未验证 提交 47d81b09 编写于 作者: F furnace 提交者: GitHub

[NPU]add reduce_prod (#34182)

* [NPU] add reduce_prod

* [NPU] delete check_dygraph=False

* [NPU] delete skipIf

* add attrs support or check

* [NPU] delete extra codes for test_reduce_max_op_npu

* [NPU] add attr out_dtype
上级 0f19ac7c
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */
#include "paddle/fluid/operators/reduce_ops/reduce_prod_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class ReduceProdNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* out = ctx.Output<Tensor>("Out");
auto dims = ctx.Attr<std::vector<int>>("dim");
bool keep_dim = ctx.Attr<bool>("keep_dim");
bool reduce_all = ctx.Attr<bool>("reduce_all");
int out_dtype = ctx.Attr<int>("out_dtype");
auto place = ctx.GetPlace();
framework::Tensor cast_out(x->type());
cast_out.Resize(out->dims());
cast_out.mutable_data<T>(place);
auto cast_out_dtype = x->type();
if (out_dtype != -1) {
cast_out_dtype = static_cast<framework::proto::VarType::Type>(out_dtype);
}
if (x->type() != cast_out_dtype) {
if (cast_out_dtype == framework::proto::VarType::FP32) {
out->mutable_data<float>(place);
} else if (cast_out_dtype == framework::proto::VarType::FP16) {
out->mutable_data<paddle::platform::float16>(place);
} else if (cast_out_dtype == framework::proto::VarType::INT16) {
out->mutable_data<int16_t>(place);
} else if (cast_out_dtype == framework::proto::VarType::INT32) {
out->mutable_data<int32_t>(place);
} else if (cast_out_dtype == framework::proto::VarType::INT64) {
out->mutable_data<int64_t>(place);
} else if (cast_out_dtype == framework::proto::VarType::FP64) {
out->mutable_data<double>(place);
} else if (cast_out_dtype == framework::proto::VarType::BOOL) {
out->mutable_data<bool>(place);
}
} else {
out->ShareDataWith(cast_out);
}
framework::NPUAttributeMap attr_input = {{"axes", dims},
{"keep_dims", keep_dim}};
if (reduce_all) {
std::vector<int> dim_vec;
for (int i = 0; i < x->dims().size(); i++) {
dim_vec.push_back(i);
}
attr_input = {{"axes", dim_vec}, {"keep_dims", keep_dim}};
}
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
const auto& runner =
NpuOpRunner("ReduceProdD", {*x}, {cast_out}, attr_input);
runner.Run(stream);
if (x->type() != cast_out_dtype) {
auto dst_dtype = ConvertToNpuDtype(cast_out_dtype);
const auto& runner_cast =
NpuOpRunner("Cast", {cast_out}, {*out},
{{"dst_type", static_cast<int>(dst_dtype)}});
runner_cast.Run(stream);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_NPU_KERNEL(
reduce_prod, ops::ReduceProdNPUKernel<plat::NPUDeviceContext, float>,
ops::ReduceProdNPUKernel<plat::NPUDeviceContext, plat::float16>);
......@@ -127,8 +127,6 @@ class TestReduceMaxOpWithOutDtype_int16(TestNPUReduceMaxOp):
'out_dtype': int(core.VarDesc.VarType.INT16)
}
self.out = self.inputs['X'].max(axis=tuple(self.attrs['dim']))
self.outputs = {
'Out':
self.inputs['X'].max(axis=tuple(self.attrs['dim'])).astype(np.int16)
......@@ -195,9 +193,6 @@ class TestReduceMaxOpWithOutDtype_fp16(TestNPUReduceMaxOp):
'dim': [-2, -1],
'out_dtype': int(core.VarDesc.VarType.FP16)
}
self.out = self.inputs['X'].max(axis=tuple(self.attrs['dim']))
self.outputs = {
'Out': self.inputs['X'].max(
axis=tuple(self.attrs['dim'])).astype(np.float16)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from paddle.fluid.tests.unittests.op_test import OpTest, skip_check_grad_ci
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid.framework import convert_np_dtype_to_dtype_
paddle.enable_static()
class TestNPUReduceProd(OpTest):
def setUp(self):
self.op_type = "reduce_prod"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {'dim': [0]}
self.outputs = {
'Out': self.inputs['X'].prod(axis=tuple(self.attrs['dim']))
}
def test_check_output(self):
self.check_output_with_place(self.place)
def set_npu(self):
self.__class__.use_npu = True
self.place = paddle.NPUPlace(0)
def init_dtype(self):
self.dtype = np.float32
class TestNPUReduceProd2(TestNPUReduceProd):
def setUp(self):
self.op_type = "reduce_prod"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {} # default 'dim': [0]
self.outputs = {'Out': self.inputs['X'].prod(axis=tuple([0]))}
class TestNPUReduceProd3(TestNPUReduceProd):
def setUp(self):
self.op_type = "reduce_prod"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
# self.attrs = {'dim': [0]}
self.outputs = {'Out': self.inputs['X'].prod(axis=tuple([0]))}
class TestNPUReduceProd6D(TestNPUReduceProd):
def setUp(self):
self.op_type = "reduce_prod"
self.set_npu()
self.init_dtype()
self.inputs = {
'X': np.random.random((5, 6, 2, 3, 4, 2)).astype(self.dtype)
}
self.attrs = {'dim': [2, 3, 4]}
self.outputs = {
'Out': self.inputs['X'].prod(axis=tuple(self.attrs['dim']))
}
class TestNPUReduceProd8D(TestNPUReduceProd):
def setUp(self):
self.op_type = "reduce_prod"
self.set_npu()
self.init_dtype()
self.inputs = {
'X': np.random.random((2, 5, 3, 2, 2, 3, 4, 2)).astype(self.dtype)
}
self.attrs = {'dim': [2, 3, 4]}
self.outputs = {
'Out': self.inputs['X'].prod(axis=tuple(self.attrs['dim']))
}
class TestReduceAll(TestNPUReduceProd):
def setUp(self):
self.op_type = "reduce_prod"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {'reduce_all': True}
self.outputs = {'Out': self.inputs['X'].prod()}
class TestNPUReduceProdWithOutDtype_bool(TestNPUReduceProd):
def setUp(self):
self.op_type = "reduce_prod"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {'dim': [0], 'out_dtype': int(core.VarDesc.VarType.BOOL)}
self.outputs = {
'Out':
self.inputs['X'].prod(axis=tuple(self.attrs['dim'])).astype(np.bool)
}
class TestNPUReduceProdWithOutDtype_int16(TestNPUReduceProd):
def setUp(self):
self.op_type = "reduce_prod"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {'dim': [0], 'out_dtype': int(core.VarDesc.VarType.INT16)}
self.outputs = {
'Out': self.inputs['X'].prod(
axis=tuple(self.attrs['dim'])).astype(np.int16)
}
class TestNPUReduceProdWithOutDtype_int32(TestNPUReduceProd):
def setUp(self):
self.op_type = "reduce_prod"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {'dim': [0], 'out_dtype': int(core.VarDesc.VarType.INT32)}
self.outputs = {
'Out': self.inputs['X'].prod(
axis=tuple(self.attrs['dim'])).astype(np.int32)
}
class TestNPUReduceProdWithOutDtype_int64(TestNPUReduceProd):
def setUp(self):
self.op_type = "reduce_prod"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {'dim': [0], 'out_dtype': int(core.VarDesc.VarType.INT64)}
self.outputs = {
'Out': self.inputs['X'].prod(
axis=tuple(self.attrs['dim'])).astype(np.int64)
}
class TestNPUReduceProdWithOutDtype_fp16(TestNPUReduceProd):
def setUp(self):
self.op_type = "reduce_prod"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {'dim': [0], 'out_dtype': int(core.VarDesc.VarType.FP16)}
self.outputs = {
'Out': self.inputs['X'].prod(
axis=tuple(self.attrs['dim'])).astype(np.float16)
}
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-3)
class TestNPUReduceProdWithOutDtype_fp32(TestNPUReduceProd):
def setUp(self):
self.op_type = "reduce_prod"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {'dim': [0], 'out_dtype': int(core.VarDesc.VarType.FP32)}
self.outputs = {
'Out': self.inputs['X'].prod(
axis=tuple(self.attrs['dim'])).astype(np.float32)
}
class TestNPUReduceProdWithOutDtype_fp64(TestNPUReduceProd):
def setUp(self):
self.op_type = "reduce_prod"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {'dim': [0], 'out_dtype': int(core.VarDesc.VarType.FP64)}
self.outputs = {
'Out': self.inputs['X'].prod(
axis=tuple(self.attrs['dim'])).astype(np.float64)
}
@skip_check_grad_ci(reason="right now not implement grad op")
class TestNPUReduceProdWithOutDtype_fp32_2(TestNPUReduceProd):
def setUp(self):
self.op_type = "reduce_prod"
self.set_npu()
self.init_dtype()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {'dim': [0], 'out_dtype': int(core.VarDesc.VarType.FP32)}
self.outputs = {
'Out': self.inputs['X'].prod(
axis=tuple(self.attrs['dim'])).astype(np.float32)
}
def init_dtype(self):
self.dtype = np.float16
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册