Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
49d05197
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
49d05197
编写于
9月 22, 2020
作者:
Z
zhhsplendid
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Split PR, test=develop
上级
f4f5f3f2
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
0 addition
and
1034 deletion
+0
-1034
python/paddle/fluid/tests/unittests/dygraph_to_static/simnet_dygraph_model_v2.py
...ts/unittests/dygraph_to_static/simnet_dygraph_model_v2.py
+0
-504
python/paddle/fluid/tests/unittests/dygraph_to_static/test_resnet_v2.py
...fluid/tests/unittests/dygraph_to_static/test_resnet_v2.py
+0
-362
python/paddle/fluid/tests/unittests/dygraph_to_static/test_simnet_v2.py
...fluid/tests/unittests/dygraph_to_static/test_simnet_v2.py
+0
-168
未找到文件。
python/paddle/fluid/tests/unittests/dygraph_to_static/simnet_dygraph_model_v2.py
已删除
100644 → 0
浏览文件 @
f4f5f3f2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
functools
import
reduce
import
paddle
class
EmbeddingLayer
(
object
):
"""
Embedding Layer class
"""
def
__init__
(
self
,
dict_size
,
emb_dim
,
name
=
"emb"
,
padding_idx
=
None
):
"""
initialize
"""
self
.
dict_size
=
dict_size
self
.
emb_dim
=
emb_dim
self
.
name
=
name
self
.
padding_idx
=
padding_idx
def
ops
(
self
):
"""
operation
"""
# TODO(huihuangzheng): The original code set the is_sparse=True, but it
# causes crush in dy2stat. Set it to True after fixing it.
emb
=
paddle
.
fluid
.
dygraph
.
Embedding
(
size
=
[
self
.
dict_size
,
self
.
emb_dim
],
is_sparse
=
True
,
padding_idx
=
self
.
padding_idx
,
param_attr
=
paddle
.
ParamAttr
(
name
=
self
.
name
,
initializer
=
paddle
.
nn
.
initializer
.
Xavier
()))
return
emb
class
FCLayer
(
object
):
"""
Fully Connect Layer class
"""
def
__init__
(
self
,
fc_dim
,
act
,
name
=
"fc"
):
"""
initialize
"""
self
.
fc_dim
=
fc_dim
self
.
act
=
act
self
.
name
=
name
def
ops
(
self
):
"""
operation
"""
fc
=
FC
(
size
=
self
.
fc_dim
,
param_attr
=
paddle
.
ParamAttr
(
name
=
"%s.w"
%
self
.
name
),
bias_attr
=
paddle
.
ParamAttr
(
name
=
"%s.b"
%
self
.
name
),
act
=
self
.
act
)
return
fc
class
ConcatLayer
(
object
):
"""
Connection Layer class
"""
def
__init__
(
self
,
axis
):
"""
initialize
"""
self
.
axis
=
axis
def
ops
(
self
,
inputs
):
"""
operation
"""
concat
=
paddle
.
concat
(
x
=
inputs
,
axis
=
self
.
axis
)
return
concat
class
ReduceMeanLayer
(
object
):
"""
Reduce Mean Layer class
"""
def
__init__
(
self
):
"""
initialize
"""
pass
def
ops
(
self
,
input
):
"""
operation
"""
mean
=
paddle
.
reduce_mean
(
input
)
return
mean
class
CosSimLayer
(
object
):
"""
Cos Similarly Calculate Layer
"""
def
__init__
(
self
):
"""
initialize
"""
pass
def
ops
(
self
,
x
,
y
):
"""
operation
"""
sim
=
paddle
.
metric
.
cos_sim
(
x
,
y
)
return
sim
class
ElementwiseMaxLayer
(
object
):
"""
Elementwise Max Layer class
"""
def
__init__
(
self
):
"""
initialize
"""
pass
def
ops
(
self
,
x
,
y
):
"""
operation
"""
max
=
paddle
.
maximum
(
x
=
x
,
y
=
y
)
return
max
class
ElementwiseAddLayer
(
object
):
"""
Elementwise Add Layer class
"""
def
__init__
(
self
):
"""
initialize
"""
pass
def
ops
(
self
,
x
,
y
):
"""
operation
"""
add
=
paddle
.
add
(
x
=
x
,
y
=
y
)
return
add
class
ElementwiseSubLayer
(
object
):
"""
Elementwise Add Layer class
"""
def
__init__
(
self
):
"""
initialize
"""
pass
def
ops
(
self
,
x
,
y
):
"""
operation
"""
sub
=
paddle
.
fluid
.
layers
.
elementwise_sub
(
x
,
y
)
return
sub
class
ConstantLayer
(
object
):
"""
Generate A Constant Layer class
"""
def
__init__
(
self
):
"""
initialize
"""
pass
def
ops
(
self
,
input
,
shape
,
dtype
,
value
):
"""
operation
"""
shape
=
list
(
shape
)
input_shape
=
paddle
.
shape
(
input
)
shape
[
0
]
=
input_shape
[
0
]
constant
=
paddle
.
fill_constant
(
shape
,
dtype
,
value
)
return
constant
class
SoftsignLayer
(
object
):
"""
Softsign Layer class
"""
def
__init__
(
self
):
"""
initialize
"""
pass
def
ops
(
self
,
input
):
"""
operation
"""
softsign
=
paddle
.
nn
.
functional
.
softsign
(
input
)
return
softsign
class
FC
(
paddle
.
nn
.
Layer
):
"""
This interface is used to construct a callable object of the ``FC`` class.
For more details, refer to code examples.
It creates a fully connected layer in the network. It can take
one or multiple ``Tensor`` as its inputs. It creates a Variable called weights for each input tensor,
which represents a fully connected weight matrix from each input unit to
each output unit. The fully connected layer multiplies each input tensor
with its corresponding weight to produce an output Tensor with shape [N, `size`],
where N is batch size. If multiple input tensors are given, the results of
multiple output tensors with shape [N, `size`] will be summed up. If ``bias_attr``
is not None, a bias variable will be created and added to the output.
Finally, if ``act`` is not None, it will be applied to the output as well.
When the input is single ``Tensor`` :
.. math::
Out = Act({XW + b})
When the input are multiple ``Tensor`` :
.. math::
Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
In the above equation:
* :math:`N`: Number of the input. N equals to len(input) if input is list of ``Tensor`` .
* :math:`X_i`: The i-th input ``Tensor`` .
* :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
* :math:`b`: The bias parameter created by this layer (if needed).
* :math:`Act`: The activation function.
* :math:`Out`: The output ``Tensor`` .
See below for an example.
.. code-block:: text
Given:
data_1.data = [[[0.1, 0.2]]]
data_1.shape = (1, 1, 2) # 1 is batch_size
data_2.data = [[[0.1, 0.2, 0.3]]]
data_2.shape = (1, 1, 3) # 1 is batch_size
fc = FC("fc", 2, num_flatten_dims=2)
out = fc(input=[data_1, data_2])
Then:
out.data = [[[0.182996 -0.474117]]]
out.shape = (1, 1, 2)
Parameters:
size(int): The number of output units in this layer.
num_flatten_dims (int, optional): The fc layer can accept an input tensor with more than
two dimensions. If this happens, the multi-dimension tensor will first be flattened
into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
dimensions will be flatten to form the first dimension of the final matrix (height of
the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
form the second dimension of the final matrix (width of the matrix). For example, suppose
`X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1
param_attr (ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
weights(Parameter) of this layer. Default: None.
bias_attr (ParamAttr or list of ParamAttr, optional): The attribute for the bias
of this layer. If it is set to False, no bias will be added to the output units.
If it is set to None, the bias is initialized zero. Default: None.
act (str, optional): Activation to be applied to the output of this layer. Default: None.
is_test(bool, optional): A flag indicating whether execution is in test phase. Default: False.
dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".
Attribute:
**weight** (list of Parameter): the learnable weights of this layer.
**bias** (Parameter or None): the learnable bias of this layer.
Returns:
None
Examples:
.. code-block:: python
from paddle.fluid.dygraph.base import to_variable
import paddle.fluid as fluid
from paddle.fluid.dygraph import FC
import numpy as np
data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
with fluid.dygraph.guard():
fc = FC("fc", 64, num_flatten_dims=2)
data = to_variable(data)
conv = fc(data)
"""
def
__init__
(
self
,
size
,
num_flatten_dims
=
1
,
param_attr
=
None
,
bias_attr
=
None
,
act
=
None
,
is_test
=
False
,
dtype
=
"float32"
):
super
(
FC
,
self
).
__init__
(
dtype
)
self
.
_size
=
size
self
.
_num_flatten_dims
=
num_flatten_dims
self
.
_dtype
=
dtype
self
.
_param_attr
=
param_attr
self
.
_bias_attr
=
bias_attr
self
.
_act
=
act
self
.
__w
=
list
()
def
_build_once
(
self
,
input
):
i
=
0
for
inp
,
param
in
self
.
_helper
.
iter_inputs_and_params
(
input
,
self
.
_param_attr
):
input_shape
=
inp
.
shape
param_shape
=
[
reduce
(
lambda
a
,
b
:
a
*
b
,
input_shape
[
self
.
_num_flatten_dims
:],
1
)
]
+
[
self
.
_size
]
self
.
__w
.
append
(
self
.
add_parameter
(
'_w%d'
%
i
,
self
.
create_parameter
(
attr
=
param
,
shape
=
param_shape
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)))
i
+=
1
size
=
list
([
self
.
_size
])
self
.
_b
=
self
.
create_parameter
(
attr
=
self
.
_bias_attr
,
shape
=
size
,
dtype
=
self
.
_dtype
,
is_bias
=
True
)
# TODO(songyouwei): We should remove _w property
@
property
def
_w
(
self
,
i
=
0
):
return
self
.
__w
[
i
]
@
_w
.
setter
def
_w
(
self
,
value
,
i
=
0
):
assert
isinstance
(
self
.
__w
[
i
],
Variable
)
self
.
__w
[
i
].
set_value
(
value
)
@
property
def
weight
(
self
):
if
len
(
self
.
__w
)
>
1
:
return
self
.
__w
else
:
return
self
.
__w
[
0
]
@
weight
.
setter
def
weight
(
self
,
value
):
if
len
(
self
.
__w
)
==
1
:
self
.
__w
[
0
]
=
value
@
property
def
bias
(
self
):
return
self
.
_b
@
bias
.
setter
def
bias
(
self
,
value
):
self
.
_b
=
value
def
forward
(
self
,
input
):
mul_results
=
list
()
i
=
0
for
inp
,
param
in
self
.
_helper
.
iter_inputs_and_params
(
input
,
self
.
_param_attr
):
tmp
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
"mul"
,
inputs
=
{
"X"
:
inp
,
"Y"
:
self
.
__w
[
i
]},
outputs
=
{
"Out"
:
tmp
},
attrs
=
{
"x_num_col_dims"
:
self
.
_num_flatten_dims
,
"y_num_col_dims"
:
1
})
i
+=
1
mul_results
.
append
(
tmp
)
if
len
(
mul_results
)
==
1
:
pre_bias
=
mul_results
[
0
]
else
:
pre_bias
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
"sum"
,
inputs
=
{
"X"
:
mul_results
},
outputs
=
{
"Out"
:
pre_bias
},
attrs
=
{
"use_mkldnn"
:
False
})
if
self
.
_b
is
not
None
:
pre_activation
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
'elementwise_add'
,
inputs
=
{
'X'
:
[
pre_bias
],
'Y'
:
[
self
.
_b
]},
outputs
=
{
'Out'
:
[
pre_activation
]},
attrs
=
{
'axis'
:
self
.
_num_flatten_dims
})
else
:
pre_activation
=
pre_bias
# Currently, we don't support inplace in dygraph mode
return
self
.
_helper
.
append_activation
(
pre_activation
,
act
=
self
.
_act
)
class
HingeLoss
(
object
):
"""
Hing Loss Calculate class
"""
def
__init__
(
self
,
conf_dict
):
"""
initialize
"""
self
.
margin
=
conf_dict
[
"loss"
][
"margin"
]
def
compute
(
self
,
pos
,
neg
):
"""
compute loss
"""
elementwise_max
=
ElementwiseMaxLayer
()
elementwise_add
=
ElementwiseAddLayer
()
elementwise_sub
=
ElementwiseSubLayer
()
constant
=
ConstantLayer
()
reduce_mean
=
ReduceMeanLayer
()
loss
=
reduce_mean
.
ops
(
elementwise_max
.
ops
(
constant
.
ops
(
neg
,
neg
.
shape
,
"float32"
,
0.0
),
elementwise_add
.
ops
(
elementwise_sub
.
ops
(
neg
,
pos
),
constant
.
ops
(
neg
,
neg
.
shape
,
"float32"
,
self
.
margin
))))
return
loss
class
BOW
(
paddle
.
nn
.
Layer
):
"""
BOW
"""
def
__init__
(
self
,
conf_dict
):
"""
initialize
"""
super
(
BOW
,
self
).
__init__
()
self
.
dict_size
=
conf_dict
[
"dict_size"
]
self
.
task_mode
=
conf_dict
[
"task_mode"
]
self
.
emb_dim
=
conf_dict
[
"net"
][
"emb_dim"
]
self
.
bow_dim
=
conf_dict
[
"net"
][
"bow_dim"
]
self
.
seq_len
=
conf_dict
[
"seq_len"
]
self
.
emb_layer
=
EmbeddingLayer
(
self
.
dict_size
,
self
.
emb_dim
,
"emb"
).
ops
()
self
.
bow_layer
=
paddle
.
nn
.
Linear
(
in_features
=
self
.
bow_dim
,
out_features
=
self
.
bow_dim
)
self
.
bow_layer_po
=
FCLayer
(
self
.
bow_dim
,
None
,
"fc"
).
ops
()
self
.
softmax_layer
=
FCLayer
(
2
,
"softmax"
,
"cos_sim"
).
ops
()
@
paddle
.
fluid
.
dygraph
.
declarative
def
forward
(
self
,
left
,
right
):
"""
Forward network
"""
# embedding layer
left_emb
=
self
.
emb_layer
(
left
)
right_emb
=
self
.
emb_layer
(
right
)
left_emb
=
paddle
.
fluid
.
layers
.
reshape
(
left_emb
,
shape
=
[
-
1
,
self
.
seq_len
,
self
.
bow_dim
])
right_emb
=
paddle
.
fluid
.
layers
.
reshape
(
right_emb
,
shape
=
[
-
1
,
self
.
seq_len
,
self
.
bow_dim
])
bow_left
=
paddle
.
reduce_sum
(
left_emb
,
dim
=
1
)
bow_right
=
paddle
.
reduce_sum
(
right_emb
,
dim
=
1
)
softsign_layer
=
SoftsignLayer
()
left_soft
=
softsign_layer
.
ops
(
bow_left
)
right_soft
=
softsign_layer
.
ops
(
bow_right
)
# matching layer
if
self
.
task_mode
==
"pairwise"
:
left_bow
=
self
.
bow_layer
(
left_soft
)
right_bow
=
self
.
bow_layer
(
right_soft
)
cos_sim_layer
=
CosSimLayer
()
pred
=
cos_sim_layer
.
ops
(
left_bow
,
right_bow
)
return
left_bow
,
pred
else
:
concat_layer
=
ConcatLayer
(
1
)
concat
=
concat_layer
.
ops
([
left_soft
,
right_soft
])
concat_fc
=
self
.
bow_layer_po
(
concat
)
pred
=
self
.
softmax_layer
(
concat_fc
)
return
left_soft
,
pred
python/paddle/fluid/tests/unittests/dygraph_to_static/test_resnet_v2.py
已删除
100644 → 0
浏览文件 @
f4f5f3f2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
math
import
time
import
unittest
import
numpy
as
np
import
paddle
from
predictor_utils
import
PredictorTools
SEED
=
2020
IMAGENET1000
=
1281167
base_lr
=
0.001
momentum_rate
=
0.9
l2_decay
=
1e-4
# NOTE: Reduce batch_size from 8 to 2 to avoid unittest timeout.
batch_size
=
2
epoch_num
=
1
place
=
paddle
.
CUDAPlace
(
0
)
if
paddle
.
fluid
.
is_compiled_with_cuda
()
\
else
paddle
.
CPUPlace
()
MODEL_SAVE_PATH
=
"./resnet_v2.inference.model"
DY_STATE_DICT_SAVE_PATH
=
"./resnet_v2.dygraph"
program_translator
=
paddle
.
jit
.
ProgramTranslator
()
if
paddle
.
fluid
.
is_compiled_with_cuda
():
paddle
.
fluid
.
set_flags
({
'FLAGS_cudnn_deterministic'
:
True
})
def
optimizer_setting
(
parameter_list
=
None
):
optimizer
=
paddle
.
optimizer
.
Momentum
(
learning_rate
=
base_lr
,
momentum
=
momentum_rate
,
weight_decay
=
paddle
.
fluid
.
regularizer
.
L2Decay
(
l2_decay
),
parameters
=
parameter_list
)
return
optimizer
class
ConvBNLayer
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
paddle
.
nn
.
Conv2d
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
bias_attr
=
False
)
self
.
_batch_norm
=
paddle
.
nn
.
BatchNorm
(
num_filters
,
act
=
act
)
def
forward
(
self
,
inputs
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BottleneckBlock
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
stride
,
shortcut
=
True
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
stride
=
stride
)
self
.
shortcut
=
shortcut
self
.
_num_channels_out
=
num_filters
*
4
def
forward
(
self
,
inputs
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
paddle
.
add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
paddle
.
fluid
.
layer_helper
.
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
class
ResNet
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
,
layers
=
50
,
class_dim
=
102
):
super
(
ResNet
,
self
).
__init__
()
self
.
layers
=
layers
supported_layers
=
[
50
,
101
,
152
]
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
if
layers
==
50
:
depth
=
[
3
,
4
,
6
,
3
]
elif
layers
==
101
:
depth
=
[
3
,
4
,
23
,
3
]
elif
layers
==
152
:
depth
=
[
3
,
8
,
36
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
64
,
128
,
256
,
512
]
self
.
conv
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
self
.
pool2d_max
=
paddle
.
fluid
.
dygraph
.
nn
.
Pool2D
(
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
self
.
bottleneck_block_list
=
[]
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
4
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
shortcut
=
shortcut
))
self
.
bottleneck_block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
paddle
.
fluid
.
dygraph
.
nn
.
Pool2D
(
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
self
.
pool2d_avg_output
=
num_filters
[
len
(
num_filters
)
-
1
]
*
4
*
1
*
1
stdv
=
1.0
/
math
.
sqrt
(
2048
*
1.0
)
self
.
out
=
paddle
.
nn
.
Linear
(
in_features
=
self
.
pool2d_avg_output
,
out_features
=
class_dim
,
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
@
paddle
.
fluid
.
dygraph
.
declarative
def
forward
(
self
,
inputs
):
y
=
self
.
conv
(
inputs
)
y
=
self
.
pool2d_max
(
y
)
for
bottleneck_block
in
self
.
bottleneck_block_list
:
y
=
bottleneck_block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
paddle
.
fluid
.
layers
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_output
])
pred
=
self
.
out
(
y
)
pred
=
paddle
.
nn
.
functional
.
softmax
(
pred
)
return
pred
def
reader_decorator
(
reader
):
def
__reader__
():
for
item
in
reader
():
img
=
np
.
array
(
item
[
0
]).
astype
(
'float32'
).
reshape
(
3
,
224
,
224
)
label
=
np
.
array
(
item
[
1
]).
astype
(
'int64'
).
reshape
(
1
)
yield
img
,
label
return
__reader__
def
train
(
to_static
):
"""
Tests model decorated by `dygraph_to_static_output` in static mode. For users, the model is defined in dygraph mode and trained in static mode.
"""
paddle
.
disable_static
(
place
)
np
.
random
.
seed
(
SEED
)
paddle
.
manual_seed
(
SEED
)
paddle
.
framework
.
random
.
_manual_program_seed
(
SEED
)
train_reader
=
paddle
.
batch
(
reader_decorator
(
paddle
.
dataset
.
flowers
.
train
(
use_xmap
=
False
)),
batch_size
=
batch_size
,
drop_last
=
True
)
data_loader
=
paddle
.
io
.
DataLoader
.
from_generator
(
capacity
=
5
,
iterable
=
True
)
data_loader
.
set_sample_list_generator
(
train_reader
)
resnet
=
ResNet
()
optimizer
=
optimizer_setting
(
parameter_list
=
resnet
.
parameters
())
for
epoch
in
range
(
epoch_num
):
total_loss
=
0.0
total_acc1
=
0.0
total_acc5
=
0.0
total_sample
=
0
for
batch_id
,
data
in
enumerate
(
data_loader
()):
start_time
=
time
.
time
()
img
,
label
=
data
pred
=
resnet
(
img
)
loss
=
paddle
.
fluid
.
layers
.
cross_entropy
(
input
=
pred
,
label
=
label
)
avg_loss
=
paddle
.
mean
(
x
=
loss
)
acc_top1
=
paddle
.
metric
.
accuracy
(
input
=
pred
,
label
=
label
,
k
=
1
)
acc_top5
=
paddle
.
metric
.
accuracy
(
input
=
pred
,
label
=
label
,
k
=
5
)
avg_loss
.
backward
()
optimizer
.
minimize
(
avg_loss
)
resnet
.
clear_gradients
()
total_loss
+=
avg_loss
total_acc1
+=
acc_top1
total_acc5
+=
acc_top5
total_sample
+=
1
end_time
=
time
.
time
()
if
batch_id
%
2
==
0
:
print
(
"epoch %d | batch step %d, loss %0.3f, acc1 %0.3f, acc5 %0.3f, time %f"
%
\
(
epoch
,
batch_id
,
total_loss
.
numpy
()
/
total_sample
,
\
total_acc1
.
numpy
()
/
total_sample
,
total_acc5
.
numpy
()
/
total_sample
,
end_time
-
start_time
))
if
batch_id
==
10
:
if
to_static
:
paddle
.
fluid
.
dygraph
.
jit
.
save
(
resnet
,
MODEL_SAVE_PATH
)
else
:
paddle
.
fluid
.
dygraph
.
save_dygraph
(
resnet
.
state_dict
(),
DY_STATE_DICT_SAVE_PATH
)
# avoid dataloader throw abort signaal
data_loader
.
_reset
()
break
paddle
.
enable_static
()
return
total_loss
.
numpy
()
def
predict_dygraph
(
data
):
program_translator
.
enable
(
False
)
paddle
.
disable_static
(
place
)
resnet
=
ResNet
()
model_dict
,
_
=
paddle
.
fluid
.
dygraph
.
load_dygraph
(
DY_STATE_DICT_SAVE_PATH
)
resnet
.
set_dict
(
model_dict
)
resnet
.
eval
()
pred_res
=
resnet
(
paddle
.
to_tensor
(
data
=
data
,
dtype
=
None
,
place
=
None
,
stop_gradient
=
True
))
ret
=
pred_res
.
numpy
()
paddle
.
enable_static
()
return
ret
def
predict_static
(
data
):
exe
=
paddle
.
static
.
Executor
(
place
)
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
paddle
.
io
.
load_inference_model
(
MODEL_SAVE_PATH
,
executor
=
exe
,
params_filename
=
paddle
.
fluid
.
dygraph
.
io
.
VARIABLE_FILENAME
)
pred_res
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
data
},
fetch_list
=
fetch_targets
)
return
pred_res
[
0
]
def
predict_dygraph_jit
(
data
):
paddle
.
disable_static
(
place
)
resnet
=
paddle
.
fluid
.
dygraph
.
jit
.
load
(
MODEL_SAVE_PATH
)
resnet
.
eval
()
pred_res
=
resnet
(
data
)
ret
=
pred_res
.
numpy
()
paddle
.
enable_static
()
return
ret
def
predict_analysis_inference
(
data
):
output
=
PredictorTools
(
MODEL_SAVE_PATH
,
paddle
.
fluid
.
dygraph
.
io
.
VARIABLE_FILENAME
,
[
data
])
out
=
output
()
return
out
class
TestResnet
(
unittest
.
TestCase
):
def
train
(
self
,
to_static
):
program_translator
.
enable
(
to_static
)
return
train
(
to_static
)
def
verify_predict
(
self
):
image
=
np
.
random
.
random
([
1
,
3
,
224
,
224
]).
astype
(
'float32'
)
dy_pre
=
predict_dygraph
(
image
)
st_pre
=
predict_static
(
image
)
dy_jit_pre
=
predict_dygraph_jit
(
image
)
predictor_pre
=
predict_analysis_inference
(
image
)
self
.
assertTrue
(
np
.
allclose
(
dy_pre
,
st_pre
),
msg
=
"dy_pre:
\n
{}
\n
, st_pre:
\n
{}."
.
format
(
dy_pre
,
st_pre
))
self
.
assertTrue
(
np
.
allclose
(
dy_jit_pre
,
st_pre
),
msg
=
"dy_jit_pre:
\n
{}
\n
, st_pre:
\n
{}."
.
format
(
dy_jit_pre
,
st_pre
))
self
.
assertTrue
(
np
.
allclose
(
predictor_pre
,
st_pre
),
msg
=
"predictor_pre:
\n
{}
\n
, st_pre:
\n
{}."
.
format
(
predictor_pre
,
st_pre
))
def
test_resnet
(
self
):
static_loss
=
self
.
train
(
to_static
=
True
)
dygraph_loss
=
self
.
train
(
to_static
=
False
)
self
.
assertTrue
(
np
.
allclose
(
static_loss
,
dygraph_loss
),
msg
=
"static_loss: {}
\n
dygraph_loss: {}"
.
format
(
static_loss
,
dygraph_loss
))
self
.
verify_predict
()
def
test_in_static_mode_mkldnn
(
self
):
paddle
.
fluid
.
set_flags
({
'FLAGS_use_mkldnn'
:
True
})
try
:
train
(
to_static
=
True
)
finally
:
paddle
.
fluid
.
set_flags
({
'FLAGS_use_mkldnn'
:
False
})
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/dygraph_to_static/test_simnet_v2.py
已删除
100644 → 0
浏览文件 @
f4f5f3f2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
argparse
import
numpy
as
np
import
paddle
import
random
import
unittest
from
simnet_dygraph_model_v2
import
BOW
,
HingeLoss
SEED
=
102
random
.
seed
(
SEED
)
def
create_conf_dict
():
conf_dict
=
{}
conf_dict
[
"task_mode"
]
=
"pairwise"
conf_dict
[
"net"
]
=
{
"emb_dim"
:
128
,
"bow_dim"
:
128
,
"hidden_dim"
:
128
}
conf_dict
[
"loss"
]
=
{
"margin"
:
0.1
}
return
conf_dict
def
parse_args
():
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"--batch_size"
,
type
=
int
,
default
=
32
,
help
=
"Total examples' number in batch for training."
)
parser
.
add_argument
(
"--seq_len"
,
type
=
int
,
default
=
32
,
help
=
"The length of each sentence."
)
parser
.
add_argument
(
"--epoch"
,
type
=
int
,
default
=
1
,
help
=
"The number of training epoch."
)
parser
.
add_argument
(
"--fake_sample_size"
,
type
=
int
,
default
=
128
,
help
=
"The number of samples of fake data."
)
args
=
parser
.
parse_args
([])
return
args
args
=
parse_args
()
def
fake_vocabulary
():
vocab
=
{}
vocab
[
"<unk>"
]
=
0
for
i
in
range
(
26
):
c
=
chr
(
ord
(
'a'
)
+
i
)
vocab
[
c
]
=
i
+
1
return
vocab
vocab
=
fake_vocabulary
()
class
FakeReaderProcessor
(
object
):
def
__init__
(
self
,
args
,
vocab
):
self
.
vocab
=
vocab
self
.
seq_len
=
args
.
seq_len
self
.
sample_size
=
args
.
fake_sample_size
self
.
data_samples
=
[]
for
i
in
range
(
self
.
sample_size
):
query
=
[
random
.
randint
(
0
,
26
)
for
i
in
range
(
self
.
seq_len
)]
pos_title
=
query
[:]
neg_title
=
[
26
-
q
for
q
in
query
]
self
.
data_samples
.
append
(
np
.
array
([
query
,
pos_title
,
neg_title
]).
astype
(
np
.
int64
))
def
get_reader
(
self
,
mode
,
epoch
=
0
):
def
reader_with_pairwise
():
if
mode
==
"train"
:
for
i
in
range
(
self
.
sample_size
):
yield
self
.
data_samples
[
i
]
return
reader_with_pairwise
simnet_process
=
FakeReaderProcessor
(
args
,
vocab
)
def
train
(
conf_dict
,
to_static
):
"""
train process
"""
program_translator
=
paddle
.
jit
.
ProgramTranslator
()
program_translator
.
enable
(
to_static
)
# Get device
if
paddle
.
fluid
.
is_compiled_with_cuda
():
place
=
paddle
.
CUDAPlace
(
0
)
else
:
place
=
paddle
.
CPUPlace
()
paddle
.
disable_static
(
place
)
paddle
.
manual_seed
(
SEED
)
paddle
.
framework
.
random
.
_manual_program_seed
(
SEED
)
conf_dict
[
'dict_size'
]
=
len
(
vocab
)
conf_dict
[
'seq_len'
]
=
args
.
seq_len
net
=
BOW
(
conf_dict
)
loss
=
HingeLoss
(
conf_dict
)
optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.001
,
beta1
=
0.9
,
beta2
=
0.999
,
epsilon
=
1e-08
,
parameters
=
net
.
parameters
())
metric
=
paddle
.
fluid
.
metrics
.
Auc
(
name
=
"auc"
)
global_step
=
0
losses
=
[]
train_loader
=
paddle
.
io
.
DataLoader
.
from_generator
(
capacity
=
16
,
return_list
=
True
,
iterable
=
True
,
use_double_buffer
=
True
)
get_train_examples
=
simnet_process
.
get_reader
(
"train"
,
epoch
=
args
.
epoch
)
train_loader
.
set_sample_list_generator
(
paddle
.
batch
(
get_train_examples
,
batch_size
=
args
.
batch_size
),
place
)
for
left
,
pos_right
,
neg_right
in
train_loader
():
left
=
paddle
.
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
1
])
pos_right
=
paddle
.
fluid
.
layers
.
reshape
(
pos_right
,
shape
=
[
-
1
,
1
])
neg_right
=
paddle
.
fluid
.
layers
.
reshape
(
neg_right
,
shape
=
[
-
1
,
1
])
net
.
train
()
global_step
+=
1
left_feat
,
pos_score
=
net
(
left
,
pos_right
)
pred
=
pos_score
_
,
neg_score
=
net
(
left
,
neg_right
)
avg_cost
=
loss
.
compute
(
pos_score
,
neg_score
)
losses
.
append
(
np
.
mean
(
avg_cost
.
numpy
()))
avg_cost
.
backward
()
optimizer
.
minimize
(
avg_cost
)
net
.
clear_gradients
()
paddle
.
enable_static
()
return
losses
class
TestSimnet
(
unittest
.
TestCase
):
def
test_dygraph_static_same_loss
(
self
):
if
paddle
.
fluid
.
is_compiled_with_cuda
():
paddle
.
fluid
.
set_flags
({
"FLAGS_cudnn_deterministic"
:
True
})
conf_dict
=
create_conf_dict
()
dygraph_loss
=
train
(
conf_dict
,
to_static
=
False
)
static_loss
=
train
(
conf_dict
,
to_static
=
True
)
self
.
assertEqual
(
len
(
dygraph_loss
),
len
(
static_loss
))
for
i
in
range
(
len
(
dygraph_loss
)):
self
.
assertAlmostEqual
(
dygraph_loss
[
i
],
static_loss
[
i
])
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录