未验证 提交 479c861b 编写于 作者: C Cao Ying 提交者: GitHub

Merge pull request #7726 from lcy-seso/fix_rendering_error_of_transpose_op

fix rendering error of transpose operator and add wrapper.
...@@ -59,44 +59,39 @@ class TransposeOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -59,44 +59,39 @@ class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput( AddInput(
"X", "X",
"(Tensor)The input tensor, tensors with rank at most 6 are supported"); "(Tensor) The input tensor, tensors with rank up to 6 are supported.");
AddOutput("Out", "(Tensor)The output tensor"); AddOutput("Out", "(Tensor)The output tensor.");
AddAttr<std::vector<int>>( AddAttr<std::vector<int>>(
"axis", "axis",
"(vector<int>)A list of values, and the size of the list should be " "(vector<int>) A list of values, and the size of the list should be "
"the same with the input tensor rank, the tensor will " "the same with the input tensor rank. This operator permutes the input "
"permute the axes according the the values given"); "tensor's axes according to the values given.");
AddComment(R"DOC( AddComment(R"DOC(
Transpose Operator. Transpose Operator.
The input tensor will be permuted according to the axis values given. The input tensor will be permuted according to the axes given.
The op functions is similar to how numpy.transpose works in python. The behavior of this operator is similar to how `numpy.transpose` works.
For example: - suppose the input `X` is a 2-D tensor:
$$
X = \begin{pmatrix}
0 &1 &2 \\
3 &4 &5
\end{pmatrix}$$
.. code-block:: text the given `axes` is: $[1, 0]$, and $Y$ = transpose($X$, axis)
input = numpy.arange(6).reshape((2,3)) then the output $Y$ is:
the input is: $$
Y = \begin{pmatrix}
0 &3 \\
1 &4 \\
2 &5
\end{pmatrix}$$
array([[0, 1, 2], - Given a input tensor with shape $(N, C, H, W)$ and the `axes` is
[3, 4, 5]]) $[0, 2, 3, 1]$, then shape of the output tensor will be: $(N, H, W, C)$.
given axis is:
[1, 0]
output = input.transpose(axis)
then the output is:
array([[0, 3],
[1, 4],
[2, 5]])
So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},
the output tensor shape will be (N, H, W, C)
)DOC"); )DOC");
} }
......
...@@ -171,8 +171,9 @@ def train(src_dict_size, trg_dict_size, src_lang="en"): ...@@ -171,8 +171,9 @@ def train(src_dict_size, trg_dict_size, src_lang="en"):
callable: The train reader. callable: The train reader.
""" """
assert (src_lang in ["en", "de"], ("An error language type. Only support: " if src_lang not in ["en", "de"]:
"en (for English); de(for Germany)")) raise ValueError("An error language type. Only support: "
"en (for English); de(for Germany).")
src_dict_size, trg_dict_size = __get_dict_size(src_dict_size, trg_dict_size, src_dict_size, trg_dict_size = __get_dict_size(src_dict_size, trg_dict_size,
src_lang) src_lang)
...@@ -218,9 +219,9 @@ def test(src_dict_size, trg_dict_size, src_lang="en"): ...@@ -218,9 +219,9 @@ def test(src_dict_size, trg_dict_size, src_lang="en"):
callable: The test reader. callable: The test reader.
""" """
assert (src_lang in ["en", "de"], if src_lang not in ["en", "de"]:
("An error language type. " raise ValueError("An error language type. "
"Only support: en (for English); de(for Germany)")) "Only support: en (for English); de(for Germany).")
src_dict_size, trg_dict_size = __get_dict_size(src_dict_size, trg_dict_size, src_dict_size, trg_dict_size = __get_dict_size(src_dict_size, trg_dict_size,
src_lang) src_lang)
...@@ -266,9 +267,9 @@ def validation(src_dict_size, trg_dict_size, src_lang="en"): ...@@ -266,9 +267,9 @@ def validation(src_dict_size, trg_dict_size, src_lang="en"):
Returns: Returns:
callable: The validation reader. callable: The validation reader.
""" """
assert (src_lang in ["en", "de"], if src_lang not in ["en", "de"]:
("An error language type. " raise ValueError("An error language type. "
"Only support: en (for English); de(for Germany)")) "Only support: en (for English); de(for Germany).")
src_dict_size, trg_dict_size = __get_dict_size(src_dict_size, trg_dict_size, src_dict_size, trg_dict_size = __get_dict_size(src_dict_size, trg_dict_size,
src_lang) src_lang)
......
...@@ -22,14 +22,41 @@ from ..param_attr import ParamAttr ...@@ -22,14 +22,41 @@ from ..param_attr import ParamAttr
from tensor import concat from tensor import concat
__all__ = [ __all__ = [
'fc', 'embedding', 'dynamic_lstm', 'gru_unit', 'linear_chain_crf', 'fc',
'crf_decoding', 'cos_sim', 'cross_entropy', 'square_error_cost', 'accuracy', 'embedding',
'chunk_eval', 'sequence_conv', 'conv2d', 'sequence_pool', 'pool2d', 'dynamic_lstm',
'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'sequence_expand', 'gru_unit',
'lstm_unit', 'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min', 'linear_chain_crf',
'sequence_first_step', 'sequence_last_step', 'dropout', 'split', 'crf_decoding',
'ctc_greedy_decoder', 'edit_distance', 'l2_normalize', 'matmul', 'warpctc', 'cos_sim',
'sequence_reshape' 'cross_entropy',
'square_error_cost',
'accuracy',
'chunk_eval',
'sequence_conv',
'conv2d',
'sequence_pool',
'pool2d',
'batch_norm',
'beam_search_decode',
'conv2d_transpose',
'sequence_expand',
'lstm_unit',
'reduce_sum',
'reduce_mean',
'reduce_max',
'reduce_min',
'sequence_first_step',
'sequence_last_step',
'dropout',
'split',
'ctc_greedy_decoder',
'edit_distance',
'l2_normalize',
'matmul',
'warpctc',
'sequence_reshape',
'transpose',
] ]
...@@ -44,14 +71,14 @@ def fc(input, ...@@ -44,14 +71,14 @@ def fc(input,
**Fully Connected Layer** **Fully Connected Layer**
The fully connected layer can take multiple tensors as its inputs. It The fully connected layer can take multiple tensors as its inputs. It
creates a variable (one for each input tensor) called weights for each input creates a variable (one for each input tensor) called weights for each
tensor, which represents a fully connected weight matrix from each input input tensor, which represents a fully connected weight matrix from
unit to each output unit. The fully connected layer multiplies each input each input unit to each output unit. The fully connected layer
tensor with its coresponding weight to produce an output Tensor. If multiplies each input tensor with its coresponding weight to produce
multiple input tensors are given, the results of multiple multiplications an output Tensor. If multiple input tensors are given, the results of
will be sumed up. If bias_attr is not None, a biases variable will be multiple multiplications will be sumed up. If bias_attr is not None,
created and added to the output. Finally, if activation is not None, a biases variable will be created and added to the output. Finally,
it will be applied to the output as well. if activation is not None, it will be applied to the output as well.
This process can be formulated as follows: This process can be formulated as follows:
...@@ -1814,11 +1841,11 @@ def matmul(x, y, transpose_x=False, transpose_y=False, name=None): ...@@ -1814,11 +1841,11 @@ def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
- If both are 2-D, they are multiplied like conventional matrices. - If both are 2-D, they are multiplied like conventional matrices.
- If either is n-D, it is treated as a stack of matrices residing in the - If either is n-D, it is treated as a stack of matrices residing in the
last two dimensions and a batched matrix multiply supporting broadcast last two dimensions and a batched matrix multiply supporting broadcast
applies on the two tensors. applies on the two tensors.
Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
nontransposed, the prepended or appended dimension :math:`1` will be nontransposed, the prepended or appended dimension :math:`1` will be
removed after matrix multiplication. removed after matrix multiplication.
Args: Args:
...@@ -2112,3 +2139,41 @@ def sequence_reshape(input, new_dim): ...@@ -2112,3 +2139,41 @@ def sequence_reshape(input, new_dim):
outputs={'Out': [out]}, outputs={'Out': [out]},
attrs={'new_dim': new_dim}) attrs={'new_dim': new_dim})
return out return out
def transpose(x, perm, name=None):
"""
**transpose Layer**
Permute the dimensions of `input` according to `perm`.
The `i`-th dimension of the returned tensor will correspond to the
perm[i]-th dimension of `input`.
Args:
input (Variable): (Tensor), A Tensor.
perm (list): A permutation of the dimensions of `input`.
Returns:
Variable: A transposed Tensor.
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
x_transposed = layers.transpose(x, perm=[1, 0, 2])
"""
if len(perm) != len(x.shape):
raise ValueError(
"Input(perm) is the permutation of dimensions of Input(input). "
"It's length shoud be equal to Input(input)'s rank.")
helper = LayerHelper('transpose', **locals())
out = helper.create_tmp_variable(x.dtype)
helper.append_op(
type='transpose',
inputs={'X': [x]},
outputs={'Out': [out]},
attrs={'axis': perm})
return out
...@@ -45,10 +45,20 @@ __activations__ = [ ...@@ -45,10 +45,20 @@ __activations__ = [
] ]
__all__ = [ __all__ = [
'mean', 'mul', 'reshape', 'scale', 'transpose', 'mean',
'sigmoid_cross_entropy_with_logits', 'elementwise_add', 'elementwise_div', 'mul',
'elementwise_sub', 'elementwise_mul', 'elementwise_max', 'elementwise_min', 'reshape',
'clip', 'clip_by_norm', 'sequence_softmax' 'scale',
'sigmoid_cross_entropy_with_logits',
'elementwise_add',
'elementwise_div',
'elementwise_sub',
'elementwise_mul',
'elementwise_max',
'elementwise_min',
'clip',
'clip_by_norm',
'sequence_softmax',
] + __activations__ ] + __activations__
for _OP in set(__all__): for _OP in set(__all__):
......
...@@ -65,13 +65,13 @@ def lstm_net(dict_dim, class_dim=2, emb_dim=32, seq_len=80, batch_size=50): ...@@ -65,13 +65,13 @@ def lstm_net(dict_dim, class_dim=2, emb_dim=32, seq_len=80, batch_size=50):
emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim]) emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
emb = fluid.layers.reshape(x=emb, shape=[batch_size, seq_len, emb_dim]) emb = fluid.layers.reshape(x=emb, shape=[batch_size, seq_len, emb_dim])
emb = fluid.layers.transpose(x=emb, axis=[1, 0, 2]) emb = fluid.layers.transpose(x=emb, perm=[1, 0, 2])
c_pre_init = fluid.layers.fill_constant( c_pre_init = fluid.layers.fill_constant(
dtype=emb.dtype, shape=[batch_size, emb_dim], value=0.0) dtype=emb.dtype, shape=[batch_size, emb_dim], value=0.0)
c_pre_init.stop_gradient = False c_pre_init.stop_gradient = False
layer_1_out = lstm(emb, c_pre_init=c_pre_init, hidden_dim=emb_dim) layer_1_out = lstm(emb, c_pre_init=c_pre_init, hidden_dim=emb_dim)
layer_1_out = fluid.layers.transpose(x=layer_1_out, axis=[1, 0, 2]) layer_1_out = fluid.layers.transpose(x=layer_1_out, perm=[1, 0, 2])
prediction = fluid.layers.fc(input=layer_1_out, prediction = fluid.layers.fc(input=layer_1_out,
size=class_dim, size=class_dim,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册