未验证 提交 4ef0a0b7 编写于 作者: F feng_shuai 提交者: GitHub

fix:conflict (#41913)

上级 279d2db3
......@@ -1761,6 +1761,7 @@ USE_TRT_CONVERTER(deformable_conv);
USE_TRT_CONVERTER(pool3d)
USE_TRT_CONVERTER(fused_preln_embedding_eltwise_layernorm)
USE_TRT_CONVERTER(preln_skip_layernorm)
USE_TRT_CONVERTER(roll)
USE_TRT_CONVERTER(strided_slice)
#endif
......
......@@ -25,6 +25,7 @@ nv_library(tensorrt_converter
preln_emb_eltwise_layernorm.cc
strided_slice_op.cc
preln_skip_layernorm.cc
roll_op.cc
DEPS tensorrt_engine tensorrt_plugin operator scope framework_proto op_registry)
nv_test(test_op_converter SRCS test_op_converter.cc DEPS
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
namespace paddle {
namespace framework {
class Scope;
namespace proto {
class OpDesc;
} // namespace proto
} // namespace framework
} // namespace paddle
namespace paddle {
namespace inference {
namespace tensorrt {
/*
* Stack converter from fluid to tensorRT.
*/
class RollOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode) override {
VLOG(4) << "convert fluid Roll op to tensorrt Slice layer";
framework::OpDesc op_desc(op, nullptr);
auto* input = engine_->GetITensor(op_desc.Input("X")[0]);
nvinfer1::Dims input_dims = input->getDimensions();
std::vector<int64_t> axis =
BOOST_GET_CONST(std::vector<int64_t>, op_desc.GetAttr("axis"));
std::vector<int64_t> shifts =
BOOST_GET_CONST(std::vector<int64_t>, op_desc.GetAttr("shifts"));
nvinfer1::Dims start;
start.nbDims = input_dims.nbDims;
for (int i = 0; i < start.nbDims; i++) {
start.d[i] = 0;
}
int axis_size = axis.size();
for (int i = 0; i < axis_size; i++) {
start.d[axis[i]] = (-shifts[i]) % input_dims.d[axis[i]];
}
nvinfer1::Dims stride;
stride.nbDims = input_dims.nbDims;
for (int i = 0; i < stride.nbDims; i++) {
stride.d[i] = 1;
}
nvinfer1::Dims size;
size.nbDims = input_dims.nbDims;
for (int i = 0; i < size.nbDims; i++) {
size.d[i] = 1;
}
auto output_name = op_desc.Output("Out")[0];
auto shape_layer = TRT_ENGINE_ADD_LAYER(engine_, Shape, *input);
auto* layer =
TRT_ENGINE_ADD_LAYER(engine_, Slice, *input, start, size, stride);
layer->setInput(2, *shape_layer->getOutput(0));
#if IS_TRT_VERSION_GE(7000)
layer->setMode(nvinfer1::SliceMode::kWRAP);
#endif
RreplenishLayerAndOutput(layer, "roll", {output_name}, test_mode);
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(roll, RollOpConverter);
......@@ -119,6 +119,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"slice",
"strided_slice",
"fused_preln_embedding_eltwise_layernorm",
"roll",
"preln_skip_layernorm"};
std::unordered_set<std::string> teller_set{
"mul",
......@@ -182,6 +183,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"strided_slice",
"fused_preln_embedding_eltwise_layernorm",
"preln_skip_layernorm",
"roll",
"multiclass_nms3"};
};
......@@ -928,6 +930,28 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
}
}
if (op_type == "roll") {
#if !IS_TRT_VERSION_GE(7000)
VLOG(3) << "roll converter does not support trt versions below 7.0";
return false;
#endif
if (!with_dynamic_shape) {
return false;
}
}
if (op_type == "strided_slice") {
if (!with_dynamic_shape) {
return false;
}
if (!desc.HasAttr("axes") || !desc.HasAttr("starts") ||
!desc.HasAttr("ends") || !desc.HasAttr("strides")) {
VLOG(3)
<< "The necessary attributes of the strided_slice operator miss ";
return false;
}
}
if (op_type == "slice") {
if (desc.HasAttr("decrease_axis")) {
std::vector<int> decrease_axis =
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
class TrtConvertRollTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
inputs = program_config.inputs
weights = program_config.weights
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
return True
def sample_program_configs(self):
def generate_input1(attrs: List[Dict[str, Any]]):
return np.ones([1, 56, 56, 192]).astype(np.float32)
for axis in [[1, 2]]:
for shifts in [[-1, -1], [-3, -3]]:
dics = [{
"axis": axis,
"shifts": shifts,
}]
ops_config = [{
"op_type": "roll",
"op_inputs": {
"X": ["input_data"]
},
"op_outputs": {
"Out": ["roll_output_data"]
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data":
TensorConfig(data_gen=partial(generate_input1, dics))
},
outputs=["roll_output_data"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {
"input_data": [1, 56, 56, 192]
}
self.dynamic_shape.max_input_shape = {
"input_data": [8, 56, 56, 192]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [4, 56, 56, 192]
}
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
inputs = program_config.inputs
if not dynamic_shape:
return 0, 3
ver = paddle_infer.get_trt_compile_version()
if ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 < 7000:
return 0, 3
return 1, 2
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-4
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-4
def test(self):
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册