Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
442e95c1
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
442e95c1
编写于
9月 21, 2020
作者:
P
Pei Yang
提交者:
GitHub
9月 21, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
cherry-pick-emb-eltadd-ln-optim (#27420)
上级
7edbd6ed
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
289 addition
and
111 deletion
+289
-111
cmake/cuda.cmake
cmake/cuda.cmake
+3
-0
paddle/fluid/inference/tensorrt/convert/emb_eltwise_layernorm.cc
...fluid/inference/tensorrt/convert/emb_eltwise_layernorm.cc
+3
-3
paddle/fluid/inference/tensorrt/plugin/emb_eltwise_layernorm_plugin.cu
...inference/tensorrt/plugin/emb_eltwise_layernorm_plugin.cu
+133
-71
paddle/fluid/inference/tensorrt/plugin/emb_eltwise_layernorm_plugin.h
.../inference/tensorrt/plugin/emb_eltwise_layernorm_plugin.h
+146
-31
paddle/fluid/inference/tests/api/trt_dynamic_shape_ernie_deserialize_test.cc
...nce/tests/api/trt_dynamic_shape_ernie_deserialize_test.cc
+4
-6
未找到文件。
cmake/cuda.cmake
浏览文件 @
442e95c1
...
...
@@ -100,6 +100,9 @@ function(select_nvcc_arch_flags out_variable)
elseif
(
${
CUDA_ARCH_NAME
}
STREQUAL
"Maxwell"
)
set
(
cuda_arch_bin
"50"
)
elseif
(
${
CUDA_ARCH_NAME
}
STREQUAL
"Pascal"
)
if
(
NOT
${
CMAKE_CUDA_COMPILER_VERSION
}
LESS 10.0
)
add_definitions
(
"-DSUPPORTS_CUDA_FP16"
)
endif
()
set
(
cuda_arch_bin
"60 61"
)
elseif
(
${
CUDA_ARCH_NAME
}
STREQUAL
"Volta"
)
if
(
NOT
${
CUDA_VERSION
}
LESS 10.0
)
...
...
paddle/fluid/inference/tensorrt/convert/emb_eltwise_layernorm.cc
浏览文件 @
442e95c1
...
...
@@ -80,10 +80,10 @@ class EmbEltwiseLayerNormOpConverter : public OpConverter {
nvinfer1
::
ILayer
*
layer
=
nullptr
;
if
(
engine_
->
with_dynamic_shape
())
{
plugin
::
DynamicPluginTensorRT
*
plugin
=
nullptr
;
plugin
=
new
plugin
::
EmbEltwiseLayernormPluginDynamic
<
float
>
(
auto
use_fp16
=
engine_
->
WithFp16
()
;
auto
plugin
=
new
plugin
::
EmbEltwiseLayernormPluginDynamic
(
input_embs
,
bias
,
scale
,
emb_sizes
,
bias_size
,
scale_size
,
hidden
,
eps
);
eps
,
use_fp16
);
layer
=
engine_
->
AddPluginV2
(
input_ids
.
data
(),
input_num
,
plugin
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
...
...
paddle/fluid/inference/tensorrt/plugin/emb_eltwise_layernorm_plugin.cu
浏览文件 @
442e95c1
...
...
@@ -32,13 +32,34 @@ namespace plugin {
#if IS_TRT_VERSION_GE(6000)
template
<
typename
T
>
int
EmbEltwiseLayernormPluginDynamic
<
T
>::
initialize
()
{
EmbEltwiseLayernormPluginDynamicImpl
<
T
>::~
EmbEltwiseLayernormPluginDynamicImpl
()
{
this
->
terminate
();
}
inline
half
fp32tofp16
(
float
x
)
{
return
static_cast
<
half
>
(
x
);
}
template
<
typename
T
>
int
EmbEltwiseLayernormPluginDynamicImpl
<
T
>::
initialize
()
{
embs_gpu_
.
resize
(
embs_
.
size
());
for
(
int
i
=
0
;
i
<
embs_
.
size
();
i
++
)
{
if
(
embs_
[
i
])
{
cudaMalloc
(
&
embs_gpu_
[
i
],
sizeof
(
float
)
*
emb_sizes_
[
i
]);
cudaMemcpy
(
embs_gpu_
[
i
],
embs_
[
i
],
emb_sizes_
[
i
]
*
sizeof
(
float
),
T
*
host_ptr
;
auto
size
=
emb_sizes_
[
i
];
if
(
std
::
is_same
<
T
,
half
>::
value
)
{
host_ptr
=
new
T
[
size
];
std
::
transform
(
embs_
[
i
],
(
embs_
[
i
]
+
size
),
host_ptr
,
fp32tofp16
);
}
else
{
host_ptr
=
reinterpret_cast
<
T
*>
(
embs_
[
i
]);
}
cudaMalloc
(
&
embs_gpu_
[
i
],
sizeof
(
T
)
*
size
);
cudaMemcpy
(
embs_gpu_
[
i
],
host_ptr
,
size
*
sizeof
(
T
),
cudaMemcpyHostToDevice
);
if
(
std
::
is_same
<
T
,
half
>::
value
)
{
delete
[]
host_ptr
;
}
}
}
...
...
@@ -53,11 +74,105 @@ int EmbEltwiseLayernormPluginDynamic<T>::initialize() {
cudaMemcpyHostToDevice
);
}
int
input_num
=
embs_
.
size
();
in_ptr_tensor_
.
Resize
({
input_num
});
emb_ptr_tensor_
.
Resize
({
input_num
});
cudaGetDevice
(
&
device_id_
);
auto
emb_ptr_gpu_d
=
emb_ptr_tensor_
.
mutable_data
<
int64_t
>
(
platform
::
CUDAPlace
(
device_id_
));
cudaMemcpy
(
emb_ptr_gpu_d
,
embs_gpu_
.
data
(),
sizeof
(
uintptr_t
)
*
input_num
,
cudaMemcpyHostToDevice
);
return
0
;
}
template
<
typename
T
>
nvinfer1
::
DimsExprs
EmbEltwiseLayernormPluginDynamic
<
T
>::
getOutputDimensions
(
void
EmbEltwiseLayernormPluginDynamicImpl
<
T
>::
terminate
()
{
for
(
int
i
=
0
;
i
<
embs_gpu_
.
size
();
++
i
)
{
if
(
embs_gpu_
[
i
])
{
cudaFree
(
embs_gpu_
[
i
]);
embs_gpu_
[
i
]
=
nullptr
;
}
}
if
(
bias_gpu_
)
{
cudaFree
(
bias_gpu_
);
bias_gpu_
=
nullptr
;
}
if
(
scale_gpu_
)
{
cudaFree
(
scale_gpu_
);
scale_gpu_
=
nullptr
;
}
}
template
<
typename
T
>
int
EmbEltwiseLayernormPluginDynamicImpl
<
T
>::
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
{
auto
id_dims
=
input_desc
[
0
].
dims
;
int
batch
=
id_dims
.
d
[
0
];
int
seq_len
=
id_dims
.
d
[
1
];
int
input_num
=
embs_
.
size
();
auto
in_ptr_gpu_d
=
in_ptr_tensor_
.
mutable_data
<
int64_t
>
(
platform
::
CUDAPlace
(
device_id_
));
auto
emb_ptr_gpu_d
=
emb_ptr_tensor_
.
mutable_data
<
int64_t
>
(
platform
::
CUDAPlace
(
device_id_
));
auto
new_input_ptr
=
reinterpret_cast
<
uintptr_t
>
(
inputs
[
0
]);
if
(
old_input_ptr_
!=
new_input_ptr
)
{
old_input_ptr_
=
new_input_ptr
;
cudaMemcpyAsync
(
in_ptr_gpu_d
,
reinterpret_cast
<
const
void
*>
(
inputs
),
sizeof
(
uintptr_t
)
*
input_num
,
cudaMemcpyHostToDevice
,
stream
);
}
auto
out_type
=
output_desc
[
0
].
type
;
if
(
std
::
is_same
<
T
,
float
>::
value
)
{
PADDLE_ENFORCE_EQ
(
out_type
==
nvinfer1
::
DataType
::
kFLOAT
,
true
,
platform
::
errors
::
InvalidArgument
(
"The EmbEltwiseLayernorm Plugin only support fp32 input."
));
}
else
if
(
std
::
is_same
<
T
,
half
>::
value
)
{
PADDLE_ENFORCE_EQ
(
out_type
==
nvinfer1
::
DataType
::
kHALF
,
true
,
platform
::
errors
::
InvalidArgument
(
"The EmbEltwiseLayernorm Plugin only support fp16 input."
));
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"Unsupport data type, the out type of EmbEltwiseLayernorm should be "
"float or half."
));
}
auto
*
output_d
=
reinterpret_cast
<
T
*>
(
outputs
[
0
]);
operators
::
math
::
EmbEltwiseLayerNormFunctor
<
T
>
emb_eltwise_layernorm_func
;
emb_eltwise_layernorm_func
(
batch
,
seq_len
,
hidden_size_
,
in_ptr_gpu_d
,
scale_gpu_
,
bias_gpu_
,
emb_ptr_gpu_d
,
output_d
,
eps_
,
input_num
,
stream
);
return
cudaGetLastError
()
!=
cudaSuccess
;
}
template
class
EmbEltwiseLayernormPluginDynamicImpl
<
float
>;
#ifdef SUPPORTS_CUDA_FP16
template
class
EmbEltwiseLayernormPluginDynamicImpl
<
half
>;
#endif // SUPPORTS_CUDA_FP16
int
EmbEltwiseLayernormPluginDynamic
::
initialize
()
{
impl_
->
initialize
();
return
0
;
}
void
EmbEltwiseLayernormPluginDynamic
::
terminate
()
{
impl_
->
terminate
();
}
nvinfer1
::
DimsExprs
EmbEltwiseLayernormPluginDynamic
::
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
{
// NOLINT
PADDLE_ENFORCE_EQ
(
output_index
,
0
,
...
...
@@ -76,8 +191,7 @@ nvinfer1::DimsExprs EmbEltwiseLayernormPluginDynamic<T>::getOutputDimensions(
return
ret
;
}
template
<
typename
T
>
bool
EmbEltwiseLayernormPluginDynamic
<
T
>::
supportsFormatCombination
(
bool
EmbEltwiseLayernormPluginDynamic
::
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
in_out
,
int
nb_inputs
,
int
nb_outputs
)
{
PADDLE_ENFORCE_NOT_NULL
(
...
...
@@ -88,6 +202,11 @@ bool EmbEltwiseLayernormPluginDynamic<T>::supportsFormatCombination(
"The EmbEltwiseLayerNorm's output should be one"
"but it's (%d) outputs."
,
nb_outputs
));
PADDLE_ENFORCE_EQ
(
nb_outputs
,
1
,
platform
::
errors
::
InvalidArgument
(
"The EmbEltwiseLayerNorm's output should be one"
"but it's (%d) outputs."
,
nb_outputs
));
PADDLE_ENFORCE_LT
(
pos
,
nb_inputs
+
nb_outputs
,
platform
::
errors
::
InvalidArgument
(
"The pos(%d) should be less than the "
...
...
@@ -112,7 +231,7 @@ bool EmbEltwiseLayernormPluginDynamic<T>::supportsFormatCombination(
}
if
(
pos
==
all_nums
-
1
)
{
if
(
sizeof
(
T
)
==
sizeof
(
float
)
)
{
if
(
with_fp16_
==
false
)
{
return
desc
.
type
==
nvinfer1
::
DataType
::
kFLOAT
;
}
else
{
return
desc
.
type
==
nvinfer1
::
DataType
::
kHALF
;
...
...
@@ -121,84 +240,27 @@ bool EmbEltwiseLayernormPluginDynamic<T>::supportsFormatCombination(
return
false
;
}
template
<
typename
T
>
nvinfer1
::
DataType
EmbEltwiseLayernormPluginDynamic
<
T
>::
getOutputDataType
(
nvinfer1
::
DataType
EmbEltwiseLayernormPluginDynamic
::
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
input_types
,
int
nb_inputs
)
const
{
PADDLE_ENFORCE_EQ
(
index
,
0
,
platform
::
errors
::
InvalidArgument
(
"The EmbEltwiseLayernorm Plugin only has one input, so the "
"index value should be 0, but get %d."
,
index
));
return
nvinfer1
::
DataType
::
kFLOAT
;
if
(
with_fp16_
)
return
nvinfer1
::
DataType
::
kHALF
;
else
return
nvinfer1
::
DataType
::
kFLOAT
;
}
template
<
typename
T
>
int
EmbEltwiseLayernormPluginDynamic
<
T
>::
enqueue
(
int
EmbEltwiseLayernormPluginDynamic
::
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
{
auto
id_dims
=
input_desc
[
0
].
dims
;
int
batch
=
id_dims
.
d
[
0
];
int
seq_len
=
id_dims
.
d
[
1
];
int
input_num
=
embs_
.
size
();
framework
::
Tensor
in_ptr_tensor
,
emb_ptr_tensor
;
int
device_id
;
cudaGetDevice
(
&
device_id
);
in_ptr_tensor
.
Resize
({
input_num
});
emb_ptr_tensor
.
Resize
({
input_num
});
int64_t
*
in_ptr_gpu_d
=
in_ptr_tensor
.
mutable_data
<
int64_t
>
(
platform
::
CUDAPlace
(
device_id
));
int64_t
*
emb_ptr_gpu_d
=
emb_ptr_tensor
.
mutable_data
<
int64_t
>
(
platform
::
CUDAPlace
(
device_id
));
std
::
vector
<
int64_t
>
in_ptr
,
emb_ptr
;
for
(
int
i
=
0
;
i
<
input_num
;
i
++
)
{
in_ptr
.
push_back
(
reinterpret_cast
<
uintptr_t
>
(
inputs
[
i
]));
emb_ptr
.
push_back
(
reinterpret_cast
<
uintptr_t
>
(
embs_gpu_
[
i
]));
}
cudaMemcpyAsync
(
in_ptr_gpu_d
,
in_ptr
.
data
(),
sizeof
(
int64_t
)
*
input_num
,
cudaMemcpyHostToDevice
,
stream
);
cudaMemcpyAsync
(
emb_ptr_gpu_d
,
emb_ptr
.
data
(),
sizeof
(
int64_t
)
*
input_num
,
cudaMemcpyHostToDevice
,
stream
);
auto
out_type
=
output_desc
[
0
].
type
;
const
unsigned
tpb
=
256
;
const
dim3
grid
(
seq_len
,
batch
,
1
);
const
dim3
block
(
tpb
,
1
,
1
);
if
(
sizeof
(
T
)
==
sizeof
(
float
))
{
PADDLE_ENFORCE_EQ
(
out_type
==
nvinfer1
::
DataType
::
kFLOAT
,
true
,
platform
::
errors
::
InvalidArgument
(
"The EmbEltwiseLayernorm Plugin only support fp32 input."
));
}
else
if
(
sizeof
(
T
)
==
sizeof
(
int16_t
))
{
PADDLE_ENFORCE_EQ
(
out_type
==
nvinfer1
::
DataType
::
kHALF
,
true
,
platform
::
errors
::
InvalidArgument
(
"The EmbEltwiseLayernorm Plugin only support fp16 input."
));
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"Unsupport data type, the out type of EmbEltwiseLayernorm should be "
"float or half."
));
}
T
*
output_d
=
static_cast
<
T
*>
(
outputs
[
0
]);
operators
::
math
::
EmbEltwiseLayerNormFunctor
<
T
>
emb_eltwise_layernorm_func
;
emb_eltwise_layernorm_func
(
batch
,
seq_len
,
hidden_size_
,
in_ptr_gpu_d
,
scale_gpu_
,
bias_gpu_
,
emb_ptr_gpu_d
,
output_d
,
eps_
,
input_num
,
stream
);
impl_
->
enqueue
(
input_desc
,
output_desc
,
inputs
,
outputs
,
workspace
,
stream
);
return
cudaGetLastError
()
!=
cudaSuccess
;
}
template
class
EmbEltwiseLayernormPluginDynamic
<
float
>;
#ifdef SUPPORTS_CUDA_FP16
template
class
EmbEltwiseLayernormPluginDynamic
<
half
>;
#endif // SUPPORTS_CUDA_FP16
#endif
}
// namespace plugin
...
...
paddle/fluid/inference/tensorrt/plugin/emb_eltwise_layernorm_plugin.h
浏览文件 @
442e95c1
...
...
@@ -27,14 +27,76 @@ namespace tensorrt {
namespace
plugin
{
#if IS_TRT_VERSION_GE(6000)
class
EmbEltwiseLayernormPluginDynamicImplBase
{
public:
EmbEltwiseLayernormPluginDynamicImplBase
()
{}
virtual
~
EmbEltwiseLayernormPluginDynamicImplBase
()
{}
virtual
int
initialize
()
=
0
;
virtual
void
terminate
()
=
0
;
virtual
int
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
inputDesc
,
const
nvinfer1
::
PluginTensorDesc
*
outputDesc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
=
0
;
};
template
<
typename
T
>
class
EmbEltwiseLayernormPluginDynamicImpl
:
public
EmbEltwiseLayernormPluginDynamicImplBase
{
public:
explicit
EmbEltwiseLayernormPluginDynamicImpl
(
std
::
vector
<
float
*>
input_embs
,
float
*
bias
,
float
*
scale
,
std
::
vector
<
int
>
emb_sizes
,
int
bias_size
,
int
scale_size
,
int
hidden_size
,
float
eps
)
:
embs_
(
input_embs
),
bias_
(
bias
),
scale_
(
scale
),
emb_sizes_
(
emb_sizes
),
bias_size_
(
bias_size
),
scale_size_
(
scale_size
),
hidden_size_
(
hidden_size
),
eps_
(
eps
)
{}
~
EmbEltwiseLayernormPluginDynamicImpl
();
int
initialize
();
void
terminate
();
int
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
inputDesc
,
const
nvinfer1
::
PluginTensorDesc
*
outputDesc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
);
private:
std
::
vector
<
float
*>
embs_
;
float
*
bias_
{
nullptr
};
float
*
scale_
{
nullptr
};
// data on devices
float
*
bias_gpu_
{
nullptr
};
float
*
scale_gpu_
{
nullptr
};
std
::
vector
<
T
*>
embs_gpu_
;
std
::
vector
<
int
>
emb_sizes_
;
int
bias_size_
;
int
scale_size_
;
int
hidden_size_
;
float
eps_
;
framework
::
Tensor
in_ptr_tensor_
,
emb_ptr_tensor_
;
int
device_id_
{
0
};
uintptr_t
old_input_ptr_
{
0
};
};
class
EmbEltwiseLayernormPluginDynamic
:
public
DynamicPluginTensorRT
{
public:
explicit
EmbEltwiseLayernormPluginDynamic
(
std
::
vector
<
float
*>
input_embs
,
float
*
bias
,
float
*
scale
,
std
::
vector
<
int
>
emb_sizes
,
int
bias_size
,
int
scale_size
,
int
hidden_size
,
float
eps
)
int
hidden_size
,
float
eps
,
bool
with_fp16
)
:
embs_
(
input_embs
),
bias_
(
bias
),
scale_
(
scale
),
...
...
@@ -42,48 +104,82 @@ class EmbEltwiseLayernormPluginDynamic : public DynamicPluginTensorRT {
bias_size_
(
bias_size
),
scale_size_
(
scale_size
),
hidden_size_
(
hidden_size
),
eps_
(
eps
)
{}
eps_
(
eps
),
with_fp16_
(
with_fp16
),
own_host_buff_
(
false
)
{
if
(
with_fp16
)
{
#ifdef SUPPORTS_CUDA_FP16
impl_
=
new
EmbEltwiseLayernormPluginDynamicImpl
<
half
>
(
embs_
,
bias_
,
scale_
,
emb_sizes_
,
bias_size_
,
scale_size_
,
hidden_size_
,
eps_
);
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"Unsupported data type, current GPU doesn't support half."
));
#endif // SUPPORTS_CUDA_FP16
}
else
{
impl_
=
new
EmbEltwiseLayernormPluginDynamicImpl
<
float
>
(
embs_
,
bias_
,
scale_
,
emb_sizes_
,
bias_size_
,
scale_size_
,
hidden_size_
,
eps_
);
}
}
EmbEltwiseLayernormPluginDynamic
(
void
const
*
serial_data
,
size_t
serial_length
)
{
size_t
serial_length
)
:
own_host_buff_
(
true
)
{
DeserializeValue
(
&
serial_data
,
&
serial_length
,
&
emb_sizes_
);
embs_gpu_
.
resize
(
emb_sizes_
.
size
());
embs_
.
resize
(
emb_sizes_
.
size
());
for
(
size_t
i
=
0
;
i
<
emb_sizes_
.
size
();
i
++
)
{
cudaMalloc
(
&
embs_gpu_
[
i
],
sizeof
(
float
)
*
emb_sizes_
[
i
]);
cudaMemcpy
(
embs_gpu_
[
i
],
serial_data
,
emb_sizes_
[
i
]
*
sizeof
(
float
),
cudaMemcpyHostToDevice
);
auto
size
=
emb_sizes_
[
i
];
auto
ptr
=
new
float
[
size
];
memcpy
(
ptr
,
serial_data
,
sizeof
(
float
)
*
size
);
embs_
[
i
]
=
ptr
;
reinterpret_cast
<
char
const
*&>
(
serial_data
)
+=
emb_sizes_
[
i
]
*
sizeof
(
float
);
serial_length
-=
emb_sizes_
[
i
]
*
sizeof
(
float
);
embs_
[
i
]
=
nullptr
;
}
DeserializeValue
(
&
serial_data
,
&
serial_length
,
&
bias_size_
);
DeserializeValue
(
&
serial_data
,
&
serial_length
,
&
scale_size_
);
cudaMalloc
(
&
bias_gpu_
,
sizeof
(
float
)
*
bias_size_
);
cudaMemcpy
(
bias_gpu_
,
serial_data
,
bias_size_
*
sizeof
(
float
),
cudaMemcpyHostToDevice
);
bias_
=
nullptr
;
if
(
bias_size_
)
{
bias_
=
new
float
[
bias_size_
];
memcpy
(
bias_
,
serial_data
,
sizeof
(
float
)
*
bias_size_
);
}
reinterpret_cast
<
char
const
*&>
(
serial_data
)
+=
bias_size_
*
sizeof
(
float
);
serial_length
-=
bias_size_
*
sizeof
(
float
);
cudaMalloc
(
&
scale_gpu_
,
sizeof
(
float
)
*
scale_size_
);
cudaMemcpy
(
scale_gpu_
,
serial_data
,
scale_size_
*
sizeof
(
float
),
cudaMemcpyHostToDevice
);
scale_
=
nullptr
;
if
(
scale_size_
)
{
scale_
=
new
float
[
scale_size_
];
memcpy
(
scale_
,
serial_data
,
sizeof
(
float
)
*
scale_size_
);
}
reinterpret_cast
<
char
const
*&>
(
serial_data
)
+=
scale_size_
*
sizeof
(
float
);
serial_length
-=
scale_size_
*
sizeof
(
float
);
DeserializeValue
(
&
serial_data
,
&
serial_length
,
&
hidden_size_
);
DeserializeValue
(
&
serial_data
,
&
serial_length
,
&
eps_
);
DeserializeValue
(
&
serial_data
,
&
serial_length
,
&
with_fp16_
);
if
(
with_fp16_
)
{
#ifdef SUPPORTS_CUDA_FP16
impl_
=
new
EmbEltwiseLayernormPluginDynamicImpl
<
half
>
(
embs_
,
bias_
,
scale_
,
emb_sizes_
,
bias_size_
,
scale_size_
,
hidden_size_
,
eps_
);
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"Unsupported data type, current GPU doesn't support half."
));
#endif // SUPPORTS_CUDA_FP16
}
else
{
impl_
=
new
EmbEltwiseLayernormPluginDynamicImpl
<
float
>
(
embs_
,
bias_
,
scale_
,
emb_sizes_
,
bias_size_
,
scale_size_
,
hidden_size_
,
eps_
);
}
}
nvinfer1
::
IPluginV2DynamicExt
*
clone
()
const
override
{
return
new
EmbEltwiseLayernormPluginDynamic
(
auto
ptr
=
new
EmbEltwiseLayernormPluginDynamic
(
embs_
,
bias_
,
scale_
,
emb_sizes_
,
bias_size_
,
scale_size_
,
hidden_size_
,
eps_
);
eps_
,
with_fp16_
);
return
ptr
;
}
const
char
*
getPluginType
()
const
override
{
...
...
@@ -91,6 +187,7 @@ class EmbEltwiseLayernormPluginDynamic : public DynamicPluginTensorRT {
}
int
getNbOutputs
()
const
override
{
return
1
;
}
int
initialize
()
override
;
void
terminate
()
override
;
size_t
getSerializationSize
()
const
override
{
int
sum_num
=
0
;
...
...
@@ -106,23 +203,32 @@ class EmbEltwiseLayernormPluginDynamic : public DynamicPluginTensorRT {
sum_num
+=
(
bias_size_
+
scale_size_
)
*
sizeof
(
float
);
sum_num
+=
SerializedSize
(
hidden_size_
);
sum_num
+=
SerializedSize
(
eps_
);
//
sum_num += SerializedSize(with_fp16_);
sum_num
+=
SerializedSize
(
with_fp16_
);
return
sum_num
;
}
void
serialize
(
void
*
buffer
)
const
override
{
// SerializeValue(&buffer, with_fp16_);
SerializeValue
(
&
buffer
,
emb_sizes_
);
for
(
size_t
i
=
0
;
i
<
emb_sizes_
.
size
();
i
++
)
{
SerializeCudaPointer
(
&
buffer
,
embs_gpu_
[
i
],
emb_sizes_
[
i
]);
auto
size
=
emb_sizes_
[
i
];
for
(
int
j
=
0
;
j
<
size
;
++
j
)
{
SerializeValue
(
&
buffer
,
embs_
[
i
][
j
]);
}
}
SerializeValue
(
&
buffer
,
bias_size_
);
SerializeValue
(
&
buffer
,
scale_size_
);
SerializeCudaPointer
(
&
buffer
,
bias_gpu_
,
bias_size_
);
SerializeCudaPointer
(
&
buffer
,
scale_gpu_
,
scale_size_
);
for
(
int
i
=
0
;
i
<
bias_size_
;
++
i
)
{
SerializeValue
(
&
buffer
,
bias_
[
i
]);
}
for
(
int
i
=
0
;
i
<
scale_size_
;
++
i
)
{
SerializeValue
(
&
buffer
,
scale_
[
i
]);
}
SerializeValue
(
&
buffer
,
hidden_size_
);
SerializeValue
(
&
buffer
,
eps_
);
SerializeValue
(
&
buffer
,
with_fp16_
);
}
nvinfer1
::
DimsExprs
getOutputDimensions
(
...
...
@@ -153,23 +259,33 @@ class EmbEltwiseLayernormPluginDynamic : public DynamicPluginTensorRT {
const
nvinfer1
::
DataType
*
input_types
,
int
nb_inputs
)
const
override
;
void
destroy
()
override
{
delete
this
;
}
void
destroy
()
override
{
if
(
own_host_buff_
)
{
for
(
auto
ptr
:
embs_
)
{
delete
[]
ptr
;
}
delete
[]
bias_
;
delete
[]
scale_
;
}
delete
impl_
;
delete
this
;
}
private:
std
::
vector
<
float
*>
embs_
;
float
*
bias_
;
float
*
scale_
;
// data on devices
float
*
bias_gpu_
;
float
*
scale_gpu_
;
std
::
vector
<
float
*>
embs_gpu_
;
std
::
vector
<
int
>
emb_sizes_
;
int
bias_size_
;
int
scale_size_
;
int
hidden_size_
;
float
eps_
;
bool
with_fp16_
;
bool
own_host_buff_
{
false
};
EmbEltwiseLayernormPluginDynamicImplBase
*
impl_
{
nullptr
};
};
class
EmbEltwiseLayernormPluginV2Creator
:
public
nvinfer1
::
IPluginCreator
{
...
...
@@ -193,8 +309,7 @@ class EmbEltwiseLayernormPluginV2Creator : public nvinfer1::IPluginCreator {
nvinfer1
::
IPluginV2
*
deserializePlugin
(
const
char
*
name
,
const
void
*
serial_data
,
size_t
serial_length
)
override
{
return
new
EmbEltwiseLayernormPluginDynamic
<
float
>
(
serial_data
,
serial_length
);
return
new
EmbEltwiseLayernormPluginDynamic
(
serial_data
,
serial_length
);
}
void
setPluginNamespace
(
const
char
*
lib_namespace
)
override
{
...
...
paddle/fluid/inference/tests/api/trt_dynamic_shape_ernie_deserialize_test.cc
浏览文件 @
442e95c1
...
...
@@ -148,7 +148,7 @@ void trt_ernie(bool with_fp16, std::vector<float> result) {
run
(
config
,
&
out_data
);
// serialize
run
(
*
config_deser
,
&
out_data
);
// deserialize
for
(
size_t
i
=
0
;
i
<
out_data
.
size
();
i
++
)
{
EXPECT_NEAR
(
result
[
i
],
out_data
[
i
],
1e-
6
);
EXPECT_NEAR
(
result
[
i
],
out_data
[
i
],
1e-
2
);
}
}
...
...
@@ -156,13 +156,11 @@ TEST(AnalysisPredictor, no_fp16) {
std
::
vector
<
float
>
result
=
{
0.597841
,
0.219972
,
0.182187
};
trt_ernie
(
false
,
result
);
}
TEST
(
AnalysisPredictor
,
fp16
)
{
#ifdef SUPPORTS_CUDA_FP16
std
::
vector
<
float
>
result
=
{
0.598336
,
0.219558
,
0.182106
};
TEST
(
AnalysisPredictor
,
fp16
)
{
std
::
vector
<
float
>
result
=
{
0.59923654
,
0.21923761
,
0.18152587
};
trt_ernie
(
true
,
result
);
#endif
}
#endif // SUPPORTS_CUDA_FP16
}
// namespace inference
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录