提交 48473ddd 编写于 作者: L Luo Tao

Merge branch 'develop' into tr_convert_init

......@@ -49,7 +49,11 @@ ENV PATH=${PATH}:${GOROOT}/bin:${GOPATH}/bin
RUN curl -s -q https://glide.sh/get | sh
# Install TensorRT
# The unnecessary files has been removed to make the library small. It only contains include and lib now.
# following TensorRT.tar.gz is not the default official one, we do two miny changes:
# 1. Remove the unnecessary files to make the library small. TensorRT.tar.gz only contains include and lib now,
# and its size is only one-third of the official one.
# 2. Manually add ~IPluginFactory() in IPluginFactory class of NvInfer.h, otherwise, it couldn't work in paddle.
# See https://github.com/PaddlePaddle/Paddle/issues/10129 for details.
RUN wget -qO- http://paddlepaddledeps.bj.bcebos.com/TensorRT-4.0.0.3.Ubuntu-16.04.4.x86_64-gnu.cuda-8.0.cudnn7.0.tar.gz | \
tar -xz -C /usr/local && \
cp -rf /usr/local/TensorRT/include /usr && \
......
......@@ -30,4 +30,6 @@ if(TENSORRT_FOUND)
message(STATUS "Current TensorRT header is ${TENSORRT_INCLUDE_DIR}/NvInfer.h. "
"Current TensorRT version is v${TENSORRT_MAJOR_VERSION}. ")
include_directories(${TENSORRT_INCLUDE_DIR})
list(APPEND EXTERNAL_LIBS ${TENSORRT_LIBRARY})
endif()
# Varient Length supported RNN Design
For the learning of variable length sequences, the existing mainstream frameworks such as tensorflow, pytorch, caffe2, mxnet and so on all use padding.
Different-length sequences in a mini-batch will be padded with zeros and transformed to same length.
The existing RNN implementations of the PaddlePaddle is `RecurrentLayerGroup`,
which supports the variable length sequences without padding.
This doc will design fluid's RNN based on this idea.
## Multi-layer sequence data format `LODTensor`
At present, Paddle stores data in one mini-batch in one-dimensional array.
`Argument.sequenceStartPositions` is used to store information for each sentence.
In Paddle, `Argument.subSequenceStartPositions` is used to store 2 levels of sequence information, while higher dimensional sequences can not be supported.
In order to support the storage of `N-level` sequences, we define sequence information as the following data structure.
```c++
std::shared_ptr<std::vector<std::vector<int>>> lod_start_pos_;
```
Or more clearly defined here
```c++
typedef std::vector<int> level_t;
std::vector<level_t> lod_start_pos;
```
Each `level_t` here stores a level of offset information consistent with paddle's current practice.
In order to transmit sequence information more transparently, we have introduced a new tensor called `LODTensor`[1].
Its tensor-related interfaces all inherit directly from `Tensor`, but it also adds serial-related interfaces.
Thus, when working with a `LODTensor`, ordinary `Op` is used directly as `Tensor`.
The `Op` of the operation sequence will additionally operate the relevant interface of the `LODTensor` variable-length sequence operation.
The definition of `LODTensor` is as follows:
```c++
class LODTensor : public Tensor {
public:
size_t Levels() const { return seq_start_positions_.size(); }
size_t Elements(int level = 0) const {
return seq_start_positions_[level].size();
}
// slice of level[elem_begin: elem_end]
// NOTE low performance in slice seq_start_positions_.
// TODO should call Tensor's Slice.
LODTensor LODSlice(int level, int elem_begin, int elem_end) const;
// slice with tensor's data shared with this.
LODTensor LODSliceShared(int level, int elem_begin, int elem_end) const;
// copy other's lod_start_pos_, to share LOD info.
// NOTE the LOD info sould not be changed.
void ShareConstLODFrom(const LODTensor &other) {
lod_start_pos_ = other.lod_start_pos_;
}
// copy other's lod_start_pos_'s content, free to mutate.
void ShareMutableLODFrom(const LODTensor &other) {
lod_start_pos_ = std::make_shared <
std::vector<std::vector<int>>(other.lod_start_pos_.begin(),
other.lod_start_pos_.end());
}
private:
std::shared_ptr<std::vector<std::vector<int>>> lod_start_pos_;
};
```
Among them, `lod_start_pos_` uses `shared_ptr` to reduce the cost of storage and replication.
`LODTensor` can be thought as an extension of `Tensor`, which is almost completely compatible with the original `Tensor`.
## How to support the framework
### Replace `Tensor` with `LoDTensor`
To implement the passing of `LODTensor`, most `Tensor` in the framework need to be replaced with `LODTensor`.
Simple implementation, directly **replace all previous `Tensor` with `LODTensor`** , where you can directly modify the `Tensor` interface created in `pybind.cc`.
In addition, the user may need to perceive the existence of a sequence (such as the sequence of the visualization needs to parse the output sequence in the model), so some of the serial operation APIs also need to be exposed to the python layer.
### Transmit `lod_start_pos` along with the Op call chain
`lod_start_pos` is passed along with the Op call chain
The framework needs to support the following features to implement the transmit of `lod_start_pos`:
1. Implement the transfer as `shared_ptr`
- Do not modify the contents of `lod_start_pos` as a consumer
- Modify producer of `lod_start_pos` as producer
- Conventions consumer only needs to copy `shared_ptr` passed over
- producer needs to create its own independent memory to store its own independent modifications and expose `shared_ptr` to subsequent consumer
- Since the transfer process is implemented by copying `shared_ptr`, the framework only needs to pass `lod_start_pos` once.
2. Op is transparent enough not to sense `lod_start_pos`
3. Producer Op that needs to modify `lod_start_pos` can update its `lod_start_pos` data when `Run`
## sorted by length
After sorting by length, the batch size from the forward time step will naturally decrement, and you can directly plug it into Net to do the batch calculation.
For example, the original input:
```
origin:
xxxx
xx
xxx
-> sorted:
xxxx
xxx
xx
```
After `SegmentInputs`, there will be 4 time steps, the input of each time step is as follows (vertical arrangement)
```
0 1 2 3
x x x x
x x x
x x
```
In order to track the changes before and after sorting, use here
```c++
struct SortedSeqItem {
void *start{nullptr};
void *end{nullptr};
};
std::vector<SortedSeqItem> sorted_seqs;
```
To track the position of the sequence after sorting, and add a new interface
```c++
std::vector<SortedSeqItem> SortBySeqLen(const LODTensor& tensor);
```
Due to the sequence of input sequences, the following existing interfaces need to be modified:
- InitMemories, memory needs to be rearranged according to `sorted_seqs`
- SetmentInputs
- ConcatOutputs
In addition, because `sorted_seqs` needs to be multiplexed with `RecurrentGradientOp`, it will become a new output of `RecurrentOp`.
It is passed in as an input to `RecurrentGradientOp`.
## InitMemories
Due to the sequence change, the order of the elements on the `boot_memories` batch also needs to be rearranged accordingly.
## SegmentInputs
`SegmentInputs` relies on the information of `sorted_seqs` to cut the original sequence from the horizontal to the input of each step in the sorted sequence order.
the transition is as follows:
```
origin:
xxxx
xx
xxx
|
|
\ /
!
0 1 2 3
x x x x
x x x
x x
```
## ConcatOutputs
`ConcatOutputs` needs
- Restore the output of each time step back to the original input sequence order (to prevent the order of Infer phase from being upset)
- Concat each sequence as a regular mini-batch representation
## references
1. [Level of details](https://en.wikipedia.org/wiki/Level_of_detail)
../../v2/getstarted/quickstart_cn.rst
\ No newline at end of file
快速开始
========
快速安装
--------
PaddlePaddle支持使用pip快速安装,目前支持CentOS 6以上, Ubuntu 14.04以及MacOS 10.12,并安装有Python2.7。
执行下面的命令完成快速安装,版本为cpu_avx_openblas:
.. code-block:: bash
pip install paddlepaddle
如果需要安装支持GPU的版本(cuda7.5_cudnn5_avx_openblas),需要执行:
.. code-block:: bash
pip install paddlepaddle-gpu
更详细的安装和编译方法参考: :ref:`install_steps` 。
快速使用
--------
创建一个 housing.py 并粘贴此Python代码:
.. code-block:: python
import paddle.dataset.uci_housing as uci_housing
import paddle.fluid as fluid
with fluid.scope_guard(fluid.core.Scope()):
# initialize executor with cpu
exe = fluid.Executor(place=fluid.CPUPlace())
# load inference model
[inference_program, feed_target_names,fetch_targets] = \
fluid.io.load_inference_model(uci_housing.fluid_model(), exe)
# run inference
result = exe.run(inference_program,
feed={feed_target_names[0]: uci_housing.predict_reader()},
fetch_list=fetch_targets)
# print predicted price is $12,273.97
print 'Predicted price: ${:,.2f}'.format(result[0][0][0] * 1000)
执行 :code:`python housing.py` 瞧! 它应该打印出预测住房数据的清单。
../../v2/getstarted/quickstart_en.rst
\ No newline at end of file
Quick Start
============
Quick Install
-------------
You can use pip to install PaddlePaddle with a single command, supports
CentOS 6 above, Ubuntu 14.04 above or MacOS 10.12, with Python 2.7 installed.
Simply run the following command to install, the version is cpu_avx_openblas:
.. code-block:: bash
pip install paddlepaddle
If you need to install GPU version (cuda7.5_cudnn5_avx_openblas), run:
.. code-block:: bash
pip install paddlepaddle-gpu
For more details about installation and build: :ref:`install_steps` .
Quick Use
---------
Create a new file called housing.py, and paste this Python
code:
.. code-block:: python
import paddle.dataset.uci_housing as uci_housing
import paddle.fluid as fluid
with fluid.scope_guard(fluid.core.Scope()):
# initialize executor with cpu
exe = fluid.Executor(place=fluid.CPUPlace())
# load inference model
[inference_program, feed_target_names,fetch_targets] = \
fluid.io.load_inference_model(uci_housing.fluid_model(), exe)
# run inference
result = exe.run(inference_program,
feed={feed_target_names[0]: uci_housing.predict_reader()},
fetch_list=fetch_targets)
# print predicted price is $12,273.97
print 'Predicted price: ${:,.2f}'.format(result[0][0][0] * 1000)
Run :code:`python housing.py` and voila! It should print out a list of predictions
for the test housing data.
......@@ -6,6 +6,7 @@ PaddlePaddle adheres to the following three sections of code and document specif
PaddlePaddle uses git for version control and Docker is used for building and testing environment. The code includes Cuda, C++, Python, Shell and other programming languages,which comply with Google C++ Style, Pep-8, and the code base includes style checking by an automatic inspection tool. Code comments need to follow the Doxygen specification. The code that does not meet the style requirements will fail to compile. We provide the following guidelines for the use of Git, build tests and code development.
.. toctree::
:maxdepth: 1
......
#############################
Local Training and Prediction
Parameter Setting
#############################
TBD
.. contents::
1. Reduce Memory Consumption
-------------------
The training procedure of neural networks demands dozens of gigabytes of host memory or serval gigabytes of device memory, which is a rather memory consuming work. The memory consumed by PaddlePaddle framework mainly includes:
\:
* Cache memory for DataProvider (only on host memory),
* Memory for neurons' activation information (on both host memory and device memory),
* Memory for parameters (on both host memory and device memory),
* Other memory demands.
Other memory demands is mainly used to support the running demand of PaddlePaddle framework itself, such as string allocation,temporary variables, which are not considered currently.
Reduce DataProvider Cache Memory
++++++++++++++++++++++++++
PyDataProvider works under asynchronous mechanism, it loads together with the data fetch and shuffle procedure in host memory:
.. graphviz::
digraph {
rankdir=LR;
Data Files -> Host Memory Pool -> PaddlePaddle Training
}
Thus the reduction of the DataProvider cache memory can reduce memory occupancy, meanwhile speed up the data loading procedure before training. However, the size of the memory pool can actually affect the granularity of shuffle,which means a shuffle operation is needed before each data file reading process to ensure the randomness of data when try to reduce the size of the memory pool.
.. literalinclude:: src/reduce_min_pool_size.py
In this way, the memory consumption can be significantly reduced and hence the training procedure can be accelerated. More details are demonstrated in :ref:`api_pydataprovider2`.
The Neurons Activation Memory
++++++++++++++
Each neuron activation operating in a neural network training process contains certain amount of temporary data such as the activation data (like the output value of a neuron). These data will be used to update parameters in back propagation period. The scale of memory consumed by these data is mainly related with two parameters, which are batch size and the length of each Sequence. Therefore, the neurons activation memory consuming is actually in proportion to the information contains in each mini-batch training.
Two practical ways:
* Reduce batch size. Set a smaller value in network configuration settings(batch_size=1000) can be helpful. But setting batch size to a smaller value may affect the training result due to it is a super parameter of the neural network itself.
* Shorten the sequence length or cut off those excessively long sequences. For example, if the length of sequences in a dataset are mostly varies between 100 and 200, but there is sequence lengthen out to 10,000, then it’s quite potentially leads to OOM (out of memory), especially in RNN models such as LSTM.
The Parameters Memory
++++++++
The PaddlePaddle framework supports almost all popular optimizers. Different optimizers have different memory requirement. For example, the :code:`adadelta` consumes approximately 5 times memory
space than the weights parameter’s scale, which means the :code:`adadelta` needs at least :code:`500M` memory if the model file contains all
parameters needs :code:`100M`.
Some optimization algorithms such as :code:`momentum` are worth giving a shot.
2. Tricks To Speed Up Training
-------------------
The training procedure of PaddlePaddle may be speed up when considering following aspects:\:
* Reduce the time consumption of data loading
* Speed up training epochs
* Introduce more computing resources with the utilization of distribute training frameworks
Reduce The Time Consumption of Data Loading
++++++++++++++++++
The \ :code:`pydataprovider`\ holds big potential to speed up the data loading procedure if the cache pool and enable memory cache when use it. The principle of the reduction of :code:`DataProvider` cache pool is basically the same with the method which reduct the memory occupation with the set of a smaller cache pool.
.. literalinclude:: src/reduce_min_pool_size.py
Beside, the interface :code:`@provider` provides a parameter :code:`cache` to control cache. If set it to :code:`CacheType.CACHE_PASS_IN_MEM`, the data after the first :code:`pass` ( a pass means all data have be fed into the network for training) will be cached in memory and no new data will be read from the :code:`python` side in following :code:`pass` , instead from the cached data in memory. This strategy can also drop the time consuming in data loading process.
Accelerating Training Epochs
++++++++++++
Sparse training is supported in PaddlePaddle. The features needs to be trained is any of :code:`sparse_binary_vector`, :code:`sparse_vector` and :code:`integer_value` . Meanwhile, the Layer interacts with the training data need to turn the Parameter to sparse updating mode by setting :code:`sparse_update=True`.
Take :code:`word2vec` as an example, to train a language distance, one needs to predict the middle word with two words prior to it and next to it. The DataProvider of this task is:
.. literalinclude:: src/word2vec_dataprovider.py
The configuration of this task is:
.. literalinclude:: src/word2vec_config.py
Introduce More Computing Resources
++++++++++++++++++
More computing resources can be introduced with following manners:
* Single CPU platform training
* Use multi-threading by set :code:`trainer_count`。
* Single GPU platform training
* Set :code:`use_gpu` to train on single GPU.
* Set :code:`use_gpu` and :code:`trainer_count` to enable multiple GPU training support.
* Cluster Training
* Refer to :ref:`cluster_train` 。
3. Assign GPU Devices
------------------
Assume a computing platform consists of 4 GPUs which serial number from 0 to 3:
* Method1: specify a GPU as computing device by set:
`CUDA_VISIBLE_DEVICES <http://www.acceleware.com/blog/cudavisibledevices-masking-gpus>`_
.. code-block:: bash
env CUDA_VISIBLE_DEVICES=2,3 paddle train --use_gpu=true --trainer_count=2
* Method2: Assign by —gpu_id:
.. code-block:: bash
paddle train --use_gpu=true --trainer_count=2 --gpu_id=2
4. How to Fix Training Termination Caused By :code:`Floating point exception` During Training.
------------------------------------------------------------------------
Paddle binary catches floating exceptions during runtime, it will be terminated when NaN or Inf occurs. Floating exceptions are mostly caused by float overflow, divide by zero. There are three main reasons may raise such exception:
* Parameters or gradients during training are oversize, which leads to float overflow during calculation.
* The model failed to converge and diverges to a big value.
* Parameters may converge to a singular value due to bad training data. If the scale of input data is too big and contains millions of parameter values, float overflow error may arise when operating matrix multiplication.
Two ways to solve this problem:
1. Set :code:`gradient_clipping_threshold` as:
.. code-block:: python
optimizer = paddle.optimizer.RMSProp(
learning_rate=1e-3,
gradient_clipping_threshold=10.0,
regularization=paddle.optimizer.L2Regularization(rate=8e-4))
Details can refer to example `nmt_without_attention <https://github.com/PaddlePaddle/models/blob/develop/nmt_without_attention/train.py#L35>`_ 示例。
2. Set :code:`error_clipping_threshold` as:
.. code-block:: python
decoder_inputs = paddle.layer.fc(
act=paddle.activation.Linear(),
size=decoder_size * 3,
bias_attr=False,
input=[context, current_word],
layer_attr=paddle.attr.ExtraLayerAttribute(
error_clipping_threshold=100.0))
Details can refer to example `machine translation <https://github.com/PaddlePaddle/book/blob/develop/08.machine_translation/train.py#L66>`_ 。
The main difference between these two methods are:
1. They both block the gradient, but happen in different occasions,the former one happens when then :code:`optimzier` updates the network parameters while the latter happens when the back propagation computing of activation functions.
2. The block target are different, the former blocks the trainable parameters’ gradient while the later blocks the gradient to be propagated to prior layers.
Moreover, Such problems may be fixed with smaller learning rates or data normalization.
5. Fetch Multi Layers’ Prediction Result With Infer Interface
-----------------------------------------------
* Join the layer to be used as :code:`output_layer` layer to the input parameters of :code:`paddle.inference.Inference()` interface with:
.. code-block:: python
inferer = paddle.inference.Inference(output_layer=[layer1, layer2], parameters=parameters)
* Assign certain fields to output. Take :code:`value` as example, it can be down with following code:
.. code-block:: python
out = inferer.infer(input=data_batch, field=["value"])
It is important to note that:
* If 2 layers are assigned as output layer, then the output results consists of 2 matrixes.
* Assume the output of first layer A is a matrix sizes N1 * M1, the output of second layer B is a matrix sizes N2 * M2;
* By default, paddle.v2 will transverse join A and B, when N1 not equal to N2, it will raise following error:
.. code-block:: python
ValueError: all the input array dimensions except for the concatenation axis must match exactly
The transverse of different matrixes of multi layers mainly happens when:
* Output sequence layer and non sequence layer;
* Multiple output layers process multiple sequence with different length;
Such issue can be avoided by calling infer interface and set :code:`flatten_result=False`. Thus, the infer interface returns a python list, in which
* The number of elements equals to the number of output layers in the network;
* Each element in list is a result matrix of a layer, which type is numpy.ndarray;
* The height of each matrix outputted by each layer equals to the number of samples under non sequential mode or equals to the number of elements in the input sequence under sequential mode. Their width are both equal to the layer size in configuration.
6. Fetch the Output of A Certain Layer During Training
-----------------------------------------------
In event_handler, the interface :code:`event.gm.getLayerOutputs("layer_name")` gives the forward output value organized in :code:`numpy.ndarray` corresponding to :code:`layer_name` in the mini-batch.
The output can be used in custom measurements in following way:
.. code-block:: python
def score_diff(right_score, left_score):
return np.average(np.abs(right_score - left_score))
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 25 == 0:
diff = score_diff(
event.gm.getLayerOutputs("right_score")["right_score"][
"value"],
event.gm.getLayerOutputs("left_score")["left_score"][
"value"])
logger.info(("Pass %d Batch %d : Cost %.6f, "
"average absolute diff scores: %.6f") %
(event.pass_id, event.batch_id, event.cost, diff))
Note: this function can not get content of :code:`paddle.layer.recurrent_group` step, but output of :code:`paddle.layer.recurrent_group` can be fetched.
7. Fetch Parameters’ Weight and Gradient During Training
-----------------------------------------------
Under certain situations, knowing the weights of currently training mini-batch can provide more inceptions of many problems. Their value can be acquired by printing values in :code:`event_handler` (note that to gain such parameters when training on GPU, you should set :code:`paddle.event.EndForwardBackward`). Detailed code is as following:
.. code-block:: python
...
parameters = paddle.parameters.create(cost)
...
def event_handler(event):
if isinstance(event, paddle.event.EndForwardBackward):
if event.batch_id % 25 == 0:
for p in parameters.keys():
logger.info("Param %s, Grad %s",
parameters.get(p), parameters.get_grad(p))
Note that “acquire the output of a certain layer during training” or “acquire the weights and gradients of parameters during training ” both needs to copy training data from C++ environment to numpy, which have certain degree of influence on training performance. Don’t use these two functions when the training procedure cares about the performance.
RNN Models
==========
Recurrent neural networks(RNN) are an important tool to model sequential data. PaddlePaddle provides flexible interface for building complex recurrent neural network. We will demonstrate how to use PaddlePaddle to build RNN models in the following 4 parts.
In the first part, we will guide you how to configure recurrent neural network in PaddlePaddle from simple to complex. First, we will use a vanilla recurrent neural network as an example to show how to configure recurrent neural network architecture. Then We will use the sequence to sequence model as an example to demonstrate how you can configure complex recurrent neural network models gradually.
.. toctree::
:maxdepth: 1
rnn_config_en.rst
Recurrent Group is the key unit to build complex recurrent neural network models. The second part describes related concepts and Basic principles of Recurrent Group, and give a detailed description of Recurrent Group API interface. In addition, it also introduces Sequence-level RNN(hierarchical sequence as input) and the usage of Recurrent Group in it.
.. toctree::
:maxdepth: 1
recurrent_group_en.md
In the third part, two-level sequence is demonstrated briefly and then layers supporting two-level sequence as input are listed and described respectively.
.. toctree::
:maxdepth: 1
hierarchical_layer_en.rst
In the last part, the unit test of hierarchical RNN is presented as an example to explain how to use hierarchical RNN. We will use two-level sequence RNN and single-layer sequence RNN which have same effects with former as the network configuration seperately in unit test.
.. toctree::
:maxdepth: 1
hrnn_rnn_api_compare_en.rst
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <typeindex>
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/platform/enforce.h"
......@@ -22,18 +23,21 @@ namespace paddle {
namespace framework {
inline proto::VarType::Type ToDataType(std::type_index type) {
using namespace paddle::framework::proto;
if (typeid(platform::float16).hash_code() == type.hash_code()) {
return proto::VarType::FP16;
} else if (typeid(float).hash_code() == type.hash_code()) {
} else if (typeid(const float).hash_code() == type.hash_code()) {
// CPPLint complains Using C-style cast. Use static_cast<float>() instead
// One fix to this is to replace float with const float because
// typeid(T) == typeid(const T)
// http://en.cppreference.com/w/cpp/language/typeid
return proto::VarType::FP32;
} else if (typeid(double).hash_code() == type.hash_code()) {
} else if (typeid(const double).hash_code() == type.hash_code()) {
return proto::VarType::FP64;
} else if (typeid(int).hash_code() == type.hash_code()) {
} else if (typeid(const int).hash_code() == type.hash_code()) {
return proto::VarType::INT32;
} else if (typeid(int64_t).hash_code() == type.hash_code()) {
} else if (typeid(const int64_t).hash_code() == type.hash_code()) {
return proto::VarType::INT64;
} else if (typeid(bool).hash_code() == type.hash_code()) {
} else if (typeid(const bool).hash_code() == type.hash_code()) {
return proto::VarType::BOOL;
} else {
PADDLE_THROW("Not supported");
......@@ -41,7 +45,6 @@ inline proto::VarType::Type ToDataType(std::type_index type) {
}
inline std::type_index ToTypeIndex(proto::VarType::Type type) {
using namespace paddle::framework::proto;
switch (type) {
case proto::VarType::FP16:
return typeid(platform::float16);
......@@ -62,7 +65,6 @@ inline std::type_index ToTypeIndex(proto::VarType::Type type) {
template <typename Visitor>
inline void VisitDataType(proto::VarType::Type type, Visitor visitor) {
using namespace paddle::framework::proto;
switch (type) {
case proto::VarType::FP16:
visitor.template operator()<platform::float16>();
......@@ -88,7 +90,6 @@ inline void VisitDataType(proto::VarType::Type type, Visitor visitor) {
}
inline std::string DataTypeToString(const proto::VarType::Type type) {
using namespace paddle::framework::proto;
switch (type) {
case proto::VarType::FP16:
return "float16";
......
......@@ -66,7 +66,7 @@ void FetchOpHandle::RunImpl() {
auto &t = var->Get<framework::LoDTensor>();
if (platform::is_gpu_place(t.place())) {
#ifdef PADDLE_WITH_CUDA
TensorCopy(t, cpu, *dev_ctxes_[t.place()], &tensors_[i]);
TensorCopy(t, cpu, *dev_ctxes_[t.place()], &tensors_[i], true);
dev_ctxes_.at(t.place())->Wait();
#endif
} else {
......
......@@ -78,6 +78,33 @@ void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
}
}
bool MultiDevSSAGraphBuilder::IsDistTrainOp(const OpDesc &op,
OpDesc *send_op) const {
if (send_op == nullptr) {
return false;
}
auto checker = [&](const std::vector<std::string> opvars,
const std::vector<std::string> sendvars) -> bool {
bool is_dist_train_op = false;
for (auto &var : opvars) {
if (var.find(".block") != std::string::npos &&
std::find(sendvars.begin(), sendvars.end(), var) != sendvars.end()) {
is_dist_train_op = true;
break;
}
}
return is_dist_train_op;
};
if (op.Type() == "split") {
return checker(op.OutputArgumentNames(), send_op->InputArgumentNames());
} else if (op.Type() == "concat") {
return checker(op.InputArgumentNames(), send_op->OutputArgumentNames());
}
return false;
}
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
const ProgramDesc &program) const {
auto graph = new SSAGraph();
......@@ -89,19 +116,30 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>(
places_.size());
// Find "send" op first for split is in front of send.
OpDesc *send_op = nullptr;
for (auto *op : program.Block(0).AllOps()) {
if (op->Type() == "send") {
send_op = op;
break;
}
}
bool is_forwarding = true;
for (auto *op : program.Block(0).AllOps()) {
if (op->Type() == "send") {
// append send op if program is distributed trainer main program.
// always use the first device
CreateSendOp(&result, *op);
} else if (IsDistTrainOp(*op, send_op)) {
CreateComputationalOps(&result, *op, 1);
} else if (IsScaleLossOp(*op)) {
if (!skip_scale_loss_) {
CreateScaleLossGradOp(&result);
}
is_forwarding = false;
} else {
CreateComputationalOps(&result, *op);
CreateComputationalOps(&result, *op, places_.size());
if (!is_forwarding) {
// Currently, we assume that once gradient is generated, it can be
// broadcast, and each gradient is only broadcast once. But there are no
......@@ -199,8 +237,9 @@ void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(SSAGraph *result) const {
}
void MultiDevSSAGraphBuilder::CreateComputationalOps(SSAGraph *result,
const OpDesc &op) const {
for (size_t scope_idx = 0; scope_idx < places_.size(); ++scope_idx) {
const OpDesc &op,
size_t num_places) const {
for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
auto p = places_[scope_idx];
auto s = local_scopes_[scope_idx];
result->ops_.emplace_back(new ComputationOpHandle(op, s, p));
......
......@@ -65,7 +65,10 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
void CreateSendOp(SSAGraph *result, const OpDesc &op) const;
void CreateComputationalOps(SSAGraph *result, const OpDesc &op) const;
bool IsDistTrainOp(const OpDesc &op, OpDesc *send_op) const;
void CreateComputationalOps(SSAGraph *result, const OpDesc &op,
size_t num_places) const;
void CreateScaleLossGradOp(SSAGraph *result) const;
......
......@@ -140,7 +140,9 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
if (timeout) {
if (exception_) {
throw * exception_;
auto exp = *exception_;
exception_.reset();
throw exp;
} else {
continue;
}
......
......@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
......@@ -22,7 +21,8 @@ namespace framework {
using FeedFetchType = LoDTensor;
using FeedFetchList = std::vector<FeedFetchType>;
static const std::string kFeedOpType = "feed";
static const std::string kFetchOpType = "fetch";
static const char kFeedOpType[] = "feed";
static const char kFetchOpType[] = "fetch";
} // namespace framework
} // namespace paddle
......@@ -15,6 +15,7 @@ limitations under the License. */
#include <algorithm>
#include <stdexcept>
#include <string>
#include <vector>
#include "paddle/fluid/framework/init.h"
#include "paddle/fluid/framework/operator.h"
......@@ -28,7 +29,7 @@ namespace framework {
std::once_flag gflags_init_flag;
std::once_flag p2p_init_flag;
void InitGflags(std::vector<std::string> &argv) {
void InitGflags(std::vector<std::string> argv) {
std::call_once(gflags_init_flag, [&]() {
int argc = argv.size();
char **arr = new char *[argv.size()];
......@@ -65,7 +66,7 @@ void InitP2P(int count) {
}
void InitDevices(bool init_p2p) {
/*Init all avaiable devices by default */
/*Init all available devices by default */
std::vector<platform::Place> places;
places.emplace_back(platform::CPUPlace());
......
......@@ -12,7 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <mutex>
#include <mutex> // NOLINT
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
......@@ -20,7 +22,7 @@ limitations under the License. */
namespace paddle {
namespace framework {
void InitGflags(std::vector<std::string> &argv);
void InitGflags(std::vector<std::string> argv);
void InitGLOG(const std::string &prog_name);
......
......@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <cctype>
#include <string>
namespace paddle {
namespace framework {
......@@ -67,5 +68,5 @@ inline std::ostream& operator<<(std::ostream& out, LibraryType l) {
return out;
}
} // namespace
} // framework
} // namespace framework
} // namespace paddle
......@@ -74,7 +74,7 @@ ParallelExecutor::ParallelExecutor(
member_->own_local_scope = false;
PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
for (size_t i = 0; i < member_->places_.size(); ++i) {
member_->local_scopes_.emplace_back(local_scopes[i]);
member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
}
}
......
......@@ -20,7 +20,7 @@ namespace paddle {
namespace framework {
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
const platform::DeviceContext& ctx, Tensor* dst) {
const platform::DeviceContext& ctx, Tensor* dst, bool sync) {
VLOG(3) << "TensorCopy " << src.dims() << " from " << src.place() << " to "
<< dst_place;
src.check_memory_size();
......@@ -47,9 +47,11 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place,
PADDLE_ENFORCE(platform::is_gpu_place(ctx_place));
auto ctx_gpu_place = boost::get<platform::CUDAPlace>(ctx_place);
PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place);
memory::Copy(
dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size,
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
auto stream =
sync ? nullptr
: reinterpret_cast<const platform::CUDADeviceContext&>(ctx)
.stream();
memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
} else if (platform::is_cpu_place(src_place) &&
platform::is_gpu_place(dst_place)) {
auto src_cpu_place = boost::get<platform::CPUPlace>(src_place);
......@@ -58,18 +60,22 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place,
PADDLE_ENFORCE(platform::is_gpu_place(ctx_place));
auto ctx_gpu_place = boost::get<platform::CUDAPlace>(ctx_place);
PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place);
memory::Copy(
dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size,
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
auto stream =
sync ? nullptr
: reinterpret_cast<const platform::CUDADeviceContext&>(ctx)
.stream();
memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
} else if (platform::is_gpu_place(src_place) &&
platform::is_gpu_place(dst_place)) {
auto src_gpu_place = boost::get<platform::CUDAPlace>(src_place);
auto dst_gpu_place = boost::get<platform::CUDAPlace>(dst_place);
auto ctx_place = ctx.GetPlace();
PADDLE_ENFORCE(platform::is_gpu_place(ctx_place));
memory::Copy(
dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
auto stream =
sync ? nullptr
: reinterpret_cast<const platform::CUDADeviceContext&>(ctx)
.stream();
memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
}
#endif
}
......
......@@ -24,7 +24,8 @@ namespace paddle {
namespace framework {
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
const platform::DeviceContext& ctx, Tensor* dst);
const platform::DeviceContext& ctx, Tensor* dst,
bool sync = false);
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
Tensor* dst);
......
......@@ -21,7 +21,8 @@ endif()
if(WITH_TESTING)
add_subdirectory(tests/book)
if (TENSORRT_FOUND)
add_subdirectory(tensorrt)
endif()
endif()
if (TENSORRT_FOUND)
add_subdirectory(tensorrt)
endif()
......@@ -32,7 +32,11 @@ void Copy<platform::CPUPlace, platform::CUDAPlace>(
platform::CPUPlace dst_place, void* dst, platform::CUDAPlace src_place,
const void* src, size_t num, cudaStream_t stream) {
platform::SetDeviceId(src_place.device);
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyDeviceToHost, stream);
if (stream) {
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyDeviceToHost, stream);
} else {
platform::GpuMemcpySync(dst, src, num, cudaMemcpyDeviceToHost);
}
}
template <>
......@@ -40,7 +44,11 @@ void Copy<platform::CUDAPlace, platform::CPUPlace>(
platform::CUDAPlace dst_place, void* dst, platform::CPUPlace src_place,
const void* src, size_t num, cudaStream_t stream) {
platform::SetDeviceId(dst_place.device);
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyHostToDevice, stream);
if (stream) {
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyHostToDevice, stream);
} else {
platform::GpuMemcpySync(dst, src, num, cudaMemcpyHostToDevice);
}
}
template <>
......@@ -49,10 +57,19 @@ void Copy<platform::CUDAPlace, platform::CUDAPlace>(
const void* src, size_t num, cudaStream_t stream) {
if (dst_place == src_place) {
platform::SetDeviceId(src_place.device);
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyDeviceToDevice, stream);
if (stream) {
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyDeviceToDevice, stream);
} else {
platform::GpuMemcpySync(dst, src, num, cudaMemcpyDeviceToDevice);
}
} else {
platform::GpuMemcpyPeer(dst, dst_place.device, src, src_place.device, num,
stream);
if (stream) {
platform::GpuMemcpyPeerAsync(dst, dst_place.device, src, src_place.device,
num, stream);
} else {
platform::GpuMemcpyPeerSync(dst, dst_place.device, src, src_place.device,
num);
}
}
}
......@@ -83,7 +100,11 @@ void Copy<platform::CUDAPinnedPlace, platform::CUDAPlace>(
platform::CUDAPlace src_place, const void* src, size_t num,
cudaStream_t stream) {
platform::SetDeviceId(src_place.device);
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyDeviceToHost, stream);
if (stream) {
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyDeviceToHost, stream);
} else {
platform::GpuMemcpySync(dst, src, num, cudaMemcpyDeviceToHost);
}
}
template <>
......@@ -92,7 +113,11 @@ void Copy<platform::CUDAPlace, platform::CUDAPinnedPlace>(
platform::CUDAPinnedPlace src_place, const void* src, size_t num,
cudaStream_t stream) {
platform::SetDeviceId(dst_place.device);
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyHostToDevice, stream);
if (stream) {
platform::GpuMemcpyAsync(dst, src, num, cudaMemcpyHostToDevice, stream);
} else {
platform::GpuMemcpySync(dst, src, num, cudaMemcpyHostToDevice);
}
}
#endif
......
......@@ -356,8 +356,8 @@ __device__ T reduceSum(T val, int tid, int len) {
// I use Warp-Level Parallelism and assume the Warp size
// is 32 which may be different for different GPU,
// but most card's warp size is 32.
__shared__ T shm[32];
const int warpSize = 32;
__shared__ T shm[warpSize];
unsigned mask = 0u;
CREATE_SHFL_MASK(mask, tid < len);
......@@ -371,6 +371,7 @@ __device__ T reduceSum(T val, int tid, int len) {
if (tid % warpSize == 0) {
shm[tid / warpSize] = val;
}
__syncthreads();
CREATE_SHFL_MASK(mask, tid < warpSize);
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "mkldnn.hpp"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/mul_op.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
namespace paddle {
namespace operators {
using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
template <typename Format = mkldnn::memory::format>
mkldnn::memory::desc type(const std::vector<int>& dims, Format&& f) {
return platform::MKLDNNMemDesc(dims, mkldnn::memory::data_type::f32, f);
}
template <typename T>
class MulMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
auto mkldnn_engine = dev_ctx.GetEngine();
auto input = ctx.Input<Tensor>("X");
auto weight = ctx.Input<Tensor>("Y");
PADDLE_ENFORCE(input->dims().size() & (2 | 4),
"Input must be with 2 or 4 dimensions, i.e. NC or NCHW");
PADDLE_ENFORCE(weight->dims().size() & (2 | 4),
"Weights must be with 2 or 4 dimensions, i.e. OI or OIHW");
std::vector<int> w_tz = paddle::framework::vectorize2int(weight->dims());
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
auto src_md =
src_tz.size() != 2
? type(src_tz, mkldnn::memory::format::nchw)
: type({src_tz[0], src_tz[1]}, mkldnn::memory::format::nc);
auto dst_md = type({src_tz[0], w_tz[1]}, mkldnn::memory::format::nc);
auto weights_md =
src_tz.size() != 2
? type({w_tz[1], src_tz[1], src_tz[2], src_tz[3]},
mkldnn::memory::format::oihw)
: type({w_tz[1], src_tz[1]}, mkldnn::memory::format::oi);
auto output = ctx.Output<Tensor>("Out");
T* output_data = output->mutable_data<T>(ctx.GetPlace());
const std::string key = ctx.op().Output("Out");
const std::string key_fc_pd = key + "@mul_pd";
const T* input_data = input->data<T>();
const T* w_data = weight->data<T>();
auto dst_memory = mkldnn::memory({dst_md, mkldnn_engine}, output_data);
auto src_memory = mkldnn::memory({src_md, mkldnn_engine},
platform::to_void_cast(input_data));
auto weights_memory = mkldnn::memory({weights_md, mkldnn_engine},
platform::to_void_cast(w_data));
auto pd = platform::MKLDNNFwdPrimitiveDesc<mkldnn::inner_product_forward>(
mkldnn_engine, src_md, weights_md, dst_md);
dev_ctx.SetBlob(key_fc_pd, pd);
auto forward = mkldnn::inner_product_forward(*pd, src_memory,
weights_memory, dst_memory);
std::vector<mkldnn::primitive> pipeline = {forward};
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
};
template <typename T>
class MulMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
auto mkldnn_engine = dev_ctx.GetEngine();
const Tensor* input = ctx.Input<Tensor>("X");
const Tensor* w = ctx.Input<Tensor>("Y");
const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
Tensor* w_grad = ctx.Output<Tensor>(framework::GradVarName("Y"));
const std::string key = ctx.op().Input("Out");
const std::string key_fc_pd = key + "@mul_pd";
const T* input_data = input->data<T>();
const T* w_data = w->data<T>();
const T* out_grad_data = out_grad->data<T>();
T* input_grad_data = nullptr;
T* w_grad_data = nullptr;
if (input_grad) {
input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
}
if (w_grad) {
w_grad_data = w_grad->mutable_data<T>(ctx.GetPlace());
}
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
std::vector<int> w_tz = paddle::framework::vectorize2int(w->dims());
auto src_md =
src_tz.size() != 2
? type(src_tz, mkldnn::memory::format::nchw)
: type({src_tz[0], src_tz[1]}, mkldnn::memory::format::nc);
auto dst_md = type({src_tz[0], w_tz[1]}, mkldnn::memory::format::nc);
auto weights_md =
src_tz.size() != 2
? type({w_tz[1], src_tz[1], src_tz[2], src_tz[3]},
mkldnn::memory::format::oihw)
: type({w_tz[1], src_tz[1]}, mkldnn::memory::format::oi);
auto src_memory = mkldnn::memory({src_md, mkldnn_engine},
platform::to_void_cast(input_data));
auto dst_memory = mkldnn::memory({dst_md, mkldnn_engine},
platform::to_void_cast(out_grad_data));
auto weight_memory = mkldnn::memory({weights_md, mkldnn_engine},
platform::to_void_cast(w_data));
auto pd =
std::static_pointer_cast<mkldnn::inner_product_forward::primitive_desc>(
dev_ctx.GetBlob(key_fc_pd));
PADDLE_ENFORCE(pd != nullptr, "Fail to find pd in device context");
if (w_grad) {
auto weights_grad_memory = mkldnn::memory(
{weights_md, mkldnn_engine}, platform::to_void_cast(w_grad_data));
auto bwd_weight_pd = platform::MKLDNNBwdPrimitiveDesc<
mkldnn::inner_product_backward_weights>(mkldnn_engine, *pd, src_md,
weights_md, dst_md);
auto bwd_weights_prim = mkldnn::inner_product_backward_weights(
bwd_weight_pd, src_memory, dst_memory, weights_grad_memory);
std::vector<mkldnn::primitive> pipeline{bwd_weights_prim};
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
if (input_grad) {
auto src_grad_memory = mkldnn::memory(
{src_md, mkldnn_engine}, platform::to_void_cast(input_grad_data));
auto bwd_data_pd =
platform::MKLDNNBwdPrimitiveDesc<mkldnn::inner_product_backward_data>(
mkldnn_engine, *pd, src_md, weights_md, dst_md);
auto bwd_data_prim = mkldnn::inner_product_backward_data(
bwd_data_pd, dst_memory, weight_memory, src_grad_memory);
std::vector<mkldnn::primitive> pipeline{bwd_data_prim};
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_KERNEL(mul, MKLDNN, ::paddle::platform::CPUPlace,
paddle::operators::MulMKLDNNOpKernel<float>);
REGISTER_OP_KERNEL(mul_grad, MKLDNN, ::paddle::platform::CPUPlace,
paddle::operators::MulMKLDNNGradOpKernel<float>);
......@@ -13,8 +13,13 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/mul_op.h"
#include <string>
#include <vector>
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace operators {
......@@ -71,6 +76,22 @@ class MulOp : public framework::OperatorWithKernel {
ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
ctx->ShareLoD("X", /*->*/ "Out");
}
private:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
framework::LibraryType library{framework::LibraryType::kPlain};
#ifdef PADDLE_WITH_MKLDNN
if (library == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library = framework::LibraryType::kMKLDNN;
}
#endif
framework::DataLayout layout{framework::DataLayout::kAnyLayout};
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
layout, library);
}
};
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
......@@ -100,6 +121,9 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker {
)DOC")
.SetDefault(1)
.EqualGreaterThan(1);
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<int>(
"y_num_col_dims",
R"DOC((int, default 1), The mul_op can take tensors with more than two,
......@@ -154,6 +178,22 @@ class MulGradOp : public framework::OperatorWithKernel {
ctx->SetOutputDim(y_grad_name, y_dims);
}
}
private:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
framework::LibraryType library{framework::LibraryType::kPlain};
#ifdef PADDLE_WITH_MKLDNN
if (library == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library = framework::LibraryType::kMKLDNN;
}
#endif
framework::DataLayout layout{framework::DataLayout::kAnyLayout};
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
layout, library);
}
};
} // namespace operators
......
......@@ -180,7 +180,8 @@ void DoubleBufferReader::PrefetchThreadFunc() {
auto* gpu_ctx = ctxs_[cached_tensor_id].get();
gpu_batch.resize(cpu_batch.size());
for (size_t i = 0; i < cpu_batch.size(); ++i) {
framework::TensorCopy(cpu_batch[i], place_, *gpu_ctx, &gpu_batch[i]);
framework::TensorCopy(cpu_batch[i], place_, *gpu_ctx, &gpu_batch[i],
true);
gpu_batch[i].set_lod(cpu_batch[i].lod());
}
}
......
......@@ -21,26 +21,16 @@ namespace reader {
class ThreadedReader : public framework::DecoratedReader {
public:
ThreadedReader(ReaderBase* reader, bool safe_mode)
: DecoratedReader(reader), safe_mode_(safe_mode) {}
explicit ThreadedReader(ReaderBase* reader) : DecoratedReader(reader) {}
void ReadNext(std::vector<framework::LoDTensor>* out) override {
std::lock_guard<std::mutex> lock(mutex_);
reader_->ReadNext(out);
}
void ReInit() override {
if (safe_mode_) {
PADDLE_THROW(
"ThreadedReader::ReInit() is disabled when 'safe_mode' is true.");
}
VLOG(5) << "ThreadedReader::ReInit() is invoked! It might be buggy in "
"multi-thread environment.";
reader_->ReInit();
}
void ReInit() override { reader_->ReInit(); }
private:
bool safe_mode_;
std::mutex mutex_;
};
......@@ -58,8 +48,7 @@ class CreateThreadedReaderOp : public framework::OperatorBase {
}
const auto& underlying_reader = scope.FindVar(Input("UnderlyingReader"))
->Get<framework::ReaderHolder>();
bool safe_mode = Attr<bool>("safe_mode");
out->Reset(new ThreadedReader(underlying_reader.Get(), safe_mode));
out->Reset(new ThreadedReader(underlying_reader.Get()));
}
};
......@@ -67,10 +56,6 @@ class CreateThreadedReaderOpMaker : public DecoratedReaderMakerBase {
public:
CreateThreadedReaderOpMaker(OpProto* op_proto, OpAttrChecker* op_checker)
: DecoratedReaderMakerBase(op_proto, op_checker) {
AddAttr<bool>("safe_mode",
"When 'safe_mode' is true, 'ReInit()' is disabled to avoid "
"unexpected bugs in multi-thread environment.")
.SetDefault(true);
AddComment(R"DOC(
CreateThreadedReader Operator
......
......@@ -127,11 +127,24 @@ void GpuMemcpyAsync(void *dst, const void *src, size_t count,
"cudaMemcpyAsync failed in paddle::platform::GpuMemcpyAsync");
}
void GpuMemcpyPeer(void *dst, int dst_device, const void *src, int src_device,
size_t count, cudaStream_t stream) {
void GpuMemcpySync(void *dst, const void *src, size_t count,
enum cudaMemcpyKind kind) {
PADDLE_ENFORCE(cudaMemcpy(dst, src, count, kind),
"cudaMemcpy failed in paddle::platform::GpuMemcpySync");
}
void GpuMemcpyPeerAsync(void *dst, int dst_device, const void *src,
int src_device, size_t count, cudaStream_t stream) {
PADDLE_ENFORCE(
cudaMemcpyPeerAsync(dst, dst_device, src, src_device, count, stream),
"cudaMemcpyPeerAsync failed in paddle::platform::GpuMemcpyPeer");
"cudaMemcpyPeerAsync failed in paddle::platform::GpuMemcpyPeerAsync");
}
void GpuMemcpyPeerSync(void *dst, int dst_device, const void *src,
int src_device, size_t count) {
PADDLE_ENFORCE(
cudaMemcpyPeer(dst, dst_device, src, src_device, count),
"cudaMemcpyPeer failed in paddle::platform::GpuMemcpyPeerSync");
}
void GpuMemsetAsync(void *dst, int value, size_t count, cudaStream_t stream) {
......
......@@ -57,9 +57,17 @@ size_t GpuMaxChunkSize();
void GpuMemcpyAsync(void *dst, const void *src, size_t count,
enum cudaMemcpyKind kind, cudaStream_t stream);
//! Copy memory from one device to another device.
void GpuMemcpyPeer(void *dst, int dst_device, const void *src, int src_device,
size_t count, cudaStream_t stream);
//! Copy memory from address src to dst synchronously.
void GpuMemcpySync(void *dst, const void *src, size_t count,
enum cudaMemcpyKind kind);
//! Copy memory from one device to another device asynchronously.
void GpuMemcpyPeerAsync(void *dst, int dst_device, const void *src,
int src_device, size_t count, cudaStream_t stream);
//! Copy memory from one device to another device synchronously.
void GpuMemcpyPeerSync(void *dst, int dst_device, const void *src,
int src_device, size_t count);
//! Set memory dst with value count size asynchronously
void GpuMemsetAsync(void *dst, int value, size_t count, cudaStream_t stream);
......
......@@ -13,9 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <mkldnn.h>
#include <vector>
#include "mkldnn/include/mkldnn.hpp"
#include "paddle/fluid/framework/operator.h"
namespace paddle {
......@@ -34,6 +33,32 @@ typedef std::unique_ptr<MKLDNNMemory> MKLDNNMemoryPtr;
typedef std::unique_ptr<MKLDNNPrimitive> MKLDNNPrimitivePtr;
typedef std::unique_ptr<MKLDNNPrimitiveDesc> MKLDNNPrimitiveDescPtr;
template <typename Type>
void* to_void_cast(const Type* t) {
return static_cast<void*>(const_cast<Type*>(t));
}
template <class Type>
using tf_desc = typename Type::desc;
template <class Type>
using tf_pd = typename Type::primitive_desc;
template <typename Type, typename Engine, typename... Args>
std::shared_ptr<tf_pd<Type>> MKLDNNFwdPrimitiveDesc(const Engine& e,
Args&&... args) {
auto desc = tf_desc<Type>(mkldnn::prop_kind::forward, (args)...);
auto pd = new tf_pd<Type>(desc, e);
return std::shared_ptr<tf_pd<Type>>(pd);
}
template <typename Type, typename Engine, typename Primitive, typename... Args>
tf_pd<Type> MKLDNNBwdPrimitiveDesc(const Engine& e, const Primitive& p,
Args&&... args) {
auto desc = tf_desc<Type>(args...);
return tf_pd<Type>(desc, e, p);
}
inline mkldnn::memory::desc MKLDNNMemDesc(const std::vector<int>& dims,
mkldnn::memory::data_type data_type,
mkldnn::memory::format format) {
......
## Background
The RecordIO file format is a container for records. This package is a C++ implementation of https://github.com/paddlepaddle/recordio, which originates from https://github.com/wangkuiyi/recordio.
## Fault-tolerant Writing
For the initial design purpose of RecordIO within Google, which was logging, RecordIO groups record into *chunks*, whose header contains an MD5 hash of the chunk. A process that writes logs is supposed to call the Writer interface to add records. Once the writer accumulates a handful of them, it groups a chunk, put the MD5 into the chunk header, and appends the chunk to the file. In the event the process crashes unexpected, the last chunk in the RecordIO file could be incomplete/corrupt. The RecordIO reader is able to recover from these errors when the process restarts by identifying incomplete chucks and skipping over them.
## Reading Ranges
A side-effect of chunks is to make it easy to indexing records while reading, thus allows us to read a range of successive records. This is good for distributed log process, where each MapReduce task handles only part of records in a big RecordIO file.
The procedure that creates the index starts from reading the header of the first chunk. It indexes the offset (0) and the size of the chunk, and skips to the header of the next chunk by calling the `fseek` API. Please be aware that most distributed filesystems and all POSIX-compatible local filesystem provides `fseek`, and makes sure that `fseek` runs much faster than `fread`. This procedure generates a map from chunks to their offsets, which allows the readers is to locate and read a range of records.
......@@ -390,9 +390,7 @@ private:
if (this->loadThread_) { // wait poolActualSize < poolSize;
std::unique_lock<std::mutex> l(mtx_);
pushCV_.wait(l, [this, additionalBatchSize] {
return this->poolActualSize_ < poolSize_;
});
pushCV_.wait(l, [this] { return this->poolActualSize_ < poolSize_; });
}
{
......
......@@ -52,7 +52,7 @@ MultiGradientMachine::MultiGradientMachine(const ModelConfig& config,
} else {
numDevices_ = 0;
}
ParamInitCallback mainParamInitCb = [this](int paramId, Parameter* para) {
ParamInitCallback mainParamInitCb = [](int paramId, Parameter* para) {
// only create buf for CPU parameters
// GPU parameters will be created in each thread
if (para->useGpu()) return;
......
......@@ -72,7 +72,7 @@ void RecurrentLayerGroup::initSubNetwork(
setNeedGradient(true);
network_.reset(new RecurrentGradientMachine(config_.name(), rootNetwork));
ParamInitCallback cb = [this, rootNetwork](int paramId, Parameter* para) {
ParamInitCallback cb = [rootNetwork](int paramId, Parameter* para) {
para->enableSharedType(
PARAMETER_VALUE,
rootNetwork->getParameters()[paramId]->getBuf(PARAMETER_VALUE),
......
......@@ -325,12 +325,12 @@ void Argument::concat(const std::vector<Argument>& args,
->copyFrom(*src->subVec(srcStartRow, size), stream);
};
auto copyStrs = [batchSize, stream](SVectorPtr& dst,
const SVectorPtr& src,
int desStartRow,
int srcStartRow,
int size,
bool useGpu) {
auto copyStrs = [batchSize](SVectorPtr& dst,
const SVectorPtr& src,
int desStartRow,
int srcStartRow,
int size,
bool useGpu) {
if (!src) {
dst.reset();
return;
......@@ -413,7 +413,7 @@ void Argument::concat(const std::vector<Argument>& args,
dst->subVec(startRow, src->getSize())->copyFrom(*src, stream);
};
auto copyStrs = [batchSize, stream](
auto copyStrs = [batchSize](
SVectorPtr& dst, const SVectorPtr& src, int startRow, bool useGpu) {
if (!src) {
dst.reset();
......
......@@ -81,9 +81,9 @@ ParameterOptimizer::TraverseCallback AverageOptimizer::needSpecialTraversal(
if (numUpdates_ % kMaxNumAccumulates == 0) {
// Move the sum to a different buffer to avoid loss of precision
// due to too many sums.
callbacks.emplace_back([this](const VectorPtr vecs[],
const ParameterConfig& config,
size_t sparseId) {
callbacks.emplace_back([](const VectorPtr vecs[],
const ParameterConfig& config,
size_t sparseId) {
vecs[PARAMETER_SUM2]->add(*vecs[PARAMETER_SUM1]);
vecs[PARAMETER_SUM1]->zeroMem();
});
......@@ -94,9 +94,9 @@ ParameterOptimizer::TraverseCallback AverageOptimizer::needSpecialTraversal(
if (auto callback = this->startCatchUpWith()) {
callbacks.emplace_back(callback);
}
callbacks.emplace_back([this](const VectorPtr vecs[],
const ParameterConfig& config,
size_t sparseId) {
callbacks.emplace_back([](const VectorPtr vecs[],
const ParameterConfig& config,
size_t sparseId) {
vecs[PARAMETER_SUM3]->add(*vecs[PARAMETER_SUM1], *vecs[PARAMETER_SUM2]);
vecs[PARAMETER_SUM1]->zeroMem();
vecs[PARAMETER_SUM2]->zeroMem();
......
......@@ -145,9 +145,9 @@ AdagradParameterOptimizer::needSpecialTraversal(
if (numUpdates_ % kMaxNumAccumulates == 0) {
// Move the sum to a different buffer to avoid loss of precision
// due to too many sums.
return [this](const VectorPtr vecs[],
const ParameterConfig& config,
size_t sparseId) {
return [](const VectorPtr vecs[],
const ParameterConfig& config,
size_t sparseId) {
vecs[PARAMETER_GRADIENT_SQURESUM]->add(
*vecs[PARAMETER_GRADIENT_SQURESUM1]);
vecs[PARAMETER_GRADIENT_SQURESUM1]->zeroMem();
......
......@@ -19,7 +19,11 @@ https://archive.ics.uci.edu/ml/machine-learning-databases/housing/ and
parse training set and test set into paddle reader creators.
"""
import os
import numpy as np
import tempfile
import tarfile
import os
import paddle.dataset.common
......@@ -34,8 +38,9 @@ feature_names = [
UCI_TRAIN_DATA = None
UCI_TEST_DATA = None
URL_MODEL = 'https://github.com/PaddlePaddle/book/raw/develop/01.fit_a_line/fit_a_line.tar'
MD5_MODEL = '52fc3da8ef3937822fcdd87ee05c0c9b'
FLUID_URL_MODEL = 'https://github.com/PaddlePaddle/book/raw/develop/01.fit_a_line/fluid/fit_a_line.fluid.tar'
FLUID_MD5_MODEL = '6e6dd637ccd5993961f68bfbde46090b'
def feature_range(maximums, minimums):
......@@ -113,6 +118,29 @@ def test():
return reader
def fluid_model():
parameter_tar = paddle.dataset.common.download(
FLUID_URL_MODEL, 'uci_housing', FLUID_MD5_MODEL, 'fit_a_line.fluid.tar')
tar = tarfile.TarFile(parameter_tar, mode='r')
dirpath = tempfile.mkdtemp()
tar.extractall(path=dirpath)
return dirpath
def predict_reader():
"""
It returns just one tuple data to do inference.
:return: one tuple data
:rtype: tuple
"""
global UCI_TEST_DATA
load_data(paddle.dataset.common.download(URL, 'uci_housing', MD5))
return (UCI_TEST_DATA[0][:-1], )
def fetch():
paddle.dataset.common.download(URL, 'uci_housing', MD5)
......
......@@ -457,8 +457,8 @@ def __create_shared_decorated_reader__(op_type, reader, attrs):
return monkey_patch_reader_methods(main_prog_var)
def __create_unshared_decorated_reader__(op_type, reader, attrs):
new_reader_name = unique_name(op_type)
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
new_reader_name = name if name is not None else unique_name(op_type)
main_blk = default_main_program().current_block()
new_reader = main_blk.create_var(name=new_reader_name)
main_blk.append_op(
......@@ -481,12 +481,12 @@ def batch(reader, batch_size):
'create_batch_reader', reader, {'batch_size': int(batch_size)})
def double_buffer(reader, place=None):
def double_buffer(reader, place=None, name=None):
attrs = dict()
if place is not None:
attrs['place'] = str(place).upper()
return __create_unshared_decorated_reader__('create_double_buffer_reader',
reader, attrs)
return __create_unshared_decorated_reader__(
'create_double_buffer_reader', reader, attrs, name=name)
def multi_pass(reader, pass_num):
......
......@@ -159,67 +159,37 @@ def fc(input,
dtype = helper.input_dtype()
mul_results = []
if use_mkldnn:
tmp = helper.create_tmp_variable(dtype)
input_shape = input.shape
for input_var, param_attr in helper.iter_inputs_and_params():
input_shape = input_var.shape
param_shape = [
reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
] + [size]
w = helper.create_parameter(
attr=helper.param_attr,
shape=param_shape,
dtype=dtype,
is_bias=False)
if bias_attr is None or bias_attr is False:
bias_attr = False
else:
bias_attr = True
attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
tmp = helper.create_tmp_variable(dtype)
helper.append_op(
type="fc",
inputs={"Input": input,
"W": w},
type="mul",
inputs={"X": input_var,
"Y": w},
outputs={"Out": tmp},
attrs={
"use_mkldnn": use_mkldnn,
"is_test": is_test,
"bias_attr": bias_attr
"x_num_col_dims": num_flatten_dims,
"y_num_col_dims": 1,
"use_mkldnn": use_mkldnn
})
return helper.append_activation(tmp)
mul_results.append(tmp)
if len(mul_results) == 1:
pre_bias = mul_results[0]
else:
for input_var, param_attr in helper.iter_inputs_and_params():
input_shape = input_var.shape
param_shape = [
reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
] + [size]
w = helper.create_parameter(
attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
tmp = helper.create_tmp_variable(dtype)
helper.append_op(
type="mul",
inputs={"X": input_var,
"Y": w},
outputs={"Out": tmp},
attrs={
"x_num_col_dims": num_flatten_dims,
"y_num_col_dims": 1,
})
mul_results.append(tmp)
if len(mul_results) == 1:
pre_bias = mul_results[0]
else:
pre_bias = helper.create_tmp_variable(dtype)
helper.append_op(
type="sum",
inputs={"X": mul_results},
outputs={"Out": pre_bias})
# add bias
pre_activation = helper.append_bias_op(
pre_bias, dim_start=num_flatten_dims)
# add activation
return helper.append_activation(pre_activation)
pre_bias = helper.create_tmp_variable(dtype)
helper.append_op(
type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
# add bias
pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
# add activation
return helper.append_activation(pre_activation)
def embedding(input,
......@@ -3733,8 +3703,8 @@ def label_smooth(label,
name=None):
"""
Label smoothing is a mechanism to regularize the classifier layer and is
called label-smoothing regularization (LSR).
called label-smoothing regularization (LSR).
Label smoothing is proposed to encourage the model to be less confident,
since optimizing the log-likelihood of the correct label directly may
cause overfitting and reduce the ability of the model to adapt. Label
......@@ -3758,10 +3728,10 @@ def label_smooth(label,
prior_dist(Variable): The prior distribution to be used to smooth
labels. If not provided, an uniform distribution
is used. The shape of :attr:`prior_dist` should
be :math:`(1, class\_num)`.
be :math:`(1, class\_num)`.
epsilon(float): The weight used to mix up the original ground-truth
distribution and the fixed distribution.
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
float_64, int etc.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
......
......@@ -79,7 +79,7 @@ class ParallelExecutor(object):
else:
for i in xrange(multiprocessing.cpu_count()):
p = core.Place()
self._act_places.append(core.CPUPlace(i))
self._act_places.append(core.CPUPlace())
p.set_place(self._act_places[-1])
self._places.append(p)
assert self._places, "no place for execution"
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import paddle.fluid as fluid
import paddle.v2 as paddle
def load_vocab(filename):
"""
load vocabulary
"""
vocab = {}
with open(filename) as f:
wid = 0
for line in f:
vocab[line.strip()] = wid
wid += 1
return vocab
# load word dict with paddle inner function
word_dict = load_vocab(sys.argv[1])
word_dict["<unk>"] = len(word_dict)
print "Dict dim = ", len(word_dict)
# input text data
data = fluid.layers.data(name="words", shape=[1], dtype="int64", lod_level=1)
# label data
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
# like placeholder
feeder = fluid.DataFeeder(feed_list=[data, label], place=fluid.CPUPlace())
# train data set
BATCH_SIZE = 128
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.imdb.train(word_dict), buf_size=10000),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(
paddle.dataset.imdb.test(word_dict), batch_size=BATCH_SIZE)
fluid.recordio_writer.convert_reader_to_recordio_file(
"train.recordio", feeder=feeder, reader_creator=train_reader)
fluid.recordio_writer.convert_reader_to_recordio_file(
"test.recordio", feeder=feeder, reader_creator=test_reader)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
import numpy
import sys
TRAIN_FILES = ['train.recordio']
TEST_FILES = ['test.recordio']
DICT_DIM = 89528
# embedding dim
emb_dim = 128
# hidden dim
hid_dim = 128
# hidden dim2
hid_dim2 = 96
# class num
class_dim = 2
def network_cfg(is_train, pass_num=100):
with fluid.unique_name.guard():
train_file_obj = fluid.layers.open_files(
filenames=TRAIN_FILES,
pass_num=pass_num,
shapes=[[-1, 1], [-1, 1]],
lod_levels=[1, 0],
dtypes=['int64', 'int64'],
thread_num=1)
test_file_obj = fluid.layers.open_files(
filenames=TEST_FILES,
pass_num=1,
shapes=[[-1, 1], [-1, 1]],
lod_levels=[1, 0],
dtypes=['int64', 'int64'],
thread_num=1)
if is_train:
file_obj = fluid.layers.shuffle(train_file_obj, buffer_size=1000)
else:
file_obj = test_file_obj
file_obj = fluid.layers.double_buffer(
file_obj,
name="train_double_buffer" if is_train else 'test_double_buffer')
data, label = fluid.layers.read_file(file_obj)
emb = fluid.layers.embedding(input=data, size=[DICT_DIM, emb_dim])
# sequence conv with window size = 3
win_size = 3
conv_3 = fluid.nets.sequence_conv_pool(
input=emb,
num_filters=hid_dim,
filter_size=win_size,
act="tanh",
pool_type="max")
# fc layer after conv
fc_1 = fluid.layers.fc(input=[conv_3], size=hid_dim2)
# probability of each class
prediction = fluid.layers.fc(input=[fc_1],
size=class_dim,
act="softmax")
# cross entropy loss
cost = fluid.layers.cross_entropy(input=prediction, label=label)
# mean loss
avg_cost = fluid.layers.mean(x=cost)
acc = fluid.layers.accuracy(input=prediction, label=label)
if is_train:
# SGD optimizer
sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=0.01)
sgd_optimizer.minimize(avg_cost)
return {
'loss': avg_cost,
'log': [avg_cost, acc],
'file': train_file_obj if is_train else test_file_obj
}
def main():
train = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(train, startup):
train_args = network_cfg(is_train=True)
test = fluid.Program()
with fluid.program_guard(test, fluid.Program()):
test_args = network_cfg(is_train=False)
# startup
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place=place)
exe.run(startup)
train_exe = fluid.ParallelExecutor(
use_cuda=True, loss_name=train_args['loss'].name, main_program=train)
fetch_var_list = [var.name for var in train_args['log']]
for i in xrange(sys.maxint):
result = map(numpy.array,
train_exe.run(fetch_list=fetch_var_list
if i % 1000 == 0 else []))
if len(result) != 0:
print 'Train: ', result
if i % 1000 == 0:
test_exe = fluid.ParallelExecutor(
use_cuda=True, main_program=test, share_vars_from=train_exe)
loss = []
acc = []
try:
while True:
loss_np, acc_np = map(
numpy.array, test_exe.run(fetch_list=fetch_var_list))
loss.append(loss_np[0])
acc.append(acc_np[0])
except:
test_args['file'].reset()
print 'TEST: ', numpy.mean(loss), numpy.mean(acc)
if __name__ == '__main__':
main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
class TestElementWiseAddOp(unittest.TestCase):
def __assert_close(self, tensor, np_array, msg, atol=1e-4):
self.assertTrue(np.allclose(np.array(tensor), np_array, atol=atol), msg)
def check_forward_backward(self):
def test_with_place(place):
out_grad = np.random.random_sample(self.x.shape).astype(np.float32)
x_grad = out_grad
sum_axis = range(0, len(self.x.shape))
del sum_axis[self.axis]
y_grad = np.sum(out_grad, axis=tuple(sum_axis))
var_dict = locals()
var_dict['y'] = self.y
var_dict['x'] = self.x
var_dict['out'] = self.out
var_dict['y@GRAD'] = y_grad
var_dict['x@GRAD'] = x_grad
var_dict['out@GRAD'] = out_grad
var_names = ['x', 'y', 'out', 'y@GRAD', 'x@GRAD', 'out@GRAD']
ground_truth = {name: var_dict[name] for name in var_names}
program = fluid.Program()
with fluid.program_guard(program):
block = program.global_block()
for name in ground_truth:
block.create_var(
name=name,
dtype='float32',
shape=ground_truth[name].shape)
elementwise_add_op = block.append_op(
type="elementwise_add",
inputs={
"X": block.var('x'),
"Y": block.var('y'),
},
outputs={"Out": block.var('out'), },
attrs={"axis": self.axis, })
# generate backward op_desc
grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
elementwise_add_op.desc, set(), [])
grad_op_desc = grad_op_desc_list[0]
new_op_desc = block.desc.append_op()
new_op_desc.copy_from(grad_op_desc)
for var_name in grad_op_desc.output_arg_names():
block.desc.var(var_name.encode("ascii"))
grad_op_desc.infer_var_type(block.desc)
grad_op_desc.infer_shape(block.desc)
for arg in grad_op_desc.output_arg_names():
grad_var = block.desc.find_var(arg.encode("ascii"))
grad_var.set_dtype(core.VarDesc.VarType.FP32)
exe = fluid.Executor(place)
out = exe.run(program,
feed={
name: var_dict[name]
for name in ['x', 'y', 'out@GRAD']
},
fetch_list=['x@GRAD', 'y@GRAD'])
self.__assert_close(x_grad, out[0], "x@GRAD")
self.__assert_close(y_grad, out[1], "y@GRAD", atol=1.4)
places = [core.CPUPlace()]
if core.is_compiled_with_cuda() and core.op_support_gpu(
"elementwise_add"):
places.append(core.CUDAPlace(0))
for place in places:
test_with_place(place)
def test_check_forward_backward_with_scale_and_bias(self):
np.random.seed(123)
self.x = np.random.random((4, 32, 220, 220)).astype(np.float32)
self.y = np.random.random((32)).astype(np.float32)
self.out = self.x + self.y.reshape(1, 32, 1, 1)
self.axis = 1
self.check_forward_backward()
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from test_mul_op import TestMulOp, TestMulOp2, TestFP16MulOp1, TestFP16MulOp2
class TestMKLDNNMulOp(TestMulOp):
def init_op_test(self):
super(TestMKLDNNMulOp, self).setUp()
self.attrs = {"use_mkldnn": True}
class TestMKLDNNMulOp2(TestMulOp2):
def init_op_test(self):
super(TestMKLDNNMulOp2, self).setUp()
self.attrs = {"use_mkldnn": True}
class TestMKLDNNFP16MulOp1(TestFP16MulOp1):
def init_op_test(self):
super(TestMKLDNNFP16MulOp1, self).setUp()
self.attrs = {"use_mkldnn": True}
class TestMKLDNNFP16MulOp2(TestFP16MulOp2):
def init_op_test(self):
super(TestMKLDNNFP16MulOp2, self).setUp()
self.attrs = {"use_mkldnn": True}
if __name__ == "__main__":
unittest.main()
......@@ -21,10 +21,12 @@ from op_test import OpTest
class TestMulOp(OpTest):
def setUp(self):
self.op_type = "mul"
self.use_mkldnn = False
self.inputs = {
'X': np.random.random((32, 84)).astype("float32"),
'Y': np.random.random((84, 100)).astype("float32")
}
self.attrs = {'use_mkldnn': self.use_mkldnn}
self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])}
def test_check_output(self):
......@@ -45,11 +47,16 @@ class TestMulOp(OpTest):
class TestMulOp2(OpTest):
def setUp(self):
self.op_type = "mul"
self.use_mkldnn = False
self.inputs = {
'X': np.random.random((15, 4, 12, 10)).astype("float32"),
'Y': np.random.random((4, 30, 8, 2, 9)).astype("float32")
}
self.attrs = {'x_num_col_dims': 2, 'y_num_col_dims': 2}
self.attrs = {
'x_num_col_dims': 2,
'y_num_col_dims': 2,
'use_mkldnn': self.use_mkldnn
}
result = np.dot(self.inputs['X'].reshape(15 * 4, 12 * 10),
self.inputs['Y'].reshape(4 * 30, 8 * 2 * 9))
result = result.reshape(15, 4, 8, 2, 9)
......@@ -73,9 +80,11 @@ class TestMulOp2(OpTest):
class TestFP16MulOp1(OpTest):
def setUp(self):
self.op_type = "mul"
self.use_mkldnn = False
x = np.random.random((32, 84)).astype("float16")
y = np.random.random((84, 100)).astype("float16")
self.inputs = {'X': x.view(np.uint16), 'Y': y.view(np.uint16)}
self.attrs = {'use_mkldnn': self.use_mkldnn}
self.outputs = {'Out': np.dot(x, y)}
def test_check_output(self):
......@@ -88,12 +97,14 @@ class TestFP16MulOp1(OpTest):
class TestFP16MulOp2(OpTest):
def setUp(self):
self.op_type = "mul"
self.use_mkldnn = False
x = np.random.random((15, 4, 12, 10)).astype("float16")
y = np.random.random((4, 30, 8, 2, 9)).astype("float16")
self.inputs = {'X': x.view(np.uint16), 'Y': y.view(np.uint16)}
self.attrs = {
'x_num_col_dims': 2,
'y_num_col_dims': 2,
'use_mkldnn': self.use_mkldnn
}
result = np.dot(
x.reshape(15 * 4, 12 * 10), y.reshape(4 * 30, 8 * 2 * 9))
......
......@@ -62,7 +62,8 @@ class TestOperator(unittest.TestCase):
self.assertEqual(mul_op.output_names, ["Out"])
self.assertEqual(mul_op.output("Out"), ["mul.out"])
self.assertEqual(
set(mul_op.attr_names), set(["x_num_col_dims", "y_num_col_dims"]))
set(mul_op.attr_names),
set(["x_num_col_dims", "y_num_col_dims", "use_mkldnn"]))
self.assertEqual(mul_op.has_attr("x_num_col_dims"), True)
self.assertEqual(mul_op.attr_type("x_num_col_dims"), core.AttrType.INT)
self.assertEqual(mul_op.attr("x_num_col_dims"), 1)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册