未验证 提交 42c7bb47 编写于 作者: Q qipengh 提交者: GitHub

[MLU] add check_finite_and_unscale op for amp (#40458)

上级 5cb506b0
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/amp/check_finite_and_unscale_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class CheckFiniteAndUnscaleMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const {
auto& dev_ctx = ctx.template device_context<platform::MLUDeviceContext>();
const auto xs = ctx.MultiInput<framework::Tensor>("X");
const auto* scale = ctx.Input<framework::Tensor>("Scale");
auto outs = ctx.MultiOutput<framework::Tensor>("Out");
auto* found_inf = ctx.Output<framework::Tensor>("FoundInfinite");
found_inf->mutable_data<bool>(dev_ctx.GetPlace());
MLUCnnlTensorDesc scale_desc(*scale);
MLUCnnlTensorDesc found_inf_desc(*found_inf, CNNL_LAYOUT_ARRAY,
ToCnnlDataType<bool>());
for (size_t i = 0; i < xs.size(); ++i) {
const auto* x = xs[i];
auto* out = outs[i];
out->mutable_data<T>(ctx.GetPlace());
// check is_finite or is_nan
Tensor is_finite(found_inf->type());
if (i != 0) {
is_finite.Resize(phi::make_ddim({1}));
is_finite.mutable_data<bool>(ctx.GetPlace());
} else {
is_finite.ShareDataWith(*found_inf);
}
MLUCnnlTensorDesc x_desc(*x);
MLUCnnl::IsNanInf(ctx, x_desc.get(), GetBasePtr(x),
GetBasePtr(&is_finite));
// save is_finite by logical_and op after checking every input
if (i != 0) {
MLUCnnlTensorDesc is_finite_desc(is_finite, CNNL_LAYOUT_ARRAY,
ToCnnlDataType<bool>());
MLUCnnl::Logic(ctx, CNNL_LOGIC_OP_OR, found_inf_desc.get(),
GetBasePtr(found_inf), is_finite_desc.get(),
GetBasePtr(&is_finite), found_inf_desc.get(),
GetBasePtr(found_inf));
}
// The normal logic is :
// out = in, if found_inf = true
// out = in/scale, if found_inf = false
// But when found_inf is true, the data of Out should not be used.
// So, on MLU, we always compute out with in/scale.
MLUCnnlTensorDesc out_desc(*out);
MLUCnnl::Div(ctx, CNNL_COMPUTATION_HIGH_PRECISION, x_desc.get(),
GetBasePtr(x), scale_desc.get(), GetBasePtr(scale),
out_desc.get(), GetBasePtr(out));
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_MLU_KERNEL(check_finite_and_unscale,
ops::CheckFiniteAndUnscaleMLUKernel<float>,
ops::CheckFiniteAndUnscaleMLUKernel<plat::float16>);
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
paddle.enable_static()
SEED = 2022
class TestCheckFiniteAndUnscaleOp(OpTest):
def setUp(self):
self.set_mlu()
self.op_type = "check_finite_and_unscale"
self.init_dtype()
self.init_test_case()
def init_test_case(self):
x = np.random.random((129, 129)).astype(self.dtype)
scale = np.random.random((1)).astype(self.dtype)
self.inputs = {'X': [('x0', x)], 'Scale': scale}
self.outputs = {
'FoundInfinite': np.array([0]),
'Out': [('out0', x / scale)],
}
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.device.MLUPlace(0)
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place)
class TestCheckFiniteAndUnscaleOpWithNan(TestCheckFiniteAndUnscaleOp):
def init_test_case(self):
x = np.random.random((129, 129)).astype(self.dtype)
x[128][128] = np.nan
scale = np.random.random((1)).astype(self.dtype)
self.inputs = {'X': [('x0', x)], 'Scale': scale}
self.outputs = {
'FoundInfinite': np.array([1]),
'Out': [('out0', x)],
}
def test_check_output(self):
# When input contains nan, do not check the output,
# since the output may be nondeterministic and will be discarded.
self.check_output_with_place(self.place, no_check_set=['Out'])
class TestCheckFiniteAndUnscaleOpWithInf(TestCheckFiniteAndUnscaleOp):
def init_test_case(self):
x = np.random.random((129, 129)).astype(self.dtype)
x[128][128] = np.inf
scale = np.random.random((1)).astype(self.dtype)
self.inputs = {'X': [('x0', x)], 'Scale': scale}
self.outputs = {
'FoundInfinite': np.array([1]),
'Out': [('out0', x)],
}
def test_check_output(self):
# When input contains inf, do not check the output,
# since the output may be nondeterministic and will be discarded.
self.check_output_with_place(self.place, no_check_set=['Out'])
class TestCheckFiniteAndUnscaleOpMultiInput(TestCheckFiniteAndUnscaleOp):
def init_test_case(self):
x0 = np.random.random((129, 129)).astype(self.dtype)
x1 = np.random.random((129, 129)).astype(self.dtype)
scale = np.random.random((1)).astype(self.dtype)
self.inputs = {'X': [('x0', x0), ('x1', x1)], 'Scale': scale}
self.outputs = {
'FoundInfinite': np.array([0]),
'Out': [('out0', x0 / scale), ('out1', x1 / scale)],
}
class TestCheckFiniteAndUnscaleOpMultiInputWithNan(TestCheckFiniteAndUnscaleOp):
def init_test_case(self):
x0 = np.random.random((129, 129)).astype(self.dtype)
x0[128][128] = np.nan
x1 = np.random.random((129, 129)).astype(self.dtype)
scale = np.random.random((1)).astype(self.dtype)
self.inputs = {'X': [('x0', x0), ('x1', x1)], 'Scale': scale}
self.outputs = {
'FoundInfinite': np.array([1]),
'Out': [('out0', x0 / scale), ('out1', x1 / scale)],
}
def test_check_output(self):
# When input contains inf, do not check the output,
# since the output may be nondeterministic and will be discarded.
self.check_output_with_place(self.place, no_check_set=['Out'])
class TestCheckFiniteAndUnscaleOpMultiInputWithInf(TestCheckFiniteAndUnscaleOp):
def init_test_case(self):
x0 = np.random.random((129, 129)).astype(self.dtype)
x0[128][128] = np.nan
x1 = np.random.random((129, 129)).astype(self.dtype)
x1[128][128] = np.inf
scale = np.random.random((1)).astype(self.dtype)
self.inputs = {'X': [('x0', x0), ('x1', x1)], 'Scale': scale}
self.outputs = {
'FoundInfinite': np.array([1]),
'Out': [('out0', x0 / scale), ('out1', x1 / scale)],
}
def test_check_output(self):
# When input contains inf, do not check the output,
# since the output may be nondeterministic and will be discarded.
self.check_output_with_place(self.place, no_check_set=['Out'])
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册