提交 50639faf 编写于 作者: M minqiyang

Polish code

test=develop
上级 fe406b98
......@@ -156,6 +156,7 @@ void BlockDesc::RemoveOp(size_t s, size_t e) {
}
void BlockDesc::RemoveOpInternal(const OpDesc *op_desc) {
// TODO(minqiyang): make this faster
for (auto it = ops_.begin(); it != ops_.end(); ++it) {
if (it->get() == op_desc) {
ops_.erase(it);
......
......@@ -226,6 +226,8 @@ class PYBIND11_HIDDEN OpBase {
backward_hooks_() {}
virtual ~OpBase() {
// TODO(minqiyang): remove op_desc from block_desc in tracer
//
// reset all output vars' pre op
for (auto iter : output_vars_) {
for (VarBase* var : iter.second) {
......@@ -233,13 +235,6 @@ class PYBIND11_HIDDEN OpBase {
}
}
// remove op desc from block desc
if (op_desc_) {
if (block_) {
block_->RemoveOpInternal(op_desc_);
}
}
// release resource
for (framework::OpDesc* desc : grad_op_descs_) {
delete desc;
......
......@@ -19,7 +19,7 @@ import numpy as np
from .wrapped_decorator import signature_safe_contextmanager
from .core import VarDesc
from . import unique_name
from .imperative import base
from .imperative import base as imperative_base
__all__ = [
'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
......@@ -166,7 +166,7 @@ class ConstantInitializer(Initializer):
'force_cpu': self._force_cpu or force_init_on_cpu()
},
stop_gradient=True)
if not base.enabled():
if not imperative_base.enabled():
var.op = op
return op
......@@ -246,7 +246,7 @@ class UniformInitializer(Initializer):
attrs={"in_dtype": out_var.dtype,
"out_dtype": var.dtype})
if not base.enabled():
if not imperative_base.enabled():
var.op = op
return op
......@@ -325,7 +325,7 @@ class NormalInitializer(Initializer):
outputs={"Out": var},
attrs={"in_dtype": out_var.dtype,
"out_dtype": var.dtype})
if not base.enabled():
if not imperative_base.enabled():
var.op = op
return op
......@@ -404,7 +404,7 @@ class TruncatedNormalInitializer(Initializer):
outputs={"Out": var},
attrs={"in_dtype": out_var.dtype,
"out_dtype": var.dtype})
if not base.enabled():
if not imperative_base.enabled():
var.op = op
return op
......@@ -510,7 +510,7 @@ class XavierInitializer(Initializer):
"seed": self._seed
},
stop_gradient=True)
if not base.enabled():
if not imperative_base.enabled():
var.op = op
return op
......@@ -611,7 +611,7 @@ class MSRAInitializer(Initializer):
"seed": self._seed
},
stop_gradient=True)
if not base.enabled():
if not imperative_base.enabled():
var.op = op
return op
......@@ -710,7 +710,7 @@ class BilinearInitializer(Initializer):
'shape': list(shape),
value_name: values
})
if not base.enabled():
if not imperative_base.enabled():
var.op = op
return op
......@@ -769,7 +769,7 @@ class NumpyArrayInitializer(Initializer):
value_name: values
},
stop_gradient=True)
if not base.enabled():
if not imperative_base.enabled():
var.op = op
return op
......
......@@ -191,126 +191,28 @@ class SimpleRNN(fluid.imperative.Layer):
return outs, pre_hiddens
# class TestImperative(unittest.TestCase):
# def test_sum_op(self):
# x = np.ones([2, 2], np.float32)
# with fluid.imperative.guard():
# inputs = []
# for _ in range(10):
# inputs.append(fluid.imperative.base.to_variable(x))
# ret = fluid.layers.sums(inputs)
# loss = fluid.layers.reduce_sum(ret)
# loss._backward()
# self.assertTrue(np.allclose(ret._numpy(), x * 10))
# self.assertTrue(np.allclose(inputs[0]._gradient(), x))
# def test_layer(self):
# with fluid.imperative.guard():
# cl = core.Layer()
# cl.forward([])
# l = fluid.imperative.Layer("l")
# self.assertRaises(NotImplementedError, l.forward, [])
# def test_layer_in_out(self):
# np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
# with fluid.imperative.guard():
# var_inp = fluid.imperative.base.to_variable(np_inp)
# l = MyLayer("my_layer")
# x = l(var_inp)[0]
# self.assertIsNotNone(x)
# dy_out = x._numpy()
# x._backward()
# dy_grad = l._x_for_debug._gradient()
# with new_program_scope():
# inp = fluid.layers.data(name="inp", shape=[3], append_batch_size=False)
# l = MyLayer("my_layer")
# x = l(inp)[0]
# param_grads = fluid.backward.append_backward(x, parameter_list=[l._x_for_debug.name])[0]
# exe = fluid.Executor(fluid.CPUPlace(
# ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
# static_out, static_grad = exe.run(feed={inp.name: np_inp},
# fetch_list=[x.name, param_grads[1].name])
# self.assertTrue(np.allclose(dy_out, static_out))
# self.assertTrue(np.allclose(dy_grad, static_grad))
# with fluid.imperative.guard():
# var_inp = fluid.imperative.base.to_variable(np_inp)
# mlp = MLP("mlp")
# out = mlp(var_inp)
# dy_out = out._numpy()
# out._backward()
# dy_grad = mlp._fc1._w._gradient()
# with new_program_scope():
# inp = fluid.layers.data(
# name="inp", shape=[2, 2], append_batch_size=False)
# mlp = MLP("mlp")
# out = mlp(inp)
# param_grads = fluid.backward.append_backward(out, parameter_list=[mlp._fc1._w.name])[0]
# exe = fluid.Executor(fluid.CPUPlace(
# ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
# exe.run(fluid.default_startup_program())
# static_out, static_grad = exe.run(
# feed={inp.name: np_inp},
# fetch_list=[out.name, param_grads[1].name])
# self.assertTrue(np.allclose(dy_out, static_out))
# self.assertTrue(np.allclose(dy_grad, static_grad))
# params = mlp.parameters(True)
# self.assertEqual("mlp/MLP_0/FC_0_0.w_0", params[0].name)
# self.assertEqual("mlp/MLP_0/FC_0_0.b_0", params[1].name)
# self.assertEqual("mlp/MLP_0/FC_1_0.w_0", params[2].name)
# self.assertEqual("mlp/MLP_0/FC_1_0.b_0", params[3].name)
# self.assertEqual(len(params), 4)
# sublayers = mlp.sublayers(True)
# self.assertEqual(mlp._fc1, sublayers[0])
# self.assertEqual(mlp._fc2, sublayers[1])
# self.assertEqual(len(sublayers), 2)
# def test_rnn(self):
# np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
# [10.0, 11.0, 12.0]])
# np_inp = np_inp.reshape((1, 4, 3))
# np_inp = np_inp.astype(np.float32)
# with fluid.imperative.guard():
# var_inp = fluid.imperative.base.to_variable(np_inp)
# var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
# simple_rnn = SimpleRNN("simple_rnn")
# outs, pre_hiddens = simple_rnn.forward(var_inp)
# dy_out = outs[3]._numpy()
# outs[3]._backward()
# dy_grad_h2o = simple_rnn._cell._h2o_w._gradient()
# dy_grad_h2h = simple_rnn._cell._h2h_w._gradient()
# dy_grad_i2h = simple_rnn._cell._i2h_w._gradient()
# with new_program_scope():
# inp = fluid.layers.data(
# name="inp", shape=[1, 4, 3], append_batch_size=False)
# simple_rnn = SimpleRNN("simple_rnn")
# outs, pre_hiddens = simple_rnn(inp)
# param_grads = fluid.backward.append_backward(outs[3])
# exe = fluid.Executor(fluid.CPUPlace())
# exe.run(fluid.default_startup_program())
# static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
# feed={inp.name: np_inp},
# fetch_list=[
# outs[3].name, param_grads[0][1].name,
# param_grads[1][1].name, param_grads[2][1].name
# ])
# self.assertTrue(np.allclose(dy_out, static_out))
# self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
# self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
# self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
class TestImperativePyLayer(unittest.TestCase):
class TestImperative(unittest.TestCase):
def test_sum_op(self):
x = np.ones([2, 2], np.float32)
with fluid.imperative.guard():
inputs = []
for _ in range(10):
inputs.append(fluid.imperative.base.to_variable(x))
ret = fluid.layers.sums(inputs)
loss = fluid.layers.reduce_sum(ret)
loss._backward()
self.assertTrue(np.allclose(ret._numpy(), x * 10))
self.assertTrue(np.allclose(inputs[0]._gradient(), x))
def test_layer(self):
with fluid.imperative.guard():
cl = core.Layer()
cl.forward([])
l = fluid.imperative.Layer("l")
self.assertRaises(NotImplementedError, l.forward, [])
def test_pylayer_func_id(self):
with fluid.imperative.guard():
class PyLayer1(fluid.imperative.PyLayer):
......@@ -378,6 +280,109 @@ class TestImperativePyLayer(unittest.TestCase):
self.assertTrue(np.allclose(dy_out, static_out))
self.assertTrue(np.allclose(dy_grad, static_grad))
def test_layer_in_out(self):
np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
with fluid.imperative.guard():
var_inp = fluid.imperative.base.to_variable(np_inp)
l = MyLayer("my_layer")
x = l(var_inp)[0]
self.assertIsNotNone(x)
dy_out = x._numpy()
x._backward()
dy_grad = l._x_for_debug._gradient()
with new_program_scope():
inp = fluid.layers.data(
name="inp", shape=[3], append_batch_size=False)
l = MyLayer("my_layer")
x = l(inp)[0]
param_grads = fluid.backward.append_backward(
x, parameter_list=[l._x_for_debug.name])[0]
exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
static_out, static_grad = exe.run(
feed={inp.name: np_inp},
fetch_list=[x.name, param_grads[1].name])
self.assertTrue(np.allclose(dy_out, static_out))
self.assertTrue(np.allclose(dy_grad, static_grad))
def test_mlp(self):
np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
with fluid.imperative.guard():
var_inp = fluid.imperative.base.to_variable(np_inp)
mlp = MLP("mlp")
out = mlp(var_inp)
dy_out = out._numpy()
out._backward()
dy_grad = mlp._fc1._w._gradient()
with new_program_scope():
inp = fluid.layers.data(
name="inp", shape=[2, 2], append_batch_size=False)
mlp = MLP("mlp")
out = mlp(inp)
param_grads = fluid.backward.append_backward(
out, parameter_list=[mlp._fc1._w.name])[0]
exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
exe.run(fluid.default_startup_program())
static_out, static_grad = exe.run(
feed={inp.name: np_inp},
fetch_list=[out.name, param_grads[1].name])
self.assertTrue(np.allclose(dy_out, static_out))
self.assertTrue(np.allclose(dy_grad, static_grad))
params = mlp.parameters(True)
self.assertEqual("mlp/MLP_0/FC_0_0.w_0", params[0].name)
self.assertEqual("mlp/MLP_0/FC_0_0.b_0", params[1].name)
self.assertEqual("mlp/MLP_0/FC_1_0.w_0", params[2].name)
self.assertEqual("mlp/MLP_0/FC_1_0.b_0", params[3].name)
self.assertEqual(len(params), 4)
sublayers = mlp.sublayers(True)
self.assertEqual(mlp._fc1, sublayers[0])
self.assertEqual(mlp._fc2, sublayers[1])
self.assertEqual(len(sublayers), 2)
def test_rnn(self):
np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
[10.0, 11.0, 12.0]])
np_inp = np_inp.reshape((1, 4, 3))
np_inp = np_inp.astype(np.float32)
with fluid.imperative.guard():
var_inp = fluid.imperative.base.to_variable(np_inp)
var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
simple_rnn = SimpleRNN("simple_rnn")
outs, pre_hiddens = simple_rnn.forward(var_inp)
dy_out = outs[3]._numpy()
outs[3]._backward()
dy_grad_h2o = simple_rnn._cell._h2o_w._gradient()
dy_grad_h2h = simple_rnn._cell._h2h_w._gradient()
dy_grad_i2h = simple_rnn._cell._i2h_w._gradient()
with new_program_scope():
inp = fluid.layers.data(
name="inp", shape=[1, 4, 3], append_batch_size=False)
simple_rnn = SimpleRNN("simple_rnn")
outs, pre_hiddens = simple_rnn(inp)
param_grads = fluid.backward.append_backward(outs[3])
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
feed={inp.name: np_inp},
fetch_list=[
outs[3].name, param_grads[0][1].name,
param_grads[1][1].name, param_grads[2][1].name
])
self.assertTrue(np.allclose(dy_out, static_out))
self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册