): use array like: size_t copy_size[kw]={sizeof(T) *
// (output_width-1)}
// length of copy_size is equal kw.
if
(
plw
+
prw
<
filter_width
)
{
for
(
int
oh
=
0
;
oh
<
output_height
;
++
oh
)
{
const
T
*
im_data_start
=
im_data
+
(
oh
-
plh
>
0
?
oh
-
plh
:
0
)
*
im_width
;
T
*
dst_data
=
col_data
+
oh
*
output_width
;
for
(
int
ic
=
0
;
ic
<
im_channels
;
++
ic
)
{
const
T
*
src_data
=
im_data_start
+
ic
*
im_size
;
for
(
int
kh
=
0
;
kh
<
filter_height
;
++
kh
)
{
if
((
oh
<
plh
&&
kh
<
plh
)
||
(
oh
>
(
output_height
-
prh
-
1
)
&&
kh
>
(
filter_height
-
prh
-
1
)))
{
dst_data
=
dst_data
+
filter_width
*
col_matrix_width
;
continue
;
}
// TODO(TJ): reuse plw-kw outside this for
// try to unify
for
(
int
kw
=
0
;
kw
<
plw
;
++
kw
)
{
std
::
memcpy
(
dst_data
+
(
plw
-
kw
),
src_data
,
sizeof
(
T
)
*
(
output_width
-
(
plw
-
kw
)));
dst_data
=
dst_data
+
col_matrix_width
;
}
for
(
int
kw
=
plw
;
kw
<
filter_width
-
prw
;
++
kw
)
{
std
::
memcpy
(
dst_data
,
src_data
+
(
kw
-
plw
),
sizeof
(
T
)
*
output_width
);
dst_data
=
dst_data
+
col_matrix_width
;
}
int
i
=
1
;
for
(
int
kw
=
filter_width
-
prw
;
kw
<
filter_width
;
++
kw
,
++
i
)
{
std
::
memcpy
(
dst_data
,
src_data
+
(
kw
-
plw
),
sizeof
(
T
)
*
(
output_width
-
i
));
dst_data
=
dst_data
+
col_matrix_width
;
}
src_data
=
src_data
+
im_width
;
}
}
}
}
else
{
LOG
(
FATAL
)
<<
"Not implement yet"
;
}
return
;
}
}
for
(
int
c
=
0
;
c
<
channels_col
;
++
c
)
{
int
w_offset
=
c
%
filter_width
;
int
h_offset
=
(
c
/
filter_width
)
%
filter_height
;
int
c_im
=
c
/
(
filter_width
*
filter_height
);
for
(
int
h
=
0
;
h
<
output_height
;
++
h
)
{
int
im_row_idx
=
h
*
stride
[
0
]
-
padding
[
0
]
+
h_offset
*
dilation
[
0
];
for
(
int
w
=
0
;
w
<
output_width
;
++
w
)
{
int
im_col_idx
=
w
*
stride
[
1
]
-
padding
[
1
]
+
w_offset
*
dilation
[
1
];
int
col_idx
=
(
c
*
output_height
+
h
)
*
output_width
+
w
;
int
im_idx
=
(
im_row_idx
+
c_im
*
im_height
)
*
im_width
+
im_col_idx
;
col_data
[
col_idx
]
=
(
im_row_idx
<
0
||
im_row_idx
>=
im_height
||
im_col_idx
<
0
||
im_col_idx
>=
im_width
)
?
static_cast
<
T
>
(
0
)
:
im_data
[
im_idx
];
}
im2col_sh1sw1dh1dw1
<
T
>
(
im
,
padding
,
col
);
}
return
;
}
im2col_common
<
T
>
(
im
,
dilation
,
stride
,
padding
,
col
);
}
};
...
...
paddle/fluid/operators/math/im2col_cfo_cpu.h
0 → 100644
浏览文件 @
507c1430
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/framework/tensor.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
/*
* The most common im2col algorithm.
* Support dilation, stride and padding.
*/
template
<
typename
T
>
inline
void
im2col_common
(
const
framework
::
Tensor
&
im
,
const
std
::
vector
<
int
>&
dilation
,
const
std
::
vector
<
int
>&
stride
,
const
std
::
vector
<
int
>&
padding
,
framework
::
Tensor
*
col
)
{
int
im_channels
=
im
.
dims
()[
0
];
int
im_height
=
im
.
dims
()[
1
];
int
im_width
=
im
.
dims
()[
2
];
int
filter_height
=
col
->
dims
()[
1
];
int
filter_width
=
col
->
dims
()[
2
];
int
output_height
=
col
->
dims
()[
3
];
int
output_width
=
col
->
dims
()[
4
];
int
channels_col
=
im_channels
*
filter_height
*
filter_width
;
const
T
*
im_data
=
im
.
data
<
T
>
();
T
*
col_data
=
col
->
data
<
T
>
();
for
(
int
c
=
0
;
c
<
channels_col
;
++
c
)
{
int
w_offset
=
c
%
filter_width
;
int
h_offset
=
(
c
/
filter_width
)
%
filter_height
;
int
c_im
=
c
/
(
filter_width
*
filter_height
);
for
(
int
h
=
0
;
h
<
output_height
;
++
h
)
{
int
im_row_idx
=
h
*
stride
[
0
]
-
padding
[
0
]
+
h_offset
*
dilation
[
0
];
for
(
int
w
=
0
;
w
<
output_width
;
++
w
)
{
int
im_col_idx
=
w
*
stride
[
1
]
-
padding
[
1
]
+
w_offset
*
dilation
[
1
];
int
col_idx
=
(
c
*
output_height
+
h
)
*
output_width
+
w
;
int
im_idx
=
(
im_row_idx
+
c_im
*
im_height
)
*
im_width
+
im_col_idx
;
col_data
[
col_idx
]
=
(
im_row_idx
<
0
||
im_row_idx
>=
im_height
||
im_col_idx
<
0
||
im_col_idx
>=
im_width
)
?
static_cast
<
T
>
(
0
)
:
im_data
[
im_idx
];
}
}
}
}
/*
* im2col algorithm with strides == 1, dilations == 1, paddings == 0
* */
template
<
typename
T
>
inline
void
im2col_sh1sw1dh1dw1ph0pw0
(
const
framework
::
Tensor
&
im
,
framework
::
Tensor
*
col
)
{
int
im_channels
=
im
.
dims
()[
0
];
int
im_height
=
im
.
dims
()[
1
];
int
im_width
=
im
.
dims
()[
2
];
int
filter_height
=
col
->
dims
()[
1
];
int
filter_width
=
col
->
dims
()[
2
];
int
output_height
=
col
->
dims
()[
3
];
int
output_width
=
col
->
dims
()[
4
];
const
T
*
im_data
=
im
.
data
<
T
>
();
T
*
col_data
=
col
->
data
<
T
>
();
int
col_matrix_width
=
output_width
*
output_height
;
int
im_size
=
im_height
*
im_width
;
size_t
copy_size
=
sizeof
(
T
)
*
output_width
;
for
(
int
oh
=
0
;
oh
<
output_height
;
++
oh
)
{
const
T
*
im_data_start
=
im_data
+
oh
*
im_width
;
T
*
dst_data
=
col_data
+
oh
*
output_width
;
for
(
int
ic
=
0
;
ic
<
im_channels
;
++
ic
)
{
const
T
*
src_data
=
im_data_start
+
ic
*
im_size
;
for
(
int
kh
=
0
;
kh
<
filter_height
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
filter_width
;
++
kw
)
{
std
::
memcpy
(
dst_data
,
src_data
+
kw
,
copy_size
);
dst_data
=
dst_data
+
col_matrix_width
;
}
src_data
=
src_data
+
im_width
;
}
}
}
}
// further optimize: padding == 1 need special
template
<
typename
T
>
inline
void
im2col_sh1sw1dh1dw1
(
const
framework
::
Tensor
&
im
,
const
std
::
vector
<
int
>&
padding
,
framework
::
Tensor
*
col
)
{
int
im_channels
=
im
.
dims
()[
0
];
int
im_height
=
im
.
dims
()[
1
];
int
im_width
=
im
.
dims
()[
2
];
int
filter_height
=
col
->
dims
()[
1
];
int
filter_width
=
col
->
dims
()[
2
];
int
output_height
=
col
->
dims
()[
3
];
int
output_width
=
col
->
dims
()[
4
];
const
int
sh
=
1
;
const
int
sw
=
1
;
const
T
*
im_data
=
im
.
data
<
T
>
();
T
*
col_data
=
col
->
data
<
T
>
();
int
col_matrix_width
=
output_width
*
output_height
;
int
im_size
=
im_height
*
im_width
;
int
plh
=
padding
[
0
];
int
plw
=
padding
[
1
];
int
prh
=
(
output_height
-
1
)
*
sh
+
filter_height
-
im_height
-
plh
;
int
prw
=
(
output_width
-
1
)
*
sw
+
filter_width
-
im_width
-
plw
;
// fill height padding : 0 ~ plh-1, (oh-prh) ~ (oh-1)
// TODO(TJ): refine ph*xxx
assert
(
plh
==
prh
);
// because stride_h == 1
int
col_block_fh
=
filter_width
*
col_matrix_width
;
// fw*oh*ow
int
col_block_ic
=
filter_height
*
col_block_fh
;
// fh*fw*oh*ow
for
(
int
ph
=
0
;
ph
<
plh
;
++
ph
)
{
int
sz
=
output_width
*
(
plh
-
ph
);
size_t
copy_sz
=
sizeof
(
T
)
*
sz
;
T
*
col_start_l
=
col_data
+
ph
*
col_block_fh
;
T
*
col_start_r
=
col_data
+
(
filter_height
-
ph
-
1
)
*
col_block_fh
+
col_matrix_width
-
sz
;
for
(
int
ic
=
0
;
ic
<
im_channels
;
++
ic
)
{
T
*
dst_data_l
=
col_start_l
+
ic
*
col_block_ic
;
T
*
dst_data_r
=
col_start_r
+
ic
*
col_block_ic
;
for
(
int
kw
=
0
;
kw
<
filter_width
;
++
kw
)
{
std
::
memset
(
dst_data_l
,
0
,
copy_sz
);
std
::
memset
(
dst_data_r
,
0
,
copy_sz
);
dst_data_l
=
dst_data_l
+
col_matrix_width
;
dst_data_r
=
dst_data_r
+
col_matrix_width
;
}
}
}
// fill width padding
assert
(
plw
==
prw
);
// because stride_w == 1
if
(
plw
==
1
)
{
auto
pad
=
static_cast
<
T
>
(
0
);
// padding zero
for
(
int
ic
=
0
;
ic
<
im_channels
;
++
ic
)
{
// TODO(TJ): use add and resue stride
T
*
dst_data_ic
=
col_data
+
ic
*
col_block_ic
;
for
(
int
kh
=
0
;
kh
<
filter_height
;
++
kh
)
{
T
*
dst_data_kh
=
dst_data_ic
+
kh
*
col_block_fh
;
for
(
T
*
dst_data
:
{
dst_data_kh
,
dst_data_kh
+
(
filter_width
-
prw
)
*
col_matrix_width
+
output_width
-
1
})
{
// TODO(TJ): from plh, saving repeated assignment
for
(
int
oh
=
0
;
oh
<
output_height
;
++
oh
)
{
*
dst_data
=
pad
;
dst_data
=
dst_data
+
output_width
;
}
}
}
}
}
else
{
// padding_size > 1
for
(
int
ic
=
0
;
ic
<
im_channels
;
++
ic
)
{
// TODO(TJ): use add and resue stride
T
*
dst_data_ic
=
col_data
+
ic
*
col_block_ic
;
for
(
int
kh
=
0
;
kh
<
filter_height
;
++
kh
)
{
T
*
dst_data_kh
=
dst_data_ic
+
kh
*
col_block_fh
;
for
(
int
kw
=
0
;
kw
<
plw
;
++
kw
)
{
// TODO(TJ): reuse array outside this for
size_t
sz
=
sizeof
(
T
)
*
(
plw
-
kw
);
T
*
dst_data
=
dst_data_kh
+
kw
*
col_matrix_width
;
// TODO(TJ): from plh, saving repeated assignment
for
(
int
oh
=
0
;
oh
<
output_height
;
++
oh
)
{
std
::
memset
(
dst_data
,
0
,
sz
);
dst_data
=
dst_data
+
output_width
;
}
}
// TODO(TJ): use reverse to save cache
for
(
int
kw
=
0
;
kw
<
prw
;
++
kw
)
{
// TODO(TJ): reuse array outside this for
auto
num
=
(
prw
-
kw
);
size_t
sz
=
sizeof
(
T
)
*
num
;
T
*
dst_data
=
dst_data_kh
+
(
filter_width
-
1
-
kw
)
*
col_matrix_width
+
output_width
-
num
;
// TODO(TJ): from plh, saving repeated assignment
for
(
int
oh
=
0
;
oh
<
output_height
;
++
oh
)
{
std
::
memset
(
dst_data
,
0
,
sz
);
dst_data
=
dst_data
+
output_width
;
}
}
}
}
}
// fill im_data
// padding cover two cases:
// 1. kw > 2*pw: kw = 3, pw = 1
// 0 x x x x ... x x x x 0
// 1 1 1 1 1 1
// ==>
// 0 x ... x x
// x x ... x x
// x x ... x 0
// 2. kw < 2*pw: kw = 3, pw = 2
// 0 0 x x x ... x x x 0 0
// 1 1 1 1 1 1
// ==>
// 0 0 x ... x x x
// 0 x x ... x x 0
// x x x ... x 0 0
// TODO(TJ): use array like: size_t copy_size[kw]={sizeof(T) *
// (output_width-1)}
// length of copy_size is equal kw.
if
(
plw
+
prw
<
filter_width
)
{
for
(
int
oh
=
0
;
oh
<
output_height
;
++
oh
)
{
const
T
*
im_data_start
=
im_data
+
(
oh
-
plh
>
0
?
oh
-
plh
:
0
)
*
im_width
;
T
*
dst_data
=
col_data
+
oh
*
output_width
;
for
(
int
ic
=
0
;
ic
<
im_channels
;
++
ic
)
{
const
T
*
src_data
=
im_data_start
+
ic
*
im_size
;
for
(
int
kh
=
0
;
kh
<
filter_height
;
++
kh
)
{
if
((
oh
<
plh
&&
kh
<
plh
)
||
(
oh
>
(
output_height
-
prh
-
1
)
&&
kh
>
(
filter_height
-
prh
-
1
)))
{
dst_data
=
dst_data
+
filter_width
*
col_matrix_width
;
continue
;
}
// TODO(TJ): reuse plw-kw outside this for
// try to unify
for
(
int
kw
=
0
;
kw
<
plw
;
++
kw
)
{
std
::
memcpy
(
dst_data
+
(
plw
-
kw
),
src_data
,
sizeof
(
T
)
*
(
output_width
-
(
plw
-
kw
)));
dst_data
=
dst_data
+
col_matrix_width
;
}
for
(
int
kw
=
plw
;
kw
<
filter_width
-
prw
;
++
kw
)
{
std
::
memcpy
(
dst_data
,
src_data
+
(
kw
-
plw
),
sizeof
(
T
)
*
output_width
);
dst_data
=
dst_data
+
col_matrix_width
;
}
int
i
=
1
;
for
(
int
kw
=
filter_width
-
prw
;
kw
<
filter_width
;
++
kw
,
++
i
)
{
std
::
memcpy
(
dst_data
,
src_data
+
(
kw
-
plw
),
sizeof
(
T
)
*
(
output_width
-
i
));
dst_data
=
dst_data
+
col_matrix_width
;
}
src_data
=
src_data
+
im_width
;
}
}
}
}
else
{
LOG
(
FATAL
)
<<
"Not implement yet"
;
}
}
}
// namespace math
}
// namespace operators
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录