Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
4a8559c0
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4a8559c0
编写于
2月 09, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
follow comments and code refine
上级
5f15037e
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
72 addition
and
89 deletion
+72
-89
paddle/operators/prior_box_op.cc
paddle/operators/prior_box_op.cc
+4
-4
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+68
-85
未找到文件。
paddle/operators/prior_box_op.cc
浏览文件 @
4a8559c0
...
@@ -51,11 +51,11 @@ class PriorBoxOp : public framework::OperatorWithKernel {
...
@@ -51,11 +51,11 @@ class PriorBoxOp : public framework::OperatorWithKernel {
if
(
max_sizes
.
size
()
>
0
)
{
if
(
max_sizes
.
size
()
>
0
)
{
PADDLE_ENFORCE_EQ
(
max_sizes
.
size
(),
min_sizes
.
size
(),
PADDLE_ENFORCE_EQ
(
max_sizes
.
size
(),
min_sizes
.
size
(),
"The number of min_size and max_size must be equal."
);
"The number of min_size and max_size must be equal."
);
for
(
size_t
i
=
0
;
i
<
min_sizes
.
size
();
++
i
)
{
num_priors
+=
max_sizes
.
size
();
for
(
size_t
i
=
0
;
i
<
max_sizes
.
size
();
++
i
)
{
PADDLE_ENFORCE_GT
(
max_sizes
[
i
],
min_sizes
[
i
],
PADDLE_ENFORCE_GT
(
max_sizes
[
i
],
min_sizes
[
i
],
"max_size[%d] must be greater than min_size[%d]."
,
i
,
"max_size[%d] must be greater than min_size[%d]."
,
i
,
i
);
i
);
num_priors
+=
1
;
}
}
}
}
...
@@ -125,13 +125,13 @@ class PriorBoxOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -125,13 +125,13 @@ class PriorBoxOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
true
);
.
SetDefault
(
true
);
AddAttr
<
float
>
(
"step_w"
,
AddAttr
<
float
>
(
"step_w"
,
"Prior boxes step across width, 0 for auto calculation."
)
"Prior boxes step across width, 0
.0
for auto calculation."
)
.
SetDefault
(
0.0
)
.
SetDefault
(
0.0
)
.
AddCustomChecker
([](
const
float
&
step_w
)
{
.
AddCustomChecker
([](
const
float
&
step_w
)
{
PADDLE_ENFORCE_GE
(
step_w
,
0.0
,
"step_w should be larger than 0."
);
PADDLE_ENFORCE_GE
(
step_w
,
0.0
,
"step_w should be larger than 0."
);
});
});
AddAttr
<
float
>
(
"step_h"
,
AddAttr
<
float
>
(
"step_h"
,
"Prior boxes step across height, 0 for auto calculation."
)
"Prior boxes step across height, 0
.0
for auto calculation."
)
.
SetDefault
(
0.0
)
.
SetDefault
(
0.0
)
.
AddCustomChecker
([](
const
float
&
step_h
)
{
.
AddCustomChecker
([](
const
float
&
step_h
)
{
PADDLE_ENFORCE_GE
(
step_h
,
0.0
,
"step_h should be larger than 0."
);
PADDLE_ENFORCE_GE
(
step_h
,
0.0
,
"step_h should be larger than 0."
);
...
...
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
4a8559c0
...
@@ -66,7 +66,6 @@ __all__ = [
...
@@ -66,7 +66,6 @@ __all__ = [
'nce'
,
'nce'
,
'beam_search'
,
'beam_search'
,
'row_conv'
,
'row_conv'
,
'reshape'
,
'reshape_with_axis'
,
'reshape_with_axis'
,
'multiplex'
,
'multiplex'
,
'prior_box'
,
'prior_box'
,
...
@@ -3103,12 +3102,11 @@ def reshape_with_axis(input, axis):
...
@@ -3103,12 +3102,11 @@ def reshape_with_axis(input, axis):
"""
"""
**ReshapeWithAxis Layer**
**ReshapeWithAxis Layer**
According to the axis to merge the adjacent dim of input. Currently, the axis of
ReshapeWithAxis is used to merge adjacent dimensions according to axis.
reshape_with_axis must be a scalar.
Args:
Args:
input(variable): The input tensor.
input(variable): The input tensor.
axis(list):
According to the axis to merge the adjacent dim
.
axis(list):
The axis which is used to merge the adjacent dimensions
.
Returns:
Returns:
Variable: A tensor variable.
Variable: A tensor variable.
...
@@ -3117,7 +3115,7 @@ def reshape_with_axis(input, axis):
...
@@ -3117,7 +3115,7 @@ def reshape_with_axis(input, axis):
.. code-block:: python
.. code-block:: python
x = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
x = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
reshaped = fluid.layers.reshape_with_axis(input=x, axis=
2
)
reshaped = fluid.layers.reshape_with_axis(input=x, axis=
[2]
)
reshaped.shape
reshaped.shape
>> [-1, 1024]
>> [-1, 1024]
reshaped = fluid.layers.reshape_with_axis(input=x, axis=[1,3])
reshaped = fluid.layers.reshape_with_axis(input=x, axis=[1,3])
...
@@ -3151,46 +3149,17 @@ def reshape_with_axis(input, axis):
...
@@ -3151,46 +3149,17 @@ def reshape_with_axis(input, axis):
return
out
return
out
def
reshape
(
input
,
new_shape
):
"""
**Reshape Layer**
Reshape the shape of input according to new_dim.
Args:
input(variable): The input tensor.
new_shape(list): The new shape of input.
Returns:
Variable: A tensor variable.
Examples:
.. code-block:: python
x = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
reshaped = fluid.layers.reshape(input=x, new_shape=[-1, 1024])
"""
helper
=
LayerHelper
(
'reshape'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'reshape'
,
inputs
=
{
'X'
:
[
input
]},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
{
'shape'
:
new_dim
})
return
out
def
prior_box
(
input
,
def
prior_box
(
input
,
image
,
image
,
min_sizes
,
min_sizes
,
max_sizes
,
max_sizes
,
aspect_ratios
,
aspect_ratios
,
variance
,
variance
,
flip
,
flip
=
False
,
clip
,
clip
=
False
,
step_w
,
step_w
=
0.0
,
step_h
,
step_h
=
0.0
,
offset
,
offset
=
0.5
,
name
=
None
):
name
=
None
):
"""
"""
**Prior_box**
**Prior_box**
...
@@ -3202,27 +3171,33 @@ def prior_box(input,
...
@@ -3202,27 +3171,33 @@ def prior_box(input,
sequence according to the aspect_ratios.
sequence according to the aspect_ratios.
Args:
Args:
input(variable): The input feature data of PriorBox, the layout is NCHW.
input(variable): The input feature data of PriorBox,
image(variable): The input image data of PriorBoxOp, the layout is NCHW.
the layout is NCHW.
image(variable): The input image data of PriorBox, the
layout is NCHW.
min_sizes(list): the min sizes of generated prior boxes.
min_sizes(list): the min sizes of generated prior boxes.
max_sizes(list): the max sizes of generated prior boxes.
max_sizes(list): the max sizes of generated prior boxes.
aspect_ratios(list): the aspect ratios of generated prior boxes.
aspect_ratios(list): the aspect ratios of generated prior boxes.
variance(list): the variances to be encoded in prior boxes.
variance(list): the variances to be encoded in prior boxes.
flip(bool): Whether to flip aspect ratios.
flip(bool, optional, default=False): Whether to flip aspect ratios.
clip(bool): Whether to clip out-of-boundary boxes.
clip(bool, optional, default=False)): Whether to clip
step_w(list): Prior boxes step across width, 0 for auto calculation.
out-of-boundary boxes.
step_h(list): Prior boxes step across height, 0 for auto calculation.
step_w(int, optional, default=0.0): Prior boxes step across
offset(float): Prior boxes center offset.
width, 0.0 for auto calculation.
name(str): Name of the prior box layer.
step_h(int, optional, default=0.0): Prior boxes step across
height, 0.0 for auto calculation.
offset(float, optional, default=0.5): Prior boxes center offset.
name(str, optional, default=None): Name of the prior box layer.
Returns:
Returns:
boxes(variable): the output prior boxes of PriorBoxOp. The layout is
boxes(variable): the output prior boxes of PriorBoxOp. The layout is
[H, W, num_priors, 4]. H is the height of input, W is the width
[H, W, num_priors, 4]. H is the height of input, W is the width
of input, num_priors is the box count of each position.
of input, num_priors is the box count of each position. Where num_priors =
len(aspect_ratios) * len(min_sizes) + len(max_sizes)
Variances(variable): the expanded variances of PriorBoxOp. The layout
Variances(variable): the expanded variances of PriorBoxOp. The layout
is [H, W, num_priors, 4]. H is the height of input, W is the width
is [H, W, num_priors, 4]. H is the height of input, W is the width
of input, num_priors is the box count of each position.
of input, num_priors is the box count of each position.
Where num_priors =
len(aspect_ratios) * len(min_sizes) + len(max_sizes)
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -3259,70 +3234,78 @@ def prior_box(input,
...
@@ -3259,70 +3234,78 @@ def prior_box(input,
return
box
,
var
return
box
,
var
def
prior_boxes
(
input
_layer
s
,
def
prior_boxes
(
inputs
,
image
,
image
,
min_ratio
,
min_ratio
,
max_ratio
,
max_ratio
,
aspect_ratios
,
aspect_ratios
,
min_dim
,
base_size
,
steps
=
None
,
steps
=
None
,
step_w
=
None
,
step_w
=
None
,
step_h
=
None
,
step_h
=
None
,
offset
=
0.5
,
offset
=
0.5
,
variance
=
[
0.1
,
0.1
,
0.1
,
0.1
],
variance
=
[
0.1
,
0.1
,
0.1
,
0.1
],
flip
=
Tru
e
,
flip
=
Fals
e
,
clip
=
Tru
e
,
clip
=
Fals
e
,
name
=
None
):
name
=
None
):
"""
"""
**Prior_boxes**
**Prior_boxes**
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
Each position of the input produce N prior boxes, N is determined by
Each position of the inputs produces many prior boxes respectly, the number
the count of min_sizes, max_sizes and aspect_ratios, The size of the
of prior boxes which is produced by inputs respectly is determined by
box is in range(min_size, max_size) interval, which is generated in
the count of min_ratio, max_ratio and aspect_ratios, The size of the
box is in range(min_ratio, max_ratio) interval, which is generated in
sequence according to the aspect_ratios.
sequence according to the aspect_ratios.
Args:
Args:
input(list): The list of input variables, the format of all variables is NCHW.
input
s
(list): The list of input variables, the format of all variables is NCHW.
image(variable): The input image data of PriorBoxOp, the layout is NCHW.
image(variable): The input image data of PriorBoxOp, the layout is NCHW.
min_ratio(
list): the min sizes
of generated prior boxes.
min_ratio(
int): the min ratio
of generated prior boxes.
max_ratio(
list): the max sizes
of generated prior boxes.
max_ratio(
int): the max ratio
of generated prior boxes.
aspect_ratios(list): the aspect ratios of generated prior boxes.
aspect_ratios(list): the aspect ratios of generated prior boxes.
min_dim(int):
The length of input and aspect_ratios must be equal.
step_w(list): Prior boxes step across width, 0 for auto calculation.
base_size(int): the base_size is used to get min_size and max_size
step_h(list): Prior boxes step across height, 0 for auto calculation.
according to min_ratio and max_ratio.
offset(float): Prior boxes center offset.
step_w(list, optional, default=None): Prior boxes step across width.
variance(list): the variances to be encoded in prior boxes.
If step_w[i] == 0.0, the prior boxes step across width of the inputs[i]
flip(bool): Whether to flip aspect ratios.
will be automatically calculated.
clip(bool): Whether to clip out-of-boundary boxes.
step_h(list, optional, default=None): Prior boxes step across height,
name(str): Name of the prior box layer.
If step_h[i] == 0.0, the prior boxes step across height of the inputs[i]
will be automatically calculated.
offset(float, optional, default=0.5): Prior boxes center offset.
variance(list, optional, default=[0.1, 0.1, 0.1, 0.1]): the variances
to be encoded in prior boxes.
flip(bool, optional, default=False): Whether to flip aspect ratios.
clip(bool, optional, default=False): Whether to clip out-of-boundary boxes.
name(str, optional, None): Name of the prior box layer.
Returns:
Returns:
boxes(variable): the output prior boxes of PriorBoxOp. The layout is
boxes(variable): the output prior boxes of PriorBoxOp. The layout is
[num_priors, 4]. num_priors is the total box count of each
[num_priors, 4]. num_priors is the total box count of each
position of input
_layer
s.
position of inputs.
Variances(variable): the expanded variances of PriorBoxOp. The layout
Variances(variable): the expanded variances of PriorBoxOp. The layout
is [num_priors, 4]. num_priors is the total box count of each
is [num_priors, 4]. num_priors is the total box count of each
position of input
_layer
s
position of inputs
Examples:
Examples:
.. code-block:: python
.. code-block:: python
prior_boxes(
prior_boxes(
input
_layer
s = [conv1, conv2, conv3, conv4, conv5, conv6],
inputs = [conv1, conv2, conv3, conv4, conv5, conv6],
image = data,
image = data,
min_ratio =
0.2,
min_ratio =
20, # 0.20
max_ratio =
0.9,
max_ratio =
90, # 0.90
steps = [8., 16., 32., 64., 100., 300.],
steps = [8., 16., 32., 64., 100., 300.],
aspect_ratios = [[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
aspect_ratios = [[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
min_dim
= 300,
base_size
= 300,
offset = 0.5,
offset = 0.5,
variance = [0.1,0.1,0.1,0.1],
variance = [0.1,0.1,0.1,0.1],
flip=True,
flip=True,
clip=True)
clip=True)
"""
"""
assert
isinstance
(
input
_layers
,
list
),
'input_layer
should be a list.'
assert
isinstance
(
input
s
,
list
),
'inputs
should be a list.'
num_layer
=
len
(
input
_layer
s
)
num_layer
=
len
(
inputs
)
assert
num_layer
>
2
# TODO(zcd): currently, num_layer must be bigger than two.
assert
num_layer
>
2
# TODO(zcd): currently, num_layer must be bigger than two.
min_sizes
=
[]
min_sizes
=
[]
...
@@ -3330,30 +3313,30 @@ def prior_boxes(input_layers,
...
@@ -3330,30 +3313,30 @@ def prior_boxes(input_layers,
if
num_layer
>
2
:
if
num_layer
>
2
:
step
=
int
(
math
.
floor
(((
max_ratio
-
min_ratio
))
/
(
num_layer
-
2
)))
step
=
int
(
math
.
floor
(((
max_ratio
-
min_ratio
))
/
(
num_layer
-
2
)))
for
ratio
in
xrange
(
min_ratio
,
max_ratio
+
1
,
step
):
for
ratio
in
xrange
(
min_ratio
,
max_ratio
+
1
,
step
):
min_sizes
.
append
(
min_dim
*
ratio
/
100.
)
min_sizes
.
append
(
base_size
*
ratio
/
100.
)
max_sizes
.
append
(
min_dim
*
(
ratio
+
step
)
/
100.
)
max_sizes
.
append
(
base_size
*
(
ratio
+
step
)
/
100.
)
min_sizes
=
[
min_dim
*
.
10
]
+
min_sizes
min_sizes
=
[
base_size
*
.
10
]
+
min_sizes
max_sizes
=
[
min_dim
*
.
20
]
+
max_sizes
max_sizes
=
[
base_size
*
.
20
]
+
max_sizes
if
step_h
:
if
step_h
:
assert
isinstance
(
step_h
,
list
)
and
len
(
step_h
)
==
num_layer
,
\
assert
isinstance
(
step_h
,
list
)
and
len
(
step_h
)
==
num_layer
,
\
'step_h should be list and input
_layer
s and step_h should have same length'
'step_h should be list and inputs and step_h should have same length'
if
step_w
:
if
step_w
:
assert
isinstance
(
step_w
,
list
)
and
len
(
step_w
)
==
num_layer
,
\
assert
isinstance
(
step_w
,
list
)
and
len
(
step_w
)
==
num_layer
,
\
'step_w should be list and input
_layer
s and step_w should have same length'
'step_w should be list and inputs and step_w should have same length'
if
steps
:
if
steps
:
assert
isinstance
(
steps
,
list
)
and
len
(
steps
)
==
num_layer
,
\
assert
isinstance
(
steps
,
list
)
and
len
(
steps
)
==
num_layer
,
\
'steps should be list and input
_layer
s and step_w should have same length'
'steps should be list and inputs and step_w should have same length'
step_w
=
steps
step_w
=
steps
step_h
=
steps
step_h
=
steps
if
aspect_ratios
:
if
aspect_ratios
:
assert
isinstance
(
aspect_ratios
,
list
)
and
len
(
aspect_ratios
)
==
num_layer
,
\
assert
isinstance
(
aspect_ratios
,
list
)
and
len
(
aspect_ratios
)
==
num_layer
,
\
'aspect_ratios should be list and input
_layer
s and aspect_ratios should '
\
'aspect_ratios should be list and inputs and aspect_ratios should '
\
'have same length'
'have same length'
box_results
=
[]
box_results
=
[]
var_results
=
[]
var_results
=
[]
for
i
,
input
in
enumerate
(
input
_layer
s
):
for
i
,
input
in
enumerate
(
inputs
):
min_size
=
min_sizes
[
i
]
min_size
=
min_sizes
[
i
]
max_size
=
max_sizes
[
i
]
max_size
=
max_sizes
[
i
]
aspect_ratio
=
[]
aspect_ratio
=
[]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录