Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
4e377f8e
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4e377f8e
编写于
7月 24, 2018
作者:
N
nhzlx
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into enhance_for_tensorrt_infer
上级
bd64979f
e658762a
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
206 addition
and
32 deletion
+206
-32
doc/fluid/api/layers.rst
doc/fluid/api/layers.rst
+8
-0
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+104
-32
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+72
-0
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+22
-0
未找到文件。
doc/fluid/api/layers.rst
浏览文件 @
4e377f8e
...
...
@@ -1768,3 +1768,11 @@ reverse
.. autofunction:: paddle.fluid.layers.reverse
:noindex:
.. _api_fluid_layers_rank_loss:
rank_loss
-------
.. autofunction:: paddle.fluid.layers.rank_loss
:noindex:
python/paddle/fluid/layers/io.py
浏览文件 @
4e377f8e
...
...
@@ -456,52 +456,124 @@ def py_reader(capacity,
name
=
None
,
use_double_buffer
=
True
):
"""
Create a
reader and blocking queue
for data feeding in Python
Create a
Python reader
for data feeding in Python
This layer returns a Reader Variable and a BlockingQueue.
The BlockingQueue provides `push()` method to push a `LoDTensorArray`
object into the queue in Python side. In C++ side, the Reader
Variable would invoke `pop()` method of the queue to retrieve the
feeding data. The process of feeding data in Python side and fetching
data in C++ side can run in parallel. The BlockingQueue should be closed
using `close()` method when unused.
This layer returns a Reader Variable.
The Reader provides :code:`decorate_paddle_reader()` and
:code:`decorate_tensor_provider()` to set a Python generator as the data
source in Python side. When :code:`Executor::Run()` is invoked in C++
side, the data from the generator would be read automatically. Unlike
:code:`DataFeeder.feed()`, the data reading process and
:code:`Executor::Run()` process can run in parallel using
:code:`py_reader`. The :code:`start()` method of the Reader should be
called when each pass begins, while the :code:`reset()` method should be
called when the pass ends and :code:`fluid.core.EOFException` raises.
Note that :code:`Program.clone()` method cannot clone :code:`py_reader`.
Args:
use_double_buffer(bool): Whether use double buffer or not.
capacity(int): The maximum capacity of the BlockingQueue.
capacity(int): The buffer capacity maintained by :code:`py_reader`.
shapes(list|tuple): List of tuples which declaring data shapes.
dtypes(list|tuple): List of strs which declaring data type.
lod_levels(list|tuple): List of ints which declaring data lod_level.
name(basestring): The prefix Python queue name and Reader name. None will
be generated automatically.
use_double_buffer(bool): Whether use double buffer or not.
Returns:
tuple(Variable, BlockingQueue):
A Reader Variable from which we can get feeding data.
A BlockingQueue object for data feeding.
Variable: A Reader from which we can get feeding data.
Examples:
.. code-block:: python
1. The basic usage of :code:`py_reader` is as follows:
reader, queue = fluid.layers.py_reader(
capacity=10,
shapes=[[-1,3,224,224], [-1,1]],
dtypes=['float32', 'int64'])
# Via the reader, we can use 'read_file' layer to get data:
image, label = fluid.layers.read_file(reader)
# Via the blocking queue, we can feed data using threads
def feed_data(queue, feed_images, feed_labels):
for feed_image, feed_label in zip(feed_images, feed_labels):
data = core.LoDTensorArray()
data.append(feed_image)
data.append(feed_label)
queue.push(data)
thread = threading.Thread(target=feed_data, args=(queue, feed_images, feed_labels))
thread.start()
>>> import paddle.v2
>>> import paddle.fluid as fluid
>>> import paddle.dataset.mnist as mnist
>>>
>>> reader = fluid.layers.py_reader(capacity=64,
>>> shapes=[(-1,3,224,224), (-1,1)],
>>> dtypes=['float32', 'int64'])
>>> reader.decorate_paddle_reader(
>>> paddle.v2.reader.shuffle(paddle.batch(mnist.train())
>>>
>>> img, label = fluid.layers.read_file(reader)
>>> loss = network(img, label) # some network definition
>>>
>>> fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
>>>
>>> exe = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
>>> for epoch_id in range(10):
>>> reader.start()
>>> try:
>>> while True:
>>> exe.run(fetch_list=[loss.name])
>>> except fluid.core.EOFException:
>>> reader.reset()
2. When training and testing are both performed, two different
:code:`py_reader` should be created with different names, e.g.:
>>> import paddle.v2
>>> import paddle.fluid as fluid
>>> import paddle.dataset.mnist as mnist
>>>
>>> def network(reader):
>>> img, label = fluid.layers.read_file(reader)
>>> # Here, we omitted the network definition
>>> return loss
>>>
>>> train_reader = fluid.layers.py_reader(capacity=64,
>>> shapes=[(-1,3,224,224), (-1,1)],
>>> dtypes=['float32', 'int64'],
>>> name='train_reader')
>>> train_reader.decorate_paddle_reader(
>>> paddle.v2.reader.shuffle(paddle.batch(mnist.train())
>>>
>>> test_reader = fluid.layers.py_reader(capacity=32,
>>> shapes=[(-1,3,224,224), (-1,1)],
>>> dtypes=['float32', 'int64'],
>>> name='test_reader')
>>> test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
>>>
>>> # Create train_main_prog and train_startup_prog
>>> train_main_prog = fluid.Program()
>>> train_startup_prog = fluid.Program()
>>> with fluid.program_guard(train_main_prog, train_startup_prog):
>>> # Use fluid.unique_name.guard() to share parameters with test program
>>> with fluid.unique_name.guard():
>>> train_loss = network(train_reader) # some network definition
>>> adam = fluid.optimizer.Adam(learning_rate=0.01)
>>> adam.minimize(loss)
>>>
>>> # Create test_main_prog and test_startup_prog
>>> test_main_prog = fluid.Program()
>>> test_startup_prog = fluid.Program()
>>> with fluid.program_guard(test_main_prog, test_startup_prog):
>>> # Use fluid.unique_name.guard() to share parameters with train program
>>> with fluid.unique_name.guard():
>>> test_loss = network(test_reader)
>>>
>>> fluid.Executor(fluid.CUDAPlace(0)).run(train_startup_prog)
>>> fluid.Executor(fluid.CUDAPlace(0)).run(test_startup_prog)
>>>
>>> train_exe = fluid.ParallelExecutor(use_cuda=True,
>>> loss_name=train_loss.name, main_program=train_main_prog)
>>> test_exe = fluid.ParallelExecutor(use_cuda=True,
>>> loss_name=test_loss.name, main_program=test_main_prog)
>>> for epoch_id in range(10):
>>> train_reader.start()
>>> try:
>>> while True:
>>> train_exe.run(fetch_list=[train_loss.name])
>>> except fluid.core.EOFException:
>>> train_reader.reset()
>>>
>>> test_reader.start()
>>> try:
>>> while True:
>>> test_exe.run(fetch_list=[test_loss.name])
>>> except fluid.core.EOFException:
>>> test_reader.reset()
"""
dtypes
=
[
convert_np_dtype_to_dtype_
(
dt
)
for
dt
in
dtypes
]
shape_concat
=
[]
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
4e377f8e
...
...
@@ -110,6 +110,7 @@ __all__ = [
'relu'
,
'log'
,
'crop'
,
'rank_loss'
,
]
...
...
@@ -5282,3 +5283,74 @@ def crop(x, shape=None, offsets=None, name=None):
outputs
=
{
'Out'
:
out
},
attrs
=
None
if
len
(
attrs
)
==
0
else
attrs
)
return
out
def
rank_loss
(
label
,
left
,
right
,
name
=
None
):
"""
**Rank loss layer for RankNet**
RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
is a pairwise ranking model with a training sample consisting of a pair
of documents, A and B. Label P indicates whether A is ranked higher than B
or not:
P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
about the rank of the input pair.
Rank loss layer takes three inputs: left (o_i), right (o_j) and
label (P_{i,j}). The inputs respectively represent RankNet's output scores
for documents A and B and the value of label P. The following equation
computes rank loss C_{i,j} from the inputs:
$$
C_{i,j} = -
\t
ilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}})
\\
o_{i,j} = o_i - o_j
\\
\t
ilde{P_{i,j}} = \left \{0, 0.5, 1
\r
ight \} \ or \ \left \{0, 1
\r
ight \}
$$
Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).
Args:
label (Variable): Indicats whether A ranked higher than B or not.
left (Variable): RankNet's output score for doc A.
right (Variable): RankNet's output score for doc B.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
list: The value of rank loss.
Raises:
ValueError: Any of label, left, and right is not a variable.
Examples:
.. code-block:: python
label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
out = fluid.layers.rank_loss(label, left, right)
"""
helper
=
LayerHelper
(
'rank_loss'
,
**
locals
())
if
not
(
isinstance
(
label
,
Variable
)):
raise
ValueError
(
"The label should be a Variable"
)
if
not
(
isinstance
(
left
,
Variable
)):
raise
ValueError
(
"The left should be a Variable"
)
if
not
(
isinstance
(
right
,
Variable
)):
raise
ValueError
(
"The right should be a Variable"
)
out
=
helper
.
create_tmp_variable
(
"float32"
)
helper
.
append_op
(
type
=
'rank_loss'
,
inputs
=
{
"Label"
:
label
,
"Left"
:
left
,
"Right"
:
right
},
outputs
=
{
'Out'
:
out
})
return
out
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
4e377f8e
...
...
@@ -443,6 +443,28 @@ class TestBook(unittest.TestCase):
self
.
assertIsNotNone
(
ids
)
print
(
str
(
program
))
def
test_rank_loss
(
self
):
program
=
Program
()
with
program_guard
(
program
):
label
=
layers
.
data
(
name
=
'label'
,
append_batch_size
=
False
,
shape
=
[
16
,
1
],
dtype
=
"float32"
)
left
=
layers
.
data
(
name
=
'left'
,
append_batch_size
=
False
,
shape
=
[
16
,
1
],
dtype
=
"float32"
)
right
=
layers
.
data
(
name
=
'right'
,
append_batch_size
=
False
,
shape
=
[
16
,
1
],
dtype
=
"float32"
)
out
=
layers
.
rank_loss
(
label
,
left
,
right
,
name
=
"rank_loss"
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录